

Package ‘seqHMM’

October 18, 2021

Title Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series

Version 1.2.0

Date 2021-10-18

Description Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models. Models are estimated using maximum likelihood via the EM algorithm and/or direct numerical maximization with analytical gradients. All main algorithms are written in C++ with support for parallel computation. Documentation is available via several vignettes in this page, and the paper by Helske and Helske (2019, [doi:10.18637/jss.v088.i03](https://doi.org/10.18637/jss.v088.i03)).

LazyData true

LinkingTo Rcpp, RcppArmadillo

Depends R (>= 3.2.0)

Imports gridBase, igraph, Matrix, nloptr, numDeriv, Rcpp (>= 0.11.3), TraMineR (>= 1.8-8), graphics, grDevices, grid, methods, stats, utils

Suggests MASS, nnet, knitr

SystemRequirements C++11

License GPL (>= 2)

Encoding UTF-8

BugReports <https://github.com/helske/seqHMM/issues>

VignetteBuilder knitr

RoxygenNote 7.1.2

NeedsCompilation yes

Author Jouni Helske [aut, cre] (<<https://orcid.org/0000-0001-7130-793X>>),
 Satu Helske [aut] (<<https://orcid.org/0000-0003-0532-0153>>)

Maintainer Jouni Helske <jouni.helske@iki.fi>

Repository CRAN

Date/Publication 2021-10-18 07:40:02 UTC

R topics documented:

biofam3c	3
build_hmm	4
build_lcm	8
build_mhmm	11
build_mm	16
build_mmm	18
colorpalette	20
estimate_coef	21
fit_model	21
forward_backward	32
gridplot	33
hidden_paths	35
hmm_biofam	36
hmm_mvad	38
logLik.hmm	40
logLik.mhmm	40
mc_to_sc	41
mc_to_sc_data	42
mhmm_biofam	43
mhmm_mvad	47
mssplot	49
plot.hmm	53
plot.mhmm	58
plot.ssp	62
plot_colors	63
posterior_probs	64
print.hmm	64
separate_mhmm	65
seqdef	66
seqHMM	66
seqHMM-deprecated	67
simulate_hmm	69
simulate_initial_probs	71
simulate_mhmm	71
ssp	73
ssplot	78
summary.mhmm	83
trim_model	84
vcov.mhmm	85

biofam3c	<i>Three-channel biofam data</i>
----------	----------------------------------

Description

Biofam data from the TraMineR package converted into three channels.

Format

A list including three sequence data sets for 2000 individuals with 16 state variables, and a separate data frame with 1 id variable, 8 covariates, and 2 weights variables.

Details

This data is constructed from the [biofam](#) data in the TraMineR package. Here the original state sequences are converted into three separate data sets: `children`, `married`, and `left`. These include the corresponding life states from age 15 to 30: childless or (having) children; single, married, or divorced; and (living) with parents or left home.

Note that the divorced state does not give information on parenthood or residence, so a guess is made based on preceding states.

The fourth data frame `covariates` is a collection of additional variables from the original data:

idhous	id
sex	sex
birthyr	birth year
nat_1_02	first nationality
plingu02	language of questionnaire
p02r01	religion
p02r04	religious participation
cspfaj	father's social status
cspmoj	mother's social status
wp00tbgp	weights inflating to the Swiss population
wp00tbgs	weights respecting sample size

The data is loaded by calling `data(biofam3c)`. It was built using following code:

```
data("biofam" , package = "TraMineR")
biofam3c <- with(biofam, {

  ## Building one channel per type of event left, children or married
  bf <- as.matrix(biofam[, 10:25])
  children <- bf == 4 | bf == 5 | bf == 6
  married <- bf == 2 | bf == 3 | bf == 6
  left <- bf == 1 | bf == 3 | bf == 5 | bf == 6 | bf == 7
```

```

children[children == TRUE] <- "children"
children[children == FALSE] <- "childless"
# Divorced parents
div <- bf[(rowSums(bf == 7) > 0 & rowSums(bf == 5) > 0) |
           (rowSums(bf == 7) > 0 & rowSums(bf == 6) > 0),]
children[rownames(bf) %in% rownames(div) & bf == 7] <- "children"

married[married == TRUE] <- "married"
married[married == FALSE] <- "single"
married[bf == 7] <- "divorced"

left[left == TRUE] <- "left home"
left[left == FALSE] <- "with parents"
# Divorced living with parents (before divorce)
wp <- bf[(rowSums(bf == 7) > 0 & rowSums(bf == 2) > 0 &
           rowSums(bf == 3) == 0 & rowSums(bf == 5) == 0 &
           rowSums(bf == 6) == 0) |
           (rowSums(bf == 7) > 0 & rowSums(bf == 4) > 0 &
           rowSums(bf == 3) == 0 & rowSums(bf == 5) == 0 &
           rowSums(bf == 6) == 0), ]
left[rownames(bf) %in% rownames(wp) & bf == 7] <- "with parents"

list("children" = children, "married" = married, "left" = left,
     "covariates" = biofam[, c(1:9, 26:27)])
})

```

Source

`biofam` data constructed from the Swiss Household Panel <https://forscenter.ch/projects/swiss-household-panel/>

References

Müller, N. S., M. Studer, G. Ritschard (2007). Classification de parcours de vie à l'aide de l'optimal matching. In *XIVe Rencontre de la Société francophone de classification (SFC 2007), Paris, 5 - 7 septembre 2007*, pp. 157–160.

Description

Function `build_hmm` constructs a hidden Markov model object of class `hmm`.

Usage

```
build_hmm(
  observations,
  n_states,
  transition_probs,
  emission_probs,
  initial_probs,
  state_names = NULL,
  channel_names = NULL,
  ...
)
```

Arguments

observations	An <code>stslist</code> object (see seqdef) containing the sequences, or a list of such objects (one for each channel).
n_states	A scalar giving the number of hidden states (not used if starting values for model parameters are given with <code>initial_probs</code> , <code>transition_probs</code> , or <code>emission_probs</code>).
transition_probs	A matrix of transition probabilities.
emission_probs	A matrix of emission probabilities or a list of such objects (one for each channel). Emission probabilities should follow the ordering of the alphabet of observations (<code>alphabet(observations)</code> , returned as <code>symbol_names</code>).
initial_probs	A vector of initial state probabilities.
state_names	A list of optional labels for the hidden states. If <code>NULL</code> , the state names are taken from the row names of the transition matrix. If this is also <code>NULL</code> , numbered states are used.
channel_names	A vector of optional names for the channels.
...	Additional arguments to <code>simulate_transition_probs</code> .

Details

The returned model contains some attributes such as `nobs` and `df`, which define the number of observations in the model and the number of estimable model parameters, used in computing BIC. When computing `nobs` for a multichannel model with C channels, each observed value in a single channel amounts to $1/C$ observation, i.e. a fully observed time point for a single sequence amounts to one observation. For the degrees of freedom `df`, zero probabilities of the initial model are defined as structural zeroes.

Value

Object of class `hmm` with the following elements:

- `observations` State sequence object or a list of such objects containing the data.
- `transition_probs` A matrix of transition probabilities.
- `emission_probs` A matrix or a list of matrices of emission probabilities.

```

initial_probs A vector of initial probabilities.
state_names Names for hidden states.
symbol_names Names for observed states.
channel_names Names for channels of sequence data.
length_of_sequences (Maximum) length of sequences.
n_sequences Number of sequences.
n_symbols Number of observed states (in each channel).
n_states Number of hidden states.
n_channels Number of channels.

```

See Also

[fit_model](#) for estimating model parameters; and [plot.hmm](#) for plotting `hmm` objects.

Examples

```

# Single-channel data

data("mvad", package = "TraMineR")

mvad_alphabet <- c("employment", "FE", "HE", "joblessness", "school",
                     "training")
mvad_labels <- c("employment", "further education", "higher education",
                  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet, states = mvad_scodes,
                   labels = mvad_labels, xtstep = 6)

# Initializing an HMM with 4 hidden states, random starting values
init_hmm_mvad1 <- build_hmm(observations = mvad_seq, n_states = 4)

# Starting values for the emission matrix
emiss <- matrix(NA, nrow = 4, ncol = 6)
emiss[1,] <- seqstatf(mvad_seq[, 1:12])[2] + 1
emiss[2,] <- seqstatf(mvad_seq[, 13:24])[2] + 1
emiss[3,] <- seqstatf(mvad_seq[, 25:48])[2] + 1
emiss[4,] <- seqstatf(mvad_seq[, 49:70])[2] + 1
emiss <- emiss / rowSums(emiss)

# Starting values for the transition matrix

tr <- matrix(
  c(0.80, 0.10, 0.05, 0.05,
    0.05, 0.80, 0.10, 0.05,
    0.05, 0.05, 0.80, 0.10,
    0.05, 0.05, 0.10, 0.80),
  nrow=4, ncol=4, byrow=TRUE)

```

```
# Starting values for initial state probabilities
init <- c(0.3, 0.3, 0.2, 0.2)

# HMM with own starting values
init_hmm_mvad2 <- build_hmm(
  observations = mvad_seq, transition_probs = tr,
  emission_probs = emiss, initial_probs = init)

#####
# Multichannel data

# Three-state three-channel hidden Markov model
# See ?hmm_biofam for a five-state version

data("biofam3c")

# Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
  alphabet = c("single", "married", "divorced"))
child_seq <- seqdef(biofam3c$children, start = 15,
  alphabet = c("childless", "children"))
left_seq <- seqdef(biofam3c$left, start = 15,
  alphabet = c("with parents", "left home"))

# Define colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

# Left-to-right HMM with 3 hidden states and random starting values
set.seed(1010)
init_hmm_bf1 <- build_hmm(
  observations = list(marr_seq, child_seq, left_seq),
  n_states = 3, left_right = TRUE, diag_c = 2)

# Starting values for emission matrices

emiss_marr <- matrix(NA, nrow = 3, ncol = 3)
emiss_marr[1,] <- seqstatf(marr_seq[, 1:5])[ , 2] + 1
emiss_marr[2,] <- seqstatf(marr_seq[, 6:10])[ , 2] + 1
emiss_marr[3,] <- seqstatf(marr_seq[, 11:16])[ , 2] + 1
emiss_marr <- emiss_marr / rowSums(emiss_marr)

emiss_child <- matrix(NA, nrow = 3, ncol = 2)
emiss_child[1,] <- seqstatf(child_seq[, 1:5])[ , 2] + 1
emiss_child[2,] <- seqstatf(child_seq[, 6:10])[ , 2] + 1
emiss_child[3,] <- seqstatf(child_seq[, 11:16])[ , 2] + 1
emiss_child <- emiss_child / rowSums(emiss_child)

emiss_left <- matrix(NA, nrow = 3, ncol = 2)
```

```

emiss_left[1,] <- seqstatf(left_seq[, 1:5])[, 2] + 1
emiss_left[2,] <- seqstatf(left_seq[, 6:10])[, 2] + 1
emiss_left[3,] <- seqstatf(left_seq[, 11:16])[, 2] + 1
emiss_left <- emiss_left / rowSums(emiss_left)

# Starting values for transition matrix
trans <- matrix(c(0.9, 0.07, 0.03,
                  0, 0.9, 0.1,
                  0, 0, 1),
                  nrow = 3, ncol = 3, byrow = TRUE)

# Starting values for initial state probabilities
inits <- c(0.9, 0.09, 0.01)

# HMM with own starting values
init_hmm_bf2 <- build_hmm(
  observations = list(marr_seq, child_seq, left_seq),
  transition_probs = trans,
  emission_probs = list(emiss_marr, emiss_child, emiss_left),
  initial_probs = inits)

```

build_lcm

Build a Latent Class Model

Description

Function `build_lcm` is a shortcut for constructing a latent class model as a restricted case of an `mhmm` object.

Usage

```

build_lcm(
  observations,
  n_clusters,
  emission_probs,
  formula,
  data,
  coefficients,
  cluster_names = NULL,
  channel_names = NULL
)

```

Arguments

<code>observations</code>	An <code>stslist</code> object (see <code>seqdef</code>) containing the sequences, or a list of such objects (one for each channel).
<code>n_clusters</code>	A scalar giving the number of clusters/submodels (not used if starting values for model parameters are given with <code>emission_probs</code>).

emission_probs	A matrix containing emission probabilities for each class by rows, or in case of multichannel data a list of such matrices. Note that the matrices must have dimensions $k \times s$ where k is the number of latent classes and s is the number of unique symbols (observed states) in the data. Emission probabilities should follow the ordering of the alphabet of observations (<code>alphabet(observations)</code> , returned as <code>symbol_names</code>).
formula	Covariates as an object of class <code>formula</code> , left side omitted.
data	An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from <code>environment(formula)</code> .
coefficients	An optional $k \times l$ matrix of regression coefficients for time-constant covariates for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is set to zero.
cluster_names	A vector of optional names for the classes/clusters.
channel_names	A vector of optional names for the channels.

Value

Object of class `mhmm` with the following elements:

observations	State sequence object or a list of such containing the data.
transition_probs	A matrix of transition probabilities.
emission_probs	A matrix or a list of matrices of emission probabilities.
initial_probs	A vector of initial probabilities.
coefficients	A matrix of parameter coefficients for covariates (covariates in rows, clusters in columns).
X	Covariate values for each subject.
cluster_names	Names for clusters.
state_names	Names for hidden states.
symbol_names	Names for observed states.
channel_names	Names for channels of sequence data
length_of_sequences	(Maximum) length of sequences.
n_sequences	Number of sequences.
n_symbols	Number of observed states (in each channel).
n_states	Number of hidden states.
n_channels	Number of channels.
n_covariates	Number of covariates.
n_clusters	Number of clusters.

See Also

`fit_model` for estimating model parameters; `summary.mhmm` for a summary of a mixture model; `separate_mhmm` for organizing an `mhmm` object into a list of separate `hmm` objects; and `plot.mhmm` for plotting mixture models.

Examples

```

# Simulate observations from two classes
set.seed(123)
obs <- seqdef(rbind(
  matrix(sample(letters[1:3], 500, TRUE, prob = c(0.1, 0.6, 0.3)), 50, 10),
  matrix(sample(letters[1:3], 200, TRUE, prob = c(0.4, 0.4, 0.2)), 20, 10)))

# Initialize the model
set.seed(9087)
model <- build_lcm(obs, n_clusters = 2)

# Estimate model parameters
fit <- fit_model(model)

# How many of the observations were correctly classified:
sum(summary(fit$model)$most_probable_cluster == rep(c("Class 2", "Class 1"), times = c(500, 200)))

#####
## Not run:
# LCM for longitudinal data

# Define sequence data
data("mvad", package = "TraMineR")
mvad_alphabet <- c("employment", "FE", "HE", "joblessness", "school",
  "training")
mvad_labels <- c("employment", "further education", "higher education",
  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet, states = mvad_scodes,
  labels = mvad_labels, xtstep = 6)

# Initialize the LCM with random starting values
set.seed(7654)
init_lcm_mvad1 <- build_lcm(observations = mvad_seq,
  n_clusters = 2, formula = ~male, data = mvad)

# Own starting values for emission probabilities
emiss <- rbind(rep(1/6, 6), rep(1/6, 6))

# LCM with own starting values
init_lcm_mvad2 <- build_lcm(observations = mvad_seq,
  emission_probs = emiss, formula = ~male, data = mvad)

# Estimate model parameters (EM algorithm with random restarts)
lcm_mvad <- fit_model(init_lcm_mvad1,
  control_em = list(restart = list(times = 5)))$model

# Plot the LCM
plot(lcm_mvad, interactive = FALSE, ncol = 2)

#####

```

```

# Binomial regression (comparison to glm)

require("MASS")
data("birthwt")

model <- build_lcm(
  observations = seqdef(birthwt$low), emission_probs = diag(2),
  formula = ~age + lwt + smoke + ht, data = birthwt)
fit <- fit_model(model)
summary(fit$model)
summary(glm(low ~ age + lwt + smoke + ht, binomial, data = birthwt))

# Multinomial regression (comparison to multinom)

require("nnet")

set.seed(123)
n <- 100
X <- cbind(1, x1 = runif(n, 0, 1), x2 = runif(n, 0, 1))
coefs <- cbind(0, c(-2, 5, -2), c(0, -2, 2))
pr <- exp(X %*% coefs) + rnorm(n*3)
pr <- pr/rowSums(pr)
y <- apply(pr, 1, which.max)
table(y)

model <- build_lcm(
  observations = seqdef(y), emission_probs = diag(3),
  formula = ~x1 + x2, data = data.frame(X[, -1]))
fit <- fit_model(model)
summary(fit$model)
summary(multinom(y ~ x1 + x2, data = data.frame(X[,-1])))

## End(Not run)

```

build_mhmm

Build a Mixture Hidden Markov Model

Description

Function `build_mhmm` constructs a mixture hidden Markov model object of class `mhmm`.

Usage

```

build_mhmm(
  observations,
  n_states,
  transition_probs,
  emission_probs,
  initial_probs,

```

```

formula,
data,
coefficients,
cluster_names = NULL,
state_names = NULL,
channel_names = NULL,
...
)

```

Arguments

observations	An <code>stslist</code> object (see <code>seqdef</code>) containing the sequences, or a list of such objects (one for each channel).
n_states	A numerical vector giving the number of hidden states in each submodel (not used if starting values for model parameters are given with <code>initial_probs</code> , <code>transition_probs</code> , or <code>emission_probs</code>).
transition_probs	A list of matrices of transition probabilities for the submodel of each cluster.
emission_probs	A list which contains matrices of emission probabilities or a list of such objects (one for each channel) for the submodel of each cluster. Note that the matrices must have dimensions $m \times s$ where m is the number of hidden states and s is the number of unique symbols (observed states) in the data. Emission probabilities should follow the ordering of the alphabet of observations (<code>alphabet(observations)</code> , returned as <code>symbol_names</code>).
initial_probs	A list which contains vectors of initial state probabilities for the submodel of each cluster.
formula	Covariates as an object of class <code>formula</code> , left side omitted.
data	An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from <code>environment(formula)</code> .
coefficients	An optional $k \times l$ matrix of regression coefficients for time-constant covariates for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is set to zero.
cluster_names	A vector of optional names for the clusters.
state_names	A list of optional labels for the hidden states. If <code>NULL</code> , the state names are taken as row names of transition matrices. If this is also <code>NULL</code> , numbered states are used.
channel_names	A vector of optional names for the channels.
...	Additional arguments to <code>simulate_transition_probs</code> .

Details

The returned model contains some attributes such as `nobs` and `df`, which define the number of observations in the model and the number of estimable model parameters, used in computing BIC. When computing `nobs` for a multichannel model with C channels, each observed value in a single channel amounts to $1/C$ observation, i.e. a fully observed time point for a single sequence amounts

to one observation. For the degrees of freedom `df`, zero probabilities of the initial model are defined as structural zeroes.

Value

Object of class `mhmm` with following elements:

`observations` State sequence object or a list of such containing the data.
`transition_probs` A matrix of transition probabilities.
`emission_probs` A matrix or a list of matrices of emission probabilities.
`initial_probs` A vector of initial probabilities.
`coefficients` A matrix of parameter coefficients for covariates (covariates in rows, clusters in columns).
`X` Covariate values for each subject.
`cluster_names` Names for clusters.
`state_names` Names for hidden states.
`symbol_names` Names for observed states.
`channel_names` Names for channels of sequence data
`length_of_sequences` (Maximum) length of sequences.
`n_sequences` Number of sequences.
`n_symbols` Number of observed states (in each channel).
`n_states` Number of hidden states.
`n_channels` Number of channels.
`n_covariates` Number of covariates.
`n_clusters` Number of clusters.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

`fit_model` for fitting mixture Hidden Markov models; `summary.mhmm` for a summary of a MHMM; `separate_mhmm` for reorganizing a MHMM into a list of separate hidden Markov models; and `plot.mhmm` for plotting `mhmm` objects.

Examples

```

data("biofam3c")

## Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
  alphabet = c("single", "married", "divorced"))

```

```

child_seq <- seqdef(biofam3c$children, start = 15,
                     alphabet = c("childless", "children"))
left_seq <- seqdef(biofam3c$left, start = 15,
                     alphabet = c("with parents", "left home"))

## Choosing colors
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

## MHMM with random starting values, no covariates
set.seed(468)
init_mhmm_bf1 <- build_mhmm(
  observations = list(marr_seq, child_seq, left_seq),
  n_states = c(4, 4, 6),
  channel_names = c("Marriage", "Parenthood", "Residence"))

## Starting values for emission probabilities

# Cluster 1
B1_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.3, 0.6, 0.1, # High probability for married
    0.3, 0.3, 0.4), # High probability for divorced
  nrow = 4, ncol = 3, byrow = TRUE)

B1_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.9, 0.1,
    0.9, 0.1),
  nrow = 4, ncol = 2, byrow = TRUE)

B1_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9, # High probability for having left home
    0.1, 0.9,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 2

B2_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.1, 0.8, 0.1, # High probability for married
    0.7, 0.2, 0.1),
  nrow = 4, ncol = 3, byrow = TRUE)

B2_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.9, 0.1,
    0.9, 0.1),
  nrow = 4, ncol = 2, byrow = TRUE)

```

```

  0.9, 0.1,
  0.9, 0.1,
  0.1, 0.9),
nrow = 4, ncol = 2, byrow = TRUE)

B2_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.1, 0.9,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 3
B3_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.8, 0.1, 0.1,
    0.1, 0.8, 0.1, # High probability for married
    0.3, 0.4, 0.3,
    0.1, 0.1, 0.8), # High probability for divorced
  nrow = 6, ncol = 3, byrow = TRUE)

B3_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.5, 0.5,
    0.5, 0.5,
    0.5, 0.5,
    0.1, 0.9),
  nrow = 6, ncol = 2, byrow = TRUE)

B3_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.5, 0.5,
    0.5, 0.5,
    0.1, 0.9,
    0.1, 0.9),
  nrow = 6, ncol = 2, byrow = TRUE)

# Starting values for transition matrices
A1 <- matrix(
  c(0.80, 0.16, 0.03, 0.01,
    0, 0.90, 0.07, 0.03,
    0, 0, 0.90, 0.10,
    0, 0, 0, 1),
  nrow = 4, ncol = 4, byrow = TRUE)

A2 <- matrix(
  c(0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
    0, 0.70, 0.10, 0.10, 0.05, 0.05,
    0, 0, 0.85, 0.01, 0.10, 0.04,

```

```

0,      0,      0.90, 0.05, 0.05,
0,      0,      0,      0.90, 0.10,
0,      0,      0,      0,      1),
nrow = 6, ncol = 6, byrow = TRUE)

# Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)

# Birth cohort
biofam3c$covariates$cohort <- cut(biofam3c$covariates$birthyr, c(1908, 1935, 1945, 1957))
biofam3c$covariates$cohort <- factor(
  biofam3c$covariates$cohort, labels=c("1909-1935", "1936-1945", "1946-1957"))

## MHMM with own starting values and covariates
init_mhmm_bf2 <- build_mhmm(
  observations = list(marr_seq, child_seq, left_seq),
  initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
  transition_probs = list(A1, A1, A2),
  emission_probs = list(list(B1_marr, B1_child, B1_left),
    list(B2_marr, B2_child, B2_left),
    list(B3_marr, B3_child, B3_left)),
  formula = ~sex + cohort, data = biofam3c$covariates,
  cluster_names = c("Cluster 1", "Cluster 2", "Cluster 3"),
  channel_names = c("Marriage", "Parenthood", "Residence"),
  state_names = list(paste("State", 1:4), paste("State", 1:4),
    paste("State", 1:6)))

```

build_mm

Build a Markov Model

Description

Function `build_mm` builds and automatically estimates a Markov model. It is also a shortcut for constructing a Markov model as a restricted case of an `hmm` object.

Usage

```
build_mm(observations)
```

Arguments

`observations` An `stslist` object (see [seqdef](#)) containing the sequences.

Details

Unlike the other build functions in `seqHMM`, the `build_mm` function automatically estimates the model parameters. As initial and transition probabilities can be directly estimated from the observed initial state probabilities and transition counts, there is no need for starting values or further estimation with the [fit_model](#) function.

Value

Object of class `hmm` with following elements:

`observations` State sequence object or a list of such containing the data.
`transition_probs` A matrix of transition probabilities.
`emission_probs` A matrix or a list of matrices of emission probabilities.
`initial_probs` A vector of initial probabilities.
`state_names` Names for hidden states.
`symbol_names` Names for observed states.
`channel_names` Names for channels of sequence data.
`length_of_sequences` (Maximum) length of sequences.
`n_sequences` Number of sequences.
`n_symbols` Number of observed states (in each channel).
`n_states` Number of hidden states.
`n_channels` Number of channels.

See Also

[plot.hmm](#) for plotting the model.

Examples

```
# Construct sequence data
data("mvad", package = "TraMineR")

mvad_alphabet <-
  c("employment", "FE", "HE", "joblessness", "school", "training")
mvad_labels <- c("employment", "further education", "higher education",
  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet,
  states = mvad_scodes, labels = mvad_labels, xtstep = 6)

# Define a color palette for the sequence data
attr(mvad_seq, "cpal") <- colorpalette[[6]]

# Estimate the Markov model
mm_mvad <- build_mm(observations = mvad_seq)
```

`build_mmm`*Build a Mixture Markov Model*

Description

Function `build_mmm` is a shortcut for constructing a mixture Markov model as a restricted case of an `mhmm` object.

Usage

```
build_mmm(  
  observations,  
  n_clusters,  
  transition_probs,  
  initial_probs,  
  formula,  
  data,  
  coefficients,  
  cluster_names = NULL,  
  ...  
)
```

Arguments

`observations` An `stslist` object (see [seqdef](#)) containing the sequences.

`n_clusters` A scalar giving the number of clusters/submodels (not used if starting values for model parameters are given with `initial_probs` and `transition_probs`).

`transition_probs` A list of matrices of transition probabilities for submodels of each cluster.

`initial_probs` A list which contains vectors of initial state probabilities for submodels of each cluster.

`formula` Covariates as an object of class [formula](#), left side omitted.

`data` An optional data frame, list or environment containing the variables in the model. If not found in `data`, the variables are taken from `environment(formula)`.

`coefficients` An optional $k \times l$ matrix of regression coefficients for time-constant covariates for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is set to zero.

`cluster_names` A vector of optional names for the clusters.

`...` Additional arguments to `simulate_transition_probs`.

Value

Object of class `mhmm` with following elements:

`observations` State sequence object or a list of such containing the data.
`transition_probs` A matrix of transition probabilities.
`emission_probs` A matrix or a list of matrices of emission probabilities.
`initial_probs` A vector of initial probabilities.
`coefficients` A matrix of parameter coefficients for covariates (covariates in rows, clusters in columns).
`X` Covariate values for each subject.
`cluster_names` Names for clusters.
`state_names` Names for hidden states.
`symbol_names` Names for observed states.
`channel_names` Names for channels of sequence data
`length_of_sequences` (Maximum) length of sequences.
`n_sequences` Number of sequences.
`n_symbols` Number of observed states (in each channel).
`n_states` Number of hidden states.
`n_channels` Number of channels.
`n_covariates` Number of covariates.
`n_clusters` Number of clusters.

See Also

[fit_model](#) for estimating model parameters; [summary.mhmm](#) for a summary of a mixture model; [separate_mhmm](#) for organizing an `mhmm` object into a list of separate `hmm` objects; and [plot.mhmm](#) for plotting mixture models.

Examples

```
# Define sequence data
data("mvad", package = "TraMineR")
mvad_alphabet <- c("employment", "FE", "HE", "joblessness", "school",
  "training")
mvad_labels <- c("employment", "further education", "higher education",
  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet, states = mvad_scodes,
  labels = mvad_labels, xtstep = 6)

# Initialize the MMM
set.seed(123)
mmm_mvad <- build_mmm(observations = mvad_seq,
```

```

n_clusters = 2,
formula = ~male, data = mvad)

## Not run:
# Estimate model parameters
mmm_mvad <- fit_model(mmm_mvad)$model

# Plot model (both clusters in the same plot)
require(igraph)
plot(mmm_mvad, interactive = FALSE,
      # Modify legend position and properties
      with.legend = "right", legend.prop = 0.3, cex.legend = 1.2,
      # Define vertex layout
      layout = layout_as_star,
      # Modify edge properties
      edge.label = NA, edge.arrow.size = 0.8, edge.curved = 0.2,
      # Modify vertex label positions (initial probabilities)
      vertex.label.pos = c("left", "right", "right", "left", "left", "right"))

# Summary of the MMM
summary(mmm_mvad)

## End(Not run)

```

colorpalette

Color palettes

Description

A list containing ready defined color palettes with distinct colors using iWantHue. By default, seqHMM uses these palettes when assigning colors.

Format

A list with 200 color palettes.

Source

iWantHue web page <https://medialab.github.io/iwanthue/>

See Also

[plot_colors](#) for visualization of color palettes. Implementations of iWantHue for R:

- <https://github.com/hoesler/rwantshue>
- <https://github.com/johnbaums/hues>

Examples

```
data("colorpalette")
# Color palette with 9 colors
colorpalette[[9]]
# Color palette with 24 colors
colorpalette[[24]]
```

estimate_coef

Estimate Regression Coefficients of Mixture Hidden Markov Models

Description

Function `estimate_coef` estimates the regression coefficients of mixture hidden Markov models and its restricted variants while keeping other parameters fixed.

Usage

```
estimate_coef(model, threads = 1)
```

Arguments

<code>model</code>	An object of class <code>hmm</code> or <code>mhmm</code> .
<code>threads</code>	Number of threads to use in parallel computing. The default is 1.

fit_model

Estimate Parameters of (Mixture) Hidden Markov Models and Their Restricted Variants

Description

Function `fit_model` estimates the parameters of mixture hidden Markov models and its restricted variants using maximum likelihood. Initial values for estimation are taken from the corresponding components of the model with preservation of original zero probabilities.

Usage

```
fit_model(
  model,
  em_step = TRUE,
  global_step = FALSE,
  local_step = FALSE,
  control_em = list(),
  control_global = list(),
  control_local = list(),
```

```

lb,
ub,
threads = 1,
log_space = FALSE,
constraints = NULL,
fixed_inits = NULL,
fixed_emissions = NULL,
fixed_transitions = NULL,
...
)

```

Arguments

model	An object of class <code>hmm</code> or <code>mhmm</code> .
em_step	Logical. Whether or not to use the EM algorithm at the start of the parameter estimation. The default is TRUE.
global_step	Logical. Whether or not to use global optimization via <code>nloptr</code> (possibly after the EM step). The default is FALSE.
local_step	Logical. Whether or not to use local optimization via <code>nloptr</code> (possibly after the EM and/or global steps). The default is FALSE.
control_em	Optional list of control parameters for the EM algorithm. Possible arguments are
maxeval	The maximum number of iterations, the default is 1000. Note that iteration counter starts with -1 so with <code>maxeval=1</code> you get already two iterations. This is for backward compatibility reasons.
print_level	The level of printing. Possible values are 0 (prints nothing), 1 (prints information at the start and the end of the algorithm), 2 (prints at every iteration), and for mixture models 3 (print also during optimization of coefficients).
reltol	Relative tolerance for convergence defined as $(logLik_{new} - logLik_{old}) / (abs(logLik_{old}) + 0.1)$. The default is 1e-10.
restart	A list containing options for possible EM restarts with the following components:
times	Number of restarts of the EM algorithm using random initial values. The default is 0, i.e. no restarts.
transition	Logical. Should the original transition probabilities be varied? The default is TRUE.
emission	Logical. Should the original emission probabilities be varied? The default is TRUE.
sd	Standard deviation for <code>rnorm</code> used in randomization. The default is 0.25.
maxeval	Maximum number of iterations, the default is <code>control_em\$maxeval</code>
print_level	Level of printing in restarted EM steps. The default is <code>control_em\$print_level</code> .
reltol	Relative tolerance for convergence at restarted EM steps. The default is <code>control_em\$reltol</code> . If the relative change of the final model of the restart phase is larger than the tolerance for the original EM phase, the

	final model is re-estimated with the original <code>reltol</code> and <code>maxeval</code> at the end of the EM step.
n_optimum	Save the log-likelihood values of the <code>n_optimum</code> best models (from all estimated models including the the first EM run.). The default is <code>min(times + 1, 25)</code> .
use_original	If TRUE. Use the initial values of the input model as starting points for the permutations. Otherwise permute the results of the first EM run.
<code>control_global</code>	Optional list of additional arguments for <code>nloptr</code> argument <code>opts</code> . The default values are <ul style="list-style-type: none"> algorithm "NLOPT_GD_MSL_LDS" local_opts list(algorithm = "NLOPT_LD_LBFGS", ftol_rel = 1e-6, xtol_rel = 1e-4) maxeval 10000 (maximum number of iterations in global optimization algorithm.) maxtime 60 (maximum time for global optimization. Set to 0 for unlimited time.)
<code>control_local</code>	Optional list of additional arguments for <code>nloptr</code> argument <code>opts</code> . The default values are <ul style="list-style-type: none"> algorithm "NLOPT_LD_LBFGS" ftol_rel 1e-10 xtol_rel 1e-8 maxeval 10000 (maximum number of iterations)
<code>lb</code> , <code>ub</code>	Lower and upper bounds for parameters in Softmax parameterization. The default interval is $[pmin(-25, 2 * initialvalues), pmax(25, 2 * initialvalues)]$, except for gamma coefficients, where the scale of covariates is taken into account. Note that it might still be a good idea to scale covariates around unit scale. Bounds are used only in the global optimization step.
<code>threads</code>	Number of threads to use in parallel computing. The default is 1.
<code>log_space</code>	Make computations using log-space instead of scaling for greater numerical stability at a cost of decreased computational performance. The default is FALSE.
<code>constraints</code>	Integer vector defining equality constraints for emission distributions. Not supported for EM algorithm. See details.
<code>fixed_inits</code>	Can be used to fix some of the probabilities to their initial values. Should have same structure as <code>model\$initial_probs</code> , where each element is either TRUE (fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed to 0. Not supported for EM algorithm. See details.
<code>fixed_emissions</code>	Can be used to fix some of the probabilities to their initial values. Should have same structure as <code>model\$emission_probs</code> , where each element is either TRUE (fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed to 0. Not supported for EM algorithm. See details.

fixed_transitions

Can be used to fix some of the probabilities to their initial values. Should have same structure as `model$transition_probs`, where each element is either TRUE (fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed to 0. Not supported for EM algorithm. See details.

...

Additional arguments to `nloptr`.

Details

The fitting function provides three estimation steps: 1) EM algorithm, 2) global optimization, and 3) local optimization. The user can call for one method or any combination of these steps, but should note that they are performed in the above-mentioned order. The results from a former step are used as starting values in a latter, except for some of global optimization algorithms (such as MSL and StoGO) which only use initial values for setting up the boundaries for the optimization.

It is possible to rerun the EM algorithm automatically using random starting values based on the first run of EM. Number of restarts is defined by the `restart` argument in `control_em`. As the EM algorithm is relatively fast, this method might be preferred option compared to the proper global optimization strategy of step 2.

The default global optimization method (triggered via `global_step = TRUE`) is the multilevel single-linkage method (MSL) with the LDS modification (`NLOPT_GD_MSL_LDS` as `algorithm` in `control_global`), with L-BFGS as the local optimizer. The MSL method draws random starting points and performs a local optimization from each. The LDS modification uses low-discrepancy sequences instead of pseudo-random numbers as starting points and should improve the convergence rate. In order to reduce the computation time spent on non-global optima, the convergence tolerance of the local optimizer is set relatively large. At step 3, a local optimization (L-BFGS by default) is run with a lower tolerance to find the optimum with high precision.

There are some theoretical guarantees that the MSL method used as the default optimizer in step 2 should find all local optima in a finite number of local optimizations. Of course, it might not always succeed in a reasonable time. The EM algorithm can help in finding good boundaries for the search, especially with good starting values, but in some cases it can mislead. A good strategy is to try a couple of different fitting options with different combinations of the methods: e.g. all steps, only global and local steps, and a few evaluations of EM followed by global and local optimization.

By default, the estimation time is limited to 60 seconds in global optimization step, so it is advisable to change the default settings for the proper global optimization.

Any algorithm available in the `nloptr` function can be used for the global and local steps.

Equality constraints for emission distributions can be defined using the argument `constraints`. This should be a vector with length equal to the number of states, with numbers starting from 1 and increasing for each unique row of the emission probability matrix. For example in case of five states with emissions of first and third states being equal, `constraints = c(1, 2, 1, 3, 4)`. Similarly, some of the model parameters can be fixed to their initial values by using arguments `fixed_inits`, `fixed_emissions`, and `fixed_transitions`, where the structure of the arguments should be same as the corresponding model components, so that TRUE value means that the parameter should be fixed and FALSE otherwise (it is still treated as fixed if it is zero though). For both types of constraints, only numerical optimisation (local or global) is available, and currently the gradients are computed numerically (if needed) in these cases.

Value

logLik Log-likelihood of the estimated model.

em_results Results after the EM step: log-likelihood (logLik), number of iterations (iterations), relative change in log-likelihoods between the last two iterations (change), and the log-likelihoods of the n_optimum best models after the EM step (best_opt_restart).

global_results Results after the global step.

local_results Results after the local step.

call The matched function call.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

[build_hmm](#), [build_mhmm](#), [build_mm](#), [build_mmm](#), and [build_lcm](#) for constructing different types of models; [summary.mhmm](#) for a summary of a MHMM; [separate_mhmm](#) for reorganizing a MHMM into a list of separate hidden Markov models; [plot.hmm](#) and [plot.mhmm](#) for plotting model objects; and [ssplot](#) and [mssplot](#) for plotting stacked sequence plots of [hmm](#) and [mhmm](#) objects.

Examples

```
# Left-to-right HMM with equality constraint:
set.seed(1)

# Transition matrix
# Either stay or move to next state
A <- diag(c(0.9, 0.95, 0.95, 1))
A[1, 2] <- 0.1
A[2, 3] <- 0.05
A[3, 4] <- 0.05

# Emission matrix, rows 1 and 3 equal
B <- rbind(
  c(0.4,0.2,0.3,0.1),
  c(0.1,0.5,0.1,0.3),
  c(0.4,0.2,0.3,0.1),
  c(0, 0.2,0.4,0.4))

# Start from first state
init <- c(1,0,0,0)

# Simulate sequences
sim <- simulate_hmm(n_sequences = 100,
  sequence_length = 20, init, A, B)

# initial model, use true values as inits for faster estimation here
```

```

model <- build_hmm(sim$observations, init = init, trans = A, emiss = B)

# estimate the model subject to constraints:
# First and third row of emission matrix are equal (see details)
fit <- fit_model(model, constraints = c(1, 2, 1, 3),
  em_step = FALSE, local_step = TRUE)
fit$model

## Fix some emissions:

fixB <- matrix(FALSE, 4, 4)
fixB[2, 1] <- fixB[1, 3] <- TRUE # these are fixed to their initial values
fit <- fit_model(model, fixed_emissions = fixB,
  em_step = FALSE, local_step = TRUE)
fit$model$emission_probs

# Hidden Markov model for mvad data

data("mvad", package = "TraMineR")

mvad_alphabet <-
  c("employment", "FE", "HE", "joblessness", "school", "training")
mvad_labels <- c("employment", "further education", "higher education",
  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet,
  states = mvad_scodes, labels = mvad_labels, xtstep = 6)

attr(mvad_seq, "cpal") <- colorpalette[[6]]

# Starting values for the emission matrix
emiss <- matrix(
  c(0.05, 0.05, 0.05, 0.75, 0.05, # SC
  0.05, 0.75, 0.05, 0.05, 0.05, # FE
  0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR
  0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE
  0.75, 0.05, 0.05, 0.05, 0.05, 0.05),# EM
  nrow = 5, ncol = 6, byrow = TRUE)

# Starting values for the transition matrix
trans <- matrix(0.025, 5, 5)
diag(trans) <- 0.9

# Starting values for initial state probabilities
initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2)

# Building a hidden Markov model
init_hmm_mvad <- build_hmm(observations = mvad_seq,
  transition_probs = trans, emission_probs = emiss,
  initial_probs = initial_probs)

## Not run:
set.seed(21)

```

```

fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 50)))
hmm_mvad <- fit_hmm_mvad$model

## End(Not run)

# save time, load the previously estimated model
data("hmm_mvad")

# Markov model
# Note: build_mm estimates model parameters from observations,
# no need for estimating with fit_model

mm_mvad <- build_mm(observations = mvad_seq)

# Comparing likelihoods, MM fits better
logLik(hmm_mvad)
logLik(mm_mvad)

## Not run:
require("igraph") #for layout_in_circle

plot(mm_mvad, layout = layout_in_circle, legend.prop = 0.3,
  edge.curved = 0.3, edge.label = NA,
  vertex.label.pos = c(0, 0, pi, pi, pi, 0))

#####
##' # Three-state three-channel hidden Markov model
## See ?hmm_biofam for five-state version

data("biofam3c")

# Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
  alphabet = c("single", "married", "divorced"))
child_seq <- seqdef(biofam3c$children, start = 15,
  alphabet = c("childless", "children"))
left_seq <- seqdef(biofam3c$left, start = 15,
  alphabet = c("with parents", "left home"))

# Define colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

# Starting values for emission matrices

emiss_marr <- matrix(NA, nrow = 3, ncol = 3)
emiss_marr[1,] <- seqstatf(marr_seq[, 1:5])[ , 2] + 1
emiss_marr[2,] <- seqstatf(marr_seq[, 6:10])[ , 2] + 1
emiss_marr[3,] <- seqstatf(marr_seq[, 11:16])[ , 2] + 1
emiss_marr <- emiss_marr / rowSums(emiss_marr)

```

```

emiss_child <- matrix(NA, nrow = 3, ncol = 2)
emiss_child[1,] <- seqstatf(child_seq[, 1:5])[ , 2] + 1
emiss_child[2,] <- seqstatf(child_seq[, 6:10])[ , 2] + 1
emiss_child[3,] <- seqstatf(child_seq[, 11:16])[ , 2] + 1
emiss_child <- emiss_child / rowSums(emiss_child)

emiss_left <- matrix(NA, nrow = 3, ncol = 2)
emiss_left[1,] <- seqstatf(left_seq[, 1:5])[ , 2] + 1
emiss_left[2,] <- seqstatf(left_seq[, 6:10])[ , 2] + 1
emiss_left[3,] <- seqstatf(left_seq[, 11:16])[ , 2] + 1
emiss_left <- emiss_left / rowSums(emiss_left)

# Starting values for transition matrix
trans <- matrix(c(0.9, 0.07, 0.03,
                  0, 0.9, 0.1,
                  0, 0, 1), nrow = 3, ncol = 3, byrow = TRUE)

# Starting values for initial state probabilities
inits <- c(0.9, 0.09, 0.01)

# Building hidden Markov model with initial parameter values
init_hmm_bf <- build_hmm(
  observations = list(marr_seq, child_seq, left_seq),
  transition_probs = trans,
  emission_probs = list(emiss_marr, emiss_child, emiss_left),
  initial_probs = inits)

# Fitting the model with different optimization schemes

# Only EM with default values
hmm_1 <- fit_model(init_hmm_bf)
hmm_1$logLik # -24179.1

# Only L-BFGS
hmm_2 <- fit_model(init_hmm_bf, em_step = FALSE, local_step = TRUE)
hmm_2$logLik # -22267.75

# Global optimization via MLSL_LDS with L-BFGS as local optimizer and final polisher
# This can be slow, use parallel computing by adjusting threads argument
# (here threads = 1 for portability issues)
hmm_3 <- fit_model(
  init_hmm_bf, em_step = FALSE, global_step = TRUE, local_step = TRUE,
  control_global = list(maxeval = 5000, maxtime = 0), threads = 1)
hmm_3$logLik # -21675.42

# EM with restarts, much faster than MLSL
set.seed(123)
hmm_4 <- fit_model(init_hmm_bf, control_em = list(restart = list(times = 5)))
hmm_4$logLik # -21675.4

# Global optimization via StoGO with L-BFGS as final polisher
# This can be slow, use parallel computing by adjusting threads argument

```

```

# (here threads = 1 for portability issues)
set.seed(123)
hmm_5 <- fit_model(
  init_hmm_bf, em_step = FALSE, global_step = TRUE, local_step = TRUE,
  lb = -50, ub = 50, control_global = list(algorithm = "NLOPT_GD_STOGO",
  maxeval = 2500, maxtime = 0), threads = 1)
hmm_5$logLik # -21675.4

#####
# Mixture HMM

data("biofam3c")

## Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
  alphabet = c("single", "married", "divorced"))
child_seq <- seqdef(biofam3c$children, start = 15,
  alphabet = c("childless", "children"))
left_seq <- seqdef(biofam3c$left, start = 15,
  alphabet = c("with parents", "left home"))

## Choosing colors
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

## Starting values for emission probabilities
# Cluster 1
B1_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
  0.8, 0.1, 0.1,
  0.3, 0.6, 0.1, # High probability for married
  0.3, 0.3, 0.4), # High probability for divorced
  nrow = 4, ncol = 3, byrow = TRUE)

B1_child <- matrix(
  c(0.9, 0.1, # High probability for childless
  0.9, 0.1,
  0.9, 0.1,
  0.9, 0.1),
  nrow = 4, ncol = 2, byrow = TRUE)

B1_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
  0.1, 0.9, # High probability for having left home
  0.1, 0.9,
  0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 2
B2_marr <- matrix(

```

```

c(0.8, 0.1, 0.1, # High probability for single
  0.8, 0.1, 0.1,
  0.1, 0.8, 0.1, # High probability for married
  0.7, 0.2, 0.1),
nrow = 4, ncol = 3, byrow = TRUE)

B2_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.9, 0.1,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)

B2_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.1, 0.9,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 3
B3_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.8, 0.1, 0.1,
    0.1, 0.8, 0.1, # High probability for married
    0.3, 0.4, 0.3,
    0.1, 0.1, 0.8), # High probability for divorced
  nrow = 6, ncol = 3, byrow = TRUE)

B3_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.5, 0.5,
    0.5, 0.5,
    0.5, 0.5,
    0.1, 0.9),
  nrow = 6, ncol = 2, byrow = TRUE)

B3_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.5, 0.5,
    0.5, 0.5,
    0.1, 0.9,
    0.1, 0.9),
  nrow = 6, ncol = 2, byrow = TRUE)

# Starting values for transition matrices
A1 <- matrix(
  c(0.80, 0.16, 0.03, 0.01,
    0, 0.90, 0.07, 0.03,

```

```

0,      0,      0.90,  0.10,
0,      0,      0,      1),
nrow = 4, ncol = 4, byrow = TRUE)

A2 <- matrix(
  c(0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
    0,      0.70, 0.10, 0.10, 0.05, 0.05,
    0,      0,      0.85, 0.01, 0.10, 0.04,
    0,      0,      0,      0.90, 0.05, 0.05,
    0,      0,      0,      0,      0.90, 0.10,
    0,      0,      0,      0,      0,      1),
  nrow = 6, ncol = 6, byrow = TRUE)

# Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)

# Birth cohort
biofam3c$covariates$cohort <- cut(biofam3c$covariates$birthyr, c(1908, 1935, 1945, 1957))
biofam3c$covariates$cohort <- factor(
  biofam3c$covariates$cohort, labels=c("1909-1935", "1936-1945", "1946-1957"))

# Build mixture HMM
init_mhmm_bf <- build_mhmm(
  observations = list(marr_seq, child_seq, left_seq),
  initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
  transition_probs = list(A1, A1, A2),
  emission_probs = list(list(B1_marr, B1_child, B1_left),
    list(B2_marr, B2_child, B2_left),
    list(B3_marr, B3_child, B3_left)),
  formula = ~sex + cohort, data = biofam3c$covariates,
  channel_names = c("Marriage", "Parenthood", "Residence"))

# Fitting the model with different settings

# Only EM with default values
mhmm_1 <- fit_model(init_mhmm_bf)
mhmm_1$logLik # -12713.08

# Only L-BFGS
mhmm_2 <- fit_model(init_mhmm_bf, em_step = FALSE, local_step = TRUE)
mhmm_2$logLik # -12966.51

# Use EM with multiple restarts
set.seed(123)
mhmm_3 <- fit_model(init_mhmm_bf, control_em = list(restart = list(times = 5, transition = FALSE)))
mhmm_3$logLik # -12713.08

## End(Not run)

```

forward_backward*Forward and Backward Probabilities for Hidden Markov Model*

Description

The `forward_backward` function computes scaled forward and backward probabilities of a hidden Markov model.

Usage

```
forward_backward(model, forward_only = FALSE, log_space = FALSE, threads = 1)
```

Arguments

<code>model</code>	Object of class <code>hmm</code> or <code>mhmm</code> .
<code>forward_only</code>	If <code>TRUE</code> , only forward probabilities are computed. The default is <code>FALSE</code> .
<code>log_space</code>	Compute forward and backward probabilities in logarithmic scale instead of scaling. The default is <code>FALSE</code> .
<code>threads</code>	Number of threads used in parallel computing. The default is 1.

Value

List with components

<code>forward_probs</code>	If <code>log_space = FALSE</code> , scaled forward probabilities, i.e. probability of state given observations up to that time point. If <code>log_space = TRUE</code> , logarithms of non-scaled forward probabilities.
<code>backward_probs</code>	Scaled backward probabilities (<code>log_space = FALSE</code>), or logarithms of non-scaled backward probabilities(<code>log_space = TRUE</code>).
<code>scaling_factors</code>	Sum of non-scaled forward probabilities at each time point. Only computed if <code>log_space = FALSE</code> .

In case of multiple observations, these are computed independently for each sequence.

Examples

```
# Load a pre-defined MHMM
data("mhmm_biofam")

# Compute forward and backward probabilities
fb <- forward_backward(mhmm_biofam)

# The most probable hidden state at time t
# given the observations up to time t for the first subject:
apply(fb$forward_probs[, , 1], 2, which.max)
```

gridplot

*Plot Multidimensional Sequence Plots in a Grid***Description**

Function `gridplot` plots multiple `ssp` objects to a grid.

Usage

```
gridplot(
  x,
  nrow = NA,
  ncol = NA,
  byrow = FALSE,
  with.legend = "auto",
  legend.pos = "auto",
  legend.pos2 = "center",
  title.legend = "auto",
  ncol.legend = "auto",
  with.missing.legend = "auto",
  row.prop = "auto",
  col.prop = "auto",
  cex.legend = 1
)
```

Arguments

<code>x</code>	A list of <code>ssp</code> objects.
<code>nrow, ncol</code>	Optional arguments to arrange plots.
<code>byrow</code>	Controls the order of plotting. Defaults to FALSE, i.e. plots are arranged column-wise.
<code>with.legend</code>	Defines if and how the legends for the states are plotted. The default value "auto" (equivalent to TRUE and "many") creates separate legends for each requested plot. Other possibilities are "combined" (all legends combined) and FALSE (no legend).
<code>legend.pos</code>	Defines the positions of the legend boxes relative to the whole plot. Either one of "bottom" (equivalent to "auto") or "right", or a numerical vector of grid cells (by order) to print the legends to (the cells must be in one row/column).
<code>legend.pos2</code>	Defines the positions of the legend boxes relative to the cell(s). One of "bottomright", "bottom", "bottomleft", "left", "topleft", "top" (the default), "topright", "right" and "center".
<code>title.legend</code>	The titles for the legend boxes. The default "auto" takes the titles from the channel labels provided by the first object in <code>x</code> . NA prints no title.
<code>ncol.legend</code>	(A vector of) the number of columns for the legend(s). The default "auto" creates one column for each legend.

with.missing.legend

If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in data contain missing states. With the value TRUE a legend for the missing state is added in any case; equivalently FALSE omits the legend for the missing state.

row.prop

Sets the proportions of the row heights of the grid. The default value is "auto" for even row heights. Takes a vector of values from 0 to 1, with values summing to 1.

col.prop

Sets the proportion of the column heights of the grid. The default value is "auto" for even column widths. Takes a vector of values from 0 to 1, with values summing to 1.

cex.legend

Expansion factor for setting the size of the font for the labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.

See Also

[ssp](#) for defining the plot before using `gridplot`, and [plot.ssp](#) for plotting only one `ssp` object.

Examples

```
## Not run:
data("biofam3c")

# Creating sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

## Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

# Preparing plot for state distribution plots of observations for women
ssp_f <- ssp(
  list(child_seq[biofam3c$covariates$sex == "woman",],
       marr_seq[biofam3c$covariates$sex == "woman",],
       left_seq[biofam3c$covariates$sex == "woman",]),
  type = "d", plots = "obs", title = "Women",
  ylab = c("Children", "Married", "Left home"))

# Preparing plot for state distribution plots of observations for men
# (Updating the previous plot, only arguments that change values)
ssp_m <- update(ssp_f, title = "Men",
  x = list(child_seq[biofam3c$covariates$sex == "man",],
           marr_seq[biofam3c$covariates$sex == "man",],
           left_seq[biofam3c$covariates$sex == "man",]))

# Plotting state distribution plots of observations for women and men in two columns
```

```

gridplot(list(ssp_f, ssp_m), ncol = 2, with.legend = FALSE)

# Preparing plots for women's state distributions
ssp_f2 <- ssp(
  list(marr_seq[biofam3c$covariates$sex == "woman",],
       child_seq[biofam3c$covariates$sex == "woman",],
       left_seq[biofam3c$covariates$sex == "woman",]),
  type = "d", border = NA, with.legend = FALSE,
  title = "State distributions for women", title.n = FALSE, xlab = 15:30,
  ylab.pos = c(1, 2, 1), ylab = c("Married", "Children", "Left home"))

# The same plot with sequences instead of state distributions
ssp_f3 <- update(
  ssp_f2, type = "I", sortv = "mds.obs", title = "Sequences for women")

# State distributions with men's data
ssp_m2 <- update(
  ssp_f2, title = "State distributions for men",
  x = list(marr_seq[biofam3c$covariates$sex == "man",],
            child_seq[biofam3c$covariates$sex == "man",],
            left_seq[biofam3c$covariates$sex == "man",])))

# Men's sequences
ssp_m3 <- update(
  ssp_m2, type = "I", sortv = "mds.obs", title = "Sequences for men")

# Plotting state distributions and index plots of observations
# for women and men in two columns (+ one column for legends)
gridplot(
  list(ssp_f2, ssp_f3, ssp_m2, ssp_m3), ncol = 3, byrow = TRUE,
  with.legend = "combined", legend.pos = "right", col.prop = c(0.35, 0.35, 0.3))

# The same with different positioning and fixed cells for legends
gridplot(
  list(ssp_f2, ssp_f3, ssp_m2, ssp_m3), ncol = 2, nrow = 3, byrow = TRUE,
  # defining the legend positions by the cell numbers
  legend.pos = 3:4)

## End(Not run)

```

Description

Function `hidden_paths` computes the most probable path of hidden states of a (mixture) hidden Markov model given the observed sequences.

Usage

```
hidden_paths(model)
```

Arguments

model A hidden Markov model of class `hmm` or a mixture HMM of class `mhmm`.

Value

The most probable paths of hidden states as an `stslist` object (see [seqdef](#)). The log-probability is included as an attribute `log_prob`.

See Also

[hmm_biofam](#) for information on the model used in the example; and [seqIplot](#), [ssplot](#), or [mssplot](#) for plotting hidden paths.

Examples

```
# Load a pre-defined HMM
data("hmm_biofam")

# Compute the most probable hidden state paths given the data and the model
mpp <- hidden_paths(hmm_biofam)

# Plot hidden paths for the first 100 individuals
ssplot(mpp, type = "I", tlim = 1:100)

# Because the model structure is so sparse that the posterior probabilities are
# mostly peaked to single state at each time point, the joint probability of
# observations and most probable paths of hidden states is almost identical to
# log-likelihood:

sum(attr(mpp, "log_prob"))
logLik(hmm_biofam)
```

hmm_biofam

Hidden Markov model for the biofam data

Description

A five-state hidden Markov model (HMM) fitted for the [biofam](#) data.

Format

A hidden Markov model of class `hmm`; a left-to-right model with four hidden states.

Details

The model is loaded by calling `data(hmm_biofam)`. It was created with the following code:

```
data("biofam3c")

# Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
  alphabet = c("single", "married", "divorced"))
child_seq <- seqdef(biofam3c$children, start = 15,
  alphabet = c("childless", "children"))
left_seq <- seqdef(biofam3c$left, start = 15,
  alphabet = c("with parents", "left home"))

## Choosing colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

init <- c(0.9, 0.05, 0.02, 0.02, 0.01)

# Starting values for transition matrix
trans <- matrix(
  c(0.8, 0.10, 0.05, 0.03, 0.02,
    0, 0.9, 0.05, 0.03, 0.02,
    0, 0, 0.9, 0.07, 0.03,
    0, 0, 0, 0.9, 0.1,
    0, 0, 0, 0, 1),
  nrow = 5, ncol = 5, byrow = TRUE)

# Starting values for emission matrices
emiss_marr <- matrix(
  c(0.9, 0.05, 0.05, # High probability for single
    0.9, 0.05, 0.05,
    0.05, 0.9, 0.05, # High probability for married
    0.05, 0.9, 0.05,
    0.3, 0.3, 0.4), # mixed group
  nrow = 5, ncol = 3, byrow = TRUE)

emiss_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.1, 0.9,
    0.1, 0.9,
    0.5, 0.5),
  nrow = 5, ncol = 2, byrow = TRUE)

emiss_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
```

```

 0.1, 0.9,
 0.1, 0.9,
 0.1, 0.9,
 0.5, 0.5),
nrow = 5, ncol = 2, byrow = TRUE)

initmod <- build_hmm(
  observations = list(marr_seq, child_seq, left_seq),
  initial_probs = init, transition_probs = trans,
  emission_probs = list(emiss_marr, emiss_child,
    emiss_left),
  channel_names = c("Marriage", "Parenthood", "Residence"))

fit_biofam <- fit_model(initmod, em = FALSE, local = TRUE)
hmm_biofam <- fit_biofam$model

```

See Also

Examples of building and fitting HMMs in [build_hmm](#) and [fit_model](#); and [biofam](#) for the original data and [biofam3c](#) for the three-channel version used in this model.

Examples

```
# Plotting the model
plot(hmm_biofam)
```

hmm_mvad

Hidden Markov model for the mvad data

Description

A hidden Markov model (HMM) fitted for the [mvad](#) data.

Format

A hidden Markov model of class [hmm](#); unrestricted model with six hidden states.

Details

Model was created with the following code:

```

data("mvad", package = "TraMineR")

mvad_alphabet <-
  c("employment", "FE", "HE", "joblessness", "school", "training")
```

```

mvad_labels <- c("employment", "further education", "higher education",
  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet,
  states = mvad_scodes, labels = mvad_labels, xtstep = 6)

attr(mvad_seq, "cpal") <- colorpalette[[6]]

# Starting values for the emission matrix
emiss <- matrix(
  c(0.05, 0.05, 0.05, 0.05, 0.75, 0.05, # SC
    0.05, 0.75, 0.05, 0.05, 0.05, 0.05, # FE
    0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR
    0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE
    0.75, 0.05, 0.05, 0.05, 0.05, 0.05), # EM
  nrow = 5, ncol = 6, byrow = TRUE)

# Starting values for the transition matrix
trans <- matrix(0.025, 5, 5)
diag(trans) <- 0.9

# Starting values for initial state probabilities
initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2)

# Building a hidden Markov model
init_hmm_mvad <- build_hmm(observations = mvad_seq,
  transition_probs = trans, emission_probs = emiss,
  initial_probs = initial_probs)

set.seed(21)
fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 100)))
hmm_mvad <- fit_hmm_mvad$model

```

See Also

Examples of building and fitting HMMs in [build_hmm](#) and [fit_model](#); and [mvad](#) for more information on the data.

Examples

```

data("hmm_mvad")

# Plotting the model
plot(hmm_mvad)

```

logLik.hmm*Log-likelihood of the Hidden Markov Model*

Description

Function `logLik.hmm` computes the log-likelihood value of a hidden Markov model.

Usage

```
## S3 method for class 'hmm'
logLik(object, partials = FALSE, threads = 1, log_space = FALSE, ...)
```

Arguments

<code>object</code>	A hidden Markov model of class <code>hmm</code> .
<code>partials</code>	Return a vector containing the individual contributions of each sequence to the total log-likelihood. The default is <code>FALSE</code> , which returns the sum of all log-likelihood components.
<code>threads</code>	Number of threads to use in parallel computing. The default is 1.
<code>log_space</code>	Make computations using log-space instead of scaling for greater numerical stability at the cost of decreased computational performance. The default is <code>TRUE</code> .
<code>...</code>	Ignored.

Value

Log-likelihood of the hidden Markov model. This is an object of class `logLik` with attributes `nobs` and `df` inherited from the model object.

See Also

[build_hmm](#) and [fit_model](#) for building and fitting Hidden Markov models.

logLik.mhmm*Log-likelihood of the Mixture Hidden Markov Model*

Description

Function `logLik.mhmm` computes the log-likelihood value of a mixture hidden Markov model.

Usage

```
## S3 method for class 'mhmm'
logLik(object, partials = FALSE, threads = 1, log_space = FALSE, ...)
```

Arguments

object	A mixture hidden Markov model of class <code>mhmm</code> .
partials	Return a vector containing the individual contributions of each sequence to the total log-likelihood. The default is FALSE, which returns the sum of all log-likelihood components.
threads	Number of threads to use in parallel computing. The default is 1.
log_space	Make computations using log-space instead of scaling for greater numerical stability at the cost of decreased computational performance. The default is TRUE.
...	Ignored.

Value

Log-likelihood of the mixture hidden Markov model. This is an object of class `logLik` with attributes `nobs` and `df` inherited from the model object.

See Also

[build_mhmm](#) and [fit_model](#) for building and fitting mixture Hidden Markov models.

`mc_to_sc`

Transform a Multichannel Hidden Markov Model into a Single Channel Representation

Description

Transforms data and parameters of a multichannel model into a single channel model. Observed states (symbols) are combined and parameters multiplied across channels.

Usage

```
mc_to_sc(model, combine_missing = TRUE, all_combinations = FALSE)
```

Arguments

model	An object of class <code>hmm</code> or <code>mhmm</code> .
combine_missing	Controls whether combined states of observations at time t are coded missing (coded with * in <code>stslists</code>) if one or more of the channels include missing information at time t . Defaults to TRUE. FALSE keeps missing states as they are, producing more states in data; e.g. <code>single/childless/*</code> where the observation in channel 3 is missing.
all_combinations	Controls whether all possible combinations of observed states are included in the single channel representation or only combinations that are found in the data. Defaults to FALSE, i.e. only actual observations are included.

Details

Note that in case of no missing observations, the log-likelihood of the original and transformed models are identical but the AIC and BIC can be different as the model attribute df is recomputed based on the single channel representation.

See Also

[build_hmm](#) and [fit_model](#) for building and fitting Hidden Markov models; and [hmm_biofam](#) for information on the model used in the example.

Examples

```
# Loading a hidden Markov model of the biofam data (hmm object)
data("hmm_biofam")

# Convert the multichannel model to a single-channel model
sc <- mc_to_sc(hmm_biofam)

# Likelihoods of the single-channel and the multichannel model are the same
# (Might not be true if there are missing observations)
logLik(sc)
logLik(hmm_biofam)
```

mc_to_sc_data

Merge Multiple Sequence Objects into One (from Multichannel to Single Channel Data)

Description

Function `mc_to_sc_data` combines observed states of multiple sequence objects into one, time point by time point.

Usage

```
mc_to_sc_data(data, combine_missing = TRUE, all_combinations = FALSE)
```

Arguments

<code>data</code>	A list of state sequence objects (<code>stslists</code>) created with the seqdef function.
<code>combine_missing</code>	Controls whether combined states of observations at time t are coded missing (coded with * in <code>stslists</code>) if one or more of the channels include missing information at time t. Defaults to TRUE. FALSE keeps missing states as they are, producing more states in data; e.g. single/childless/* where the observation in channel 3 is missing.
<code>all_combinations</code>	Controls whether all possible combinations of observed states are included in the single channel representation or only combinations that are found in the data. Defaults to FALSE, i.e. only actual observations are included.

See Also

[mc_to_sc](#) for transforming multichannel `hmm` or `mhmm` objects into single-channel representations; [ssplot](#) for plotting multiple sequence data sets in the same plot; and [seqdef](#) for creating state sequence objects.

Examples

```
# Load three-channel sequence data
data("biofam3c")

# Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
  alphabet = c("single", "married", "divorced"))
child_seq <- seqdef(biofam3c$children, start = 15,
  alphabet = c("childless", "children"))
left_seq <- seqdef(biofam3c$left, start = 15,
  alphabet = c("with parents", "left home"))

# Define colors
attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")
attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")
attr(left_seq, "cpal") <- c("lightblue", "red3")

# Converting multichannel data to single-channel data
sc_data <- mc_to_sc_data(list(marr_seq, child_seq, left_seq))

# 10 combined states
alphabet(sc_data)

# Colors for combined states
attr(sc_data, "cpal") <- colorpalette[[14]][1:10]

# Plotting sequences for the first 10 subjects
ssplot(list("Marriage" = marr_seq, "Parenthood" = child_seq,
  "Residence" = left_seq, "Combined" = sc_data), type = "I",
  tlim = 1:10)

# Including all combinations (whether or not available in data)
sc_data_all <- mc_to_sc_data(list(marr_seq, child_seq, left_seq),
  all_combinations = TRUE)

# 12 combined states, 2 with no observations in data
seqstatf(sc_data_all)
```

Description

A mixture hidden Markov model (MHMM) fitted for the [biofam](#) data.

Format

A mixture hidden Markov model of class `mhmm`: three clusters with left-to-right models including 4, 4, and 6 hidden states. Two covariates, `sex` and `cohort`, explaining the cluster membership.

Details

The model was created with the following code:

```
data("biofam3c")

## Building sequence objects
marr_seq <- seqdef(biofam3c$married, start = 15,
  alphabet = c("single", "married", "divorced"))
child_seq <- seqdef(biofam3c$children, start = 15,
  alphabet = c("childless", "children"))
left_seq <- seqdef(biofam3c$left, start = 15,
  alphabet = c("with parents", "left home"))

## Choosing colors
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

## Starting values for emission probabilities
# Cluster 1
B1_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
  0.8, 0.1, 0.1,
  0.3, 0.6, 0.1, # High probability for married
  0.3, 0.3, 0.4), # High probability for divorced
  nrow = 4, ncol = 3, byrow = TRUE)

B1_child <- matrix(
  c(0.9, 0.1, # High probability for childless
  0.9, 0.1,
  0.9, 0.1,
  0.9, 0.1),
  nrow = 4, ncol = 2, byrow = TRUE)

B1_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
  0.1, 0.9, # High probability for having left home
  0.1, 0.9,
  0.1, 0.9),
```

```
nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 2

B2_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.1, 0.8, 0.1, # High probability for married
    0.7, 0.2, 0.1),
  nrow = 4, ncol = 3, byrow = TRUE)

B2_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.9, 0.1,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)

B2_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.1, 0.9,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 3

B3_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.8, 0.1, 0.1,
    0.1, 0.8, 0.1, # High probability for married
    0.3, 0.4, 0.3,
    0.1, 0.1, 0.8), # High probability for divorced
  nrow = 6, ncol = 3, byrow = TRUE)

B3_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.5, 0.5,
    0.5, 0.5,
    0.5, 0.5,
    0.1, 0.9),
  nrow = 6, ncol = 2, byrow = TRUE)

B3_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
```

```

 0.5, 0.5,
 0.5, 0.5,
 0.1, 0.9,
 0.1, 0.9),
nrow = 6, ncol = 2, byrow = TRUE)

# Starting values for transition matrices
A1 <- matrix(
  c(0.80, 0.16, 0.03, 0.01,
    0, 0.90, 0.07, 0.03,
    0, 0, 0.90, 0.10,
    0, 0, 0, 1),
  nrow = 4, ncol = 4, byrow = TRUE)

A2 <- matrix(
  c(0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
    0, 0.70, 0.10, 0.10, 0.05, 0.05,
    0, 0, 0.85, 0.01, 0.10, 0.04,
    0, 0, 0, 0.90, 0.05, 0.05,
    0, 0, 0, 0, 0.90, 0.10,
    0, 0, 0, 0, 0, 1),
  nrow = 6, ncol = 6, byrow = TRUE)

# Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)

# Birth cohort
biofam3c$covariates$cohort <- factor(cut(biofam3c$covariates$birthyr,
  c(1908, 1935, 1945, 1957)), labels = c("1909-1935", "1936-1945", "1946-1957"))

# Build mixture HMM
init_mhmm_bf <- build_mhmm(
  observations = list(marr_seq, child_seq, left_seq),
  initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
  transition_probs = list(A1, A1, A2),
  emission_probs = list(list(B1_marr, B1_child, B1_left),
    list(B2_marr, B2_child, B2_left),
    list(B3_marr, B3_child, B3_left)),
  formula = ~sex + cohort, data = biofam3c$covariates,
  channel_names = c("Marriage", "Parenthood", "Residence"))

# Fitting the model
mhmm_biofam <- fit_model(init_mhmm_bf)$model

```

See Also

Examples of building and fitting MHMMs in [build_mhmm](#) and [fit_model](#); and [biofam](#) for the original data and [biofam3c](#) for the three-channel version used in this model.

Examples

```
data("mhmm_biofam")

# use conditional_se = FALSE for more accurate standard errors
# (these are considerably slower to compute)
summary(mhmm_biofam$model)

if (interactive()) {
  # Plotting the model for each cluster (change with Enter)
  plot(mhmm_biofam)
}
```

mhmm_mvad

Mixture hidden Markov model for the mvad data

Description

A mixture hidden Markov model (MHMM) fitted for the [mvad](#) data.

Format

A mixture hidden Markov model of class `mhmm`: two clusters including 3 and 4 hidden states. No covariates.

Details

The model is loaded by calling `data(mhmm_mvad)`. It was created with the following code:

```
data("mvad", package = "TraMineR")

mvad_alphabet <-
  c("employment", "FE", "HE", "joblessness", "school", "training")
mvad_labels <- c("employment", "further education", "higher education",
  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet,
  states = mvad_scodes, labels = mvad_labels, xtstep = 6)

attr(mvad_seq, "cpal") <- colorpalette[[6]]

# Starting values for the emission matrices
emiss_1 <- matrix(
  c(0.01, 0.01, 0.01, 0.01, 0.01, 0.95,
    0.95, 0.01, 0.01, 0.01, 0.01, 0.01,
    0.01, 0.01, 0.01, 0.95, 0.01, 0.01),
  nrow = 3, ncol = 6, byrow = TRUE)
```

```

emiss_2 <- matrix(
  c(0.01, 0.01, 0.01, 0.06, 0.90, 0.01,
    0.01, 0.95, 0.01, 0.01, 0.01, 0.01,
    0.01, 0.01, 0.95, 0.01, 0.01, 0.01,
    0.95, 0.01, 0.01, 0.01, 0.01, 0.01),
  nrow = 4, ncol = 6, byrow = TRUE)

# Starting values for the transition matrix

trans_1 <- matrix(
  c(0.95, 0.03, 0.02,
    0.01, 0.98, 0.01,
    0.01, 0.01, 0.98),
  nrow = 3, ncol = 3, byrow = TRUE)

trans_2 <- matrix(
  c(0.97, 0.01, 0.01, 0.01,
    0.01, 0.97, 0.01, 0.01,
    0.01, 0.01, 0.97, 0.01,
    0.01, 0.01, 0.01, 0.97),
  nrow = 4, ncol = 4, byrow = TRUE)

# Starting values for initial state probabilities
initial_probs_1 <- c(0.5, 0.25, 0.25)
initial_probs_2 <- c(0.4, 0.4, 0.1, 0.1)

# Building a hidden Markov model with starting values
init_mhmm_mvad <- build_mhmm(observations = mvad_seq,
  transition_probs = list(trans_1, trans_2),
  emission_probs = list(emiss_1, emiss_2),
  initial_probs = list(initial_probs_1, initial_probs_2))

# Fit the model
set.seed(123)
mhmm_mvad <- fit_model(init_mhmm_mvad, control_em = list(restart = list(times = 25)))$model

```

See Also

Examples of building and fitting MHMMs in [build_mhmm](#) and [fit_model](#); and [mvad](#) for more information on the data.

Examples

```

data("mhmm_mvad")

summary(mhmm_mvad)

if (interactive()) {

```

```
# Plotting the model for each cluster (change with Enter)
plot(mhmm_mvad)
}
```

mssplot

Interactive Stacked Plots of Multichannel Sequences and/or Most Probable Paths for Mixture Hidden Markov Models

Description

Function `mssplot` plots stacked sequence plots of observation sequences and/or most probable hidden state paths for each model of the `mhmm` object (model chosen according to the most probable path).

Usage

```
mssplot(
  x,
  ask = FALSE,
  which.plots = NULL,
  hidden.paths = NULL,
  plots = "obs",
  type = "d",
  tlim = 0,
  sortv = NULL,
  sort.channel = 1,
  dist.method = "OM",
  with.missing = FALSE,
  missing.color = NULL,
  title = NA,
  title.n = TRUE,
  cex.title = 1,
  title.pos = 1,
  with.legend = "auto",
  ncol.legend = "auto",
  with.missing.legend = "auto",
  legend.prop = 0.3,
  cex.legend = 1,
  hidden.states.colors = "auto",
  hidden.states.labels = "auto",
  xaxis = TRUE,
  xlab = NA,
  xlab = NULL,
  xlab.pos = 1,
  ylab = "auto",
  hidden.states.title = "Hidden states",
```

```

yaxis = FALSE,
ylab.pos = "auto",
cex.lab = 1,
cex.axis = 1,
...
)

```

Arguments

<code>x</code>	Mixture hidden Markov model object of class <code>mhmm</code> .
<code>ask</code>	If TRUE and <code>which.plots</code> is NULL, <code>plot.mhmm</code> operates in interactive mode, via menu . Defaults to FALSE.
<code>which.plots</code>	The number(s) of the requested model(s) as an integer vector. The default NULL produces all plots.
<code>hidden.paths</code>	Output from the hidden_paths function. The default value NULL computes hidden paths automatically, if needed.
<code>plots</code>	What to plot. One of "obs" for observations (the default), "hidden.paths" for most probable paths of hidden states, or "both" for observations and hidden paths together.
<code>type</code>	The type of the plot. Available types are "I" for index plots and "d" for state distribution plots (the default). See seqplot for details.
<code>tlim</code>	Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted). For example, <code>tlim = 1:10</code> plots the first ten subjects in data.
<code>sortv</code>	A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs", or "mds.hidden") for type = "I". The value "mds.hidden" is only available when <code>which = "both"</code> and <code>which = "hidden.paths"</code> . Options "mds.obs" and "mds.hidden" automatically arrange the sequences according to the scores of multidimensional scaling (using cmdscale) for the observed data or hidden states paths. MDS scores are computed from distances/dissimilarities using a metric defined in argument <code>dist.method</code> . See plot.stslist for more details on "from.start" and "from.end".
<code>sort.channel</code>	The number of the channel according to which the "from.start" or "from.end" sorting is done. Sorting according to hidden states is called with value 0. The default value is 1 (the first channel).
<code>dist.method</code>	The metric to be used for computing the distances of the sequences if multidimensional scaling is used for sorting. One of "OM" (optimal matching, the default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest common suffix), "LCS" (longest common subsequence), "HAM" (Hamming distance), and "DHD" (dynamic Hamming distance). Transition rates are used for defining substitution costs if needed. See seqdef for more information on the metrics.
<code>with.missing</code>	Controls whether missing states are included in state distribution plots (type = "d"). The default is FALSE.
<code>missing.color</code>	Alternative color for representing missing values in the sequences. By default, this color is taken from the <code>missing.color</code> attribute of the sequence object.

title	A vector of main titles for the graphics. The default is NA: if title.n = TRUE, the name of the cluster and the number of subjects is plotted. FALSE prints no titles, even when title.n = TRUE.
title.n	Controls whether the number of subjects is printed in the main titles of the plots. The default is TRUE: n is plotted if title is anything but FALSE.
cex.title	Expansion factor for setting the size of the font for the main titles. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
title.pos	Controls the position of the main titles of the plots. The default value is 1. Values greater than 1 will place the title higher.
with.legend	Defines if and where the legend for the states is plotted. The default value "auto" (equivalent to TRUE and "right") creates separate legends for each requested plot and positions them on the right-hand side of the plot. Other possible values are "bottom", "right.combined", and "bottom.combined", of which the last two create a combined legend in the selected position. FALSE prints no legend.
ncol.legend	(A vector of) the number of columns for the legend(s). The default "auto" creates one column for each legend.
with.missing.legend	If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in the data/channel contains missing states and type = "I". If type = "d" missing states are omitted from the legends unless with.missing = TRUE. With the value TRUE a legend for the missing state is added in any case; equivalently FALSE omits the legend for the missing state.
legend.prop	Sets the proportion of the graphic area used for plotting the legend when with.legend is not FALSE. The default value is 0.3. Takes values from 0 to 1.
cex.legend	Expansion factor for setting the size of the font for the labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
hidden.states.colors	A vector of colors assigned to hidden states. The default value "auto" uses the colors assigned to the stslst object (created with seqdef) if hidden.paths is given; otherwise colors from colorpalette are automatically used.
hidden.states.labels	Labels for the hidden states. The default value "auto" uses the names provided in x\$state_names if x is an hmm object; otherwise the number of the hidden state.
xaxis	Controls whether an x-axis is plotted below the plot at the bottom. The default value is TRUE.
xlab	An optional label for the x-axis. If set to NA, no label is drawn.
xtlab	Optional labels for the x-axis tick labels. If unspecified, the column names of the seqdata sequence object are used (see seqdef).
xlab.pos	Controls the position of the x-axis label. The default value is 1. Values greater than 1 will place the label further away from the plot.

ylab	Labels for the channels shown as labels for y-axes. A vector of names for each channel (observations). The default value "auto" uses the names provided in x\$channel_names if x is an <code>hmm</code> object; otherwise the names of the list in x if given, or the number of the channel if names are not given. FALSE prints no labels.
hidden.states.title	Optional label for the hidden state plot (in the y-axis). The default is "Hidden states".
yaxis	Controls whether or not to plot the y-axis. The default is FALSE.
ylab.pos	Controls the position of the y axis labels (labels for channels and/or hidden states). Either "auto" or a numerical vector indicating how far away from the plots the titles are positioned. The default value "auto" positions all titles on line 1. Shorter vectors are recycled.
cex.lab	Expansion factor for setting the size of the font for the axis labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
cex.axis	Expansion factor for setting the size of the font for the x-axis tick labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
...	Other arguments to be passed on to <code>seqplot</code> .

See Also

`build_mhmm` and `fit_model` for building and fitting mixture hidden Markov models, `hidden_paths` for computing the most probable paths (Viterbi paths) of hidden states, `plot.mhmm` for plotting `mhmm` objects as directed graphs, and `colorpalette` for default colors.

Examples

```
# Loading mixture hidden Markov model (mhmm object)
# of the biofam data
data("mhmm_biofam")

# Plotting the first cluster only
mssplot(mhmm_biofam, which.plots = 1)

if (interactive()) {
  # Interactive plot
  mssplot(mhmm_biofam)
}
```

`plot.hmm`*Plot hidden Markov models*

Description

Function `plot.hmm` plots a directed graph with pie charts of emission probabilities as vertices/nodes.

Usage

```
## S3 method for class 'hmm'
plot(
  x,
  layout = "horizontal",
  pie = TRUE,
  vertex.size = 40,
  vertex.label = "initial.probs",
  vertex.label.dist = "auto",
  vertex.label.pos = "bottom",
  vertex.label.family = "sans",
  loops = FALSE,
  edge.curved = TRUE,
  edge.label = "auto",
  edge.width = "auto",
  cex.edge.width = 1,
  edge.arrow.size = 1.5,
  edge.label.family = "sans",
  label.signif = 2,
  label.scientific = FALSE,
  label.max.length = 6,
  trim = 1e-15,
  combine.slices = 0.05,
  combined.slice.color = "white",
  combined.slice.label = "others",
  with.legend = "bottom",
  ltext = NULL,
  legend.prop = 0.5,
  cex.legend = 1,
  ncol.legend = "auto",
  cpal = "auto",
  cpal.legend = "auto",
  legend.order = TRUE,
  main = NULL,
  withlegend,
  ...
)
```

Arguments

<code>x</code>	A hidden Markov model object of class <code>hmm</code> created with <code>build_hmm</code> (or <code>build_mm</code>). Multichannel <code>hmm</code> objects are automatically transformed into single-channel objects. See function <code>mc_to_sc</code> for more information on the transformation.
<code>layout</code>	specifies the layout of vertices (nodes). Accepts a numerical matrix, a <code>layout_</code> function (without quotation marks), or either of the predefined options "horizontal" (the default) and "vertical". Options "horizontal" and "vertical" position vertices at the same horizontal or vertical line. A two-column numerical matrix can be used to give x and y coordinates of the vertices. The <code>layout_</code> functions available in the <code>igraph</code> package offer other automatic layouts for graphs.
<code>pie</code>	Are vertices plotted as pie charts of emission probabilities? Defaults to TRUE.
<code>vertex.size</code>	Size of vertices, given as a scalar or numerical vector. The default value is 40.
<code>vertex.label</code>	Labels for vertices. Possible options include "initial.probs", "names", NA, and a character or numerical vector. The default "initial.probs" prints the initial probabilities of the model and "names" prints the names of the hidden states as labels. NA prints no labels.
<code>vertex.label.dist</code>	Distance of the label of the vertex from its center. The default value "auto" places the label outside the vertex.
<code>vertex.label.pos</code>	Positions of vertex labels, relative to the center of the vertex. A scalar or numerical vector giving position(s) as radians or one of "bottom" ($\pi/2$ as radians), "top" ($-\pi/2$), "left" (π), or "right" (0).
<code>vertex.label.family</code> , <code>edge.label.family</code>	Font family to be used for vertex/edge labels. See argument <code>family</code> in <code>par</code> for more information.
<code>loops</code>	Defines whether transitions back to same states are plotted.
<code>edge.curved</code>	Defines whether to plot curved edges (arcs, arrows) between vertices. A logical or numerical vector or scalar. Numerical values specify curvatures of edges. The default value TRUE gives curvature of 0.5 to all edges. See <code>igraph.plotting</code> for more information.
<code>edge.label</code>	Labels for edges. Possible options include "auto", NA, and a character or numerical vector. The default "auto" prints transition probabilities as edge labels. NA prints no labels.
<code>edge.width</code>	Width(s) for edges. The default "auto" determines widths according to transition probabilities between hidden states. Other possibilities are a scalar or a numerical vector of widths.
<code>cex.edge.width</code>	An expansion factor for edge widths. Defaults to 1.
<code>edge.arrow.size</code>	Size of the arrow in edges (constant). Defaults to 1.5.
<code>label.signif</code>	Rounds labels of model parameters to specified number of significant digits, 2 by default. Ignored for user-given labels.

label.scientific	Defines if scientific notation should be used to describe small numbers. Defaults to FALSE, e.g. 0.0001 instead of 1e-04. Ignored for user-given labels.
label.max.length	Maximum number of digits in labels of model parameters. Ignored for user-given labels.
trim	Scalar between 0 and 1 giving the highest probability of transitions that are plotted as edges, defaults to 1e-15.
combine.slices	Scalar between 0 and 1 giving the highest probability of emission probabilities that are combined into one state. The default value is 0.05.
combined.slice.color	Color of the combined slice that includes the smallest emission probabilities (only if argument "combine.slices" is greater than 0). The default color is white.
combined.slice.label	The label for combined states (when argument "combine.slices" is greater than 0) to appear in the legend.
with.legend	Defines if and where the legend of state colors is plotted. Possible values include "bottom" (the default), "top", "left", and "right". FALSE omits the legend.
ltext	Optional description of (combined) observed states to appear in the legend. A vector of character strings. See seqplot for more information.
legend.prop	Proportion used for plotting the legend. A scalar between 0 and 1, defaults to 0.5.
cex.legend	Expansion factor for setting the size of the font for labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
ncol.legend	The number of columns for the legend. The default value "auto" sets the number of columns automatically.
cpal	Optional color palette for (combinations of) observed states. The default value "auto" uses automatic color palette. Otherwise a vector of length $x\$n_symbols$ is given, i.e. the argument requires a color specified for all (combinations of) observed states even if they are not plotted (if the probability is less than <code>combine.slices</code>).
cpal.legend	Optional color palette for the legend, only considered when <code>legend.order</code> is FALSE. Should match <code>ltext</code> .
legend.order	Whether to use the default order in the legend, i.e., order by appearance (first by hidden state, then by emission probability). TRUE by default.
main	Main title for the plot. Omitted by default.
withlegend	Deprecated. Use <code>with.legend</code> instead.
...	Other parameters passed on to plot.igraph such as <code>vertex.color</code> , <code>vertex.label.cex</code> , or <code>edge.lty</code> .

See Also

[build_hmm](#) and [fit_model](#) for building and fitting Hidden Markov models, [mc_to_sc](#) for transforming multistate `hmm` objects into single-channel objects, [hmm_biofam](#) and [hmm_mvad](#) for information on the models used in the examples, and [plot.igraph](#) for the general plotting function of directed graphs.

Examples

```

# Multichannel data, left-to-right model

# Loading a HMM of the biofam data
data("hmm_biofam")

# Plotting hmm object
plot(hmm_biofam)

# Plotting HMM with
plot(hmm_biofam,
  # varying curvature of edges
  edge.curved = c(0, -0.7, 0.6, 0.7, 0, -0.7, 0),
  # legend with two columns and less space
  ncol.legend = 2, legend.prop = 0.4,
  # new label for combined slice
  combined.slice.label = "States with probability < 0.05")

# Plotting HMM with given coordinates
plot(hmm_biofam,
  # layout given in 2x5 matrix
  # x coordinates in the first column
  # y coordinates in the second column
  layout = matrix(c(1, 3, 3, 5, 3,
                   0, 0, 1, 0, -1), ncol = 2),
  # larger vertices
  vertex.size = 50,
  # straight edges
  edge.curved = FALSE,
  # thinner edges and arrows
  cex.edge.width = 0.5, edge.arrow.size = 1,
  # varying positions for vertex labels (initial probabilities)
  vertex.label.pos = c(pi, pi/2, -pi/2, 0, pi/2),
  # different legend properties
  with.legend = "top", legend.prop = 0.3, cex.legend = 1.1,
  # Fix axes to the right scale
  xlim = c(0.5, 5.5), ylim = c(-1.5, 1.5), rescale = FALSE,
  # all states (not combining states with small probabilities)
  combine.slices = 0,
  # legend with two columns
  ncol.legend = 2)

# Plotting HMM with own color palette
plot(hmm_biofam, cpal = 1:10,
  # States with emission probability less than 0.2 removed
  combine.slices = 0.2,
  # legend with two columns
  ncol.legend = 2)

# Plotting HMM without pie graph and with a layout function
require("igraph")
# Setting the seed for a random layout

```

```
set.seed(1234)
plot(hmm_biofam,
  # Without pie graph
  pie = FALSE,
  # Using an automatic layout function from igraph
  layout = layout_nicely,
  vertex.size = 30,
  # Straight edges and probabilities of moving to the same state
  edge.curved = FALSE, loops = TRUE,
  # Labels with three significant digits
  label.signif = 3,
  # Fixed edge width
  edge.width = 1,
  # Remove edges with probability less than 0.01
  trim = 0.01,
  # Hidden state names as vertex labels
  vertex.label = "names",
  # Labels inside vertices
  vertex.label.dist = 0,
  # Fix x-axis (more space on the right-hand side)
  xlim = c(-1, 1.3))

# Single-channel data, unrestricted model

# Loading a hidden Markov model of the mvad data (hmm object)
data("hmm_mvad")

# Plotting the HMM
plot(hmm_mvad)

# Checking the order of observed states (needed for the next call)
require(TraMineR)
alphabet(hmm_mvad$observations)

# Plotting the HMM with own legend (note: observation "none" nonexistent in the observations)
plot(hmm_mvad,
  # Override the default order in the legend
  legend.order = FALSE,
  # Colours in the pies (ordered by the alphabet of observations)
  cpal = c("purple", "pink", "brown", "lightblue", "orange", "green"),
  # Colours in the legend (matching to ltext)
  cpal.legend = c("orange", "pink", "brown", "green", "lightblue", "purple", "gray"),
  # Labels in the legend (matching to cpal.legend)
  ltext = c("school", "further educ", "higher educ", "training", "jobless", "employed", "none"))

require("igraph")
plot(hmm_mvad,
  # Layout in circle (layout function from igraph)
  layout = layout_in_circle,
  # Less curved edges with smaller arrows, no labels
  edge.curved = 0.2, edge.arrow.size = 0.9, edge.label = NA,
  # Positioning vertex labels (initial probabilities)
```

```
vertex.label.pos = c("right", "right", "left", "left", "right"),
# Less space for the legend
legend.prop = 0.3)
```

plot.mhmm*Interactive Plotting for Mixed Hidden Markov Model (mhmm)*

Description

Function `plot.mhmm` plots a directed graph of the parameters of each model with pie charts of emission probabilities as vertices/nodes.

Usage

```
## S3 method for class 'mhmm'
plot(
  x,
  interactive = TRUE,
  ask = FALSE,
  which.plots = NULL,
  nrow = NA,
  ncol = NA,
  byrow = FALSE,
  row.prop = "auto",
  col.prop = "auto",
  layout = "horizontal",
  pie = TRUE,
  vertex.size = 40,
  vertex.label = "initial.probs",
  vertex.label.dist = "auto",
  vertex.label.pos = "bottom",
  vertex.label.family = "sans",
  loops = FALSE,
  edge.curved = TRUE,
  edge.label = "auto",
  edge.width = "auto",
  cex.edge.width = 1,
  edge.arrow.size = 1.5,
  edge.label.family = "sans",
  label.signif = 2,
  label.scientific = FALSE,
  label.max.length = 6,
  trim = 1e-15,
  combine.slices = 0.05,
  combined.slice.color = "white",
  combined.slice.label = "others",
  with.legend = "bottom",
```

```

ltext = NULL,
legend.prop = 0.5,
cex.legend = 1,
ncol.legend = "auto",
cpal = "auto",
main = "auto",
withlegend,
...
)

```

Arguments

<code>x</code>	A hidden Markov model object of class <code>mhmm</code> created with <code>build_mhmm</code> (or <code>build_mmm</code> or <code>build_lcm</code>). Multichannel <code>mhmm</code> objects are automatically transformed into single-channel objects. See function <code>mc_to_sc</code> for more information on the transformation.
<code>interactive</code>	Whether to plot each cluster in succession or in a grid. Defaults to TRUE, i.e. clusters are plotted one after another.
<code>ask</code>	If TRUE and <code>which.plots</code> is NULL, <code>plot.mhmm</code> operates in interactive mode, via <code>menu</code> . Defaults to FALSE. Ignored if <code>interactive</code> = FALSE.
<code>which.plots</code>	The number(s) of the requested cluster(s) as an integer vector. The default NULL produces all plots.
<code>nrow, ncol</code>	Optional arguments to arrange plots in a grid. Ignored if <code>interactive</code> = TRUE.
<code>byrow</code>	Controls the order of plotting in a grid. Defaults to FALSE, i.e. plots are arranged column-wise. Ignored if <code>interactive</code> = TRUE.
<code>row.prop</code>	Sets the proportions of the row heights of the grid. The default value is "auto" for even row heights. Takes a vector of values from 0 to 1, with values summing to 1. Ignored if <code>interactive</code> = TRUE.
<code>col.prop</code>	Sets the proportion of the column heights of the grid. The default value is "auto" for even column widths. Takes a vector of values from 0 to 1, with values summing to 1. Ignored if <code>interactive</code> = TRUE.
<code>layout</code>	specifies the layout of vertices (nodes). Accepts a numerical matrix, a <code>layout_</code> function (without quotation marks), or either of the predefined options "horizontal" (the default) and "vertical". Options "horizontal" and "vertical" position vertices at the same horizontal or vertical line. A two-column numerical matrix can be used to give x and y coordinates of the vertices. The <code>layout_</code> functions available in the <code>igraph</code> package offer other automatic layouts for graphs.
<code>pie</code>	Are vertices plotted as pie charts of emission probabilities? Defaults to TRUE.
<code>vertex.size</code>	Size of vertices, given as a scalar or numerical vector. The default value is 40.
<code>vertex.label</code>	Labels for vertices. Possible options include "initial.probs", "names", NA, and a character or numerical vector. The default "initial.probs" prints the initial probabilities of the model and "names" prints the names of the hidden states as labels. NA prints no labels.

<code>vertex.label.dist</code>	Distance of the label of the vertex from its center. The default value "auto" places the label outside the vertex.
<code>vertex.label.pos</code>	Positions of vertex labels, relative to the center of the vertex. A scalar or numerical vector giving position(s) as radians or one of "bottom" ($\pi/2$ as radians), "top" ($-\pi/2$), "left" (π), or "right" (0).
<code>vertex.label.family</code> , <code>edge.label.family</code>	Font family to be used for vertex/edge labels. See argument <code>family</code> in par for more information.
<code>loops</code>	Defines whether transitions back to same states are plotted.
<code>edge.curved</code>	Defines whether to plot curved edges (arcs, arrows) between vertices. A logical or numerical vector or scalar. Numerical values specify curvatures of edges. The default value TRUE gives curvature of 0.5 to all edges. See igraph.plotting for more information.
<code>edge.label</code>	Labels for edges. Possible options include "auto", NA, and a character or numerical vector. The default "auto" prints transition probabilities as edge labels. NA prints no labels.
<code>edge.width</code>	Width(s) for edges. The default "auto" determines widths according to transition probabilities between hidden states. Other possibilities are a scalar or a numerical vector of widths.
<code>cex.edge.width</code>	An expansion factor for edge widths. Defaults to 1.
<code>edge.arrow.size</code>	Size of the arrow in edges (constant). Defaults to 1.5.
<code>label.signif</code>	Rounds labels of model parameters to specified number of significant digits, 2 by default. Ignored for user-given labels.
<code>label.scientific</code>	Defines if scientific notation should be used to describe small numbers. Defaults to FALSE, e.g. 0.0001 instead of 1e-04. Ignored for user-given labels.
<code>label.max.length</code>	Maximum number of digits in labels of model parameters. Ignored for user-given labels.
<code>trim</code>	Scalar between 0 and 1 giving the highest probability of transitions that are plotted as edges, defaults to 1e-15.
<code>combine.slices</code>	Scalar between 0 and 1 giving the highest probability of emission probabilities that are combined into one state. The default value is 0.05.
<code>combined.slice.color</code>	Color of the combined slice that includes the smallest emission probabilities (only if argument "combine.slices" is greater than 0). The default color is white.
<code>combined.slice.label</code>	The label for combined states (when argument "combine.slices" is greater than 0) to appear in the legend.
<code>with.legend</code>	Defines if and where the legend of state colors is plotted. Possible values include "bottom" (the default), "top", "left", and "right". FALSE omits the legend.

ltext	Optional description of (combined) observed states to appear in the legend. A vector of character strings. See seqplot for more information.
legend.prop	Proportion used for plotting the legend. A scalar between 0 and 1, defaults to 0.5.
cex.legend	Expansion factor for setting the size of the font for labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
ncol.legend	The number of columns for the legend. The default value "auto" sets the number of columns automatically.
cpal	Optional color palette for (combinations of) observed states. The default value "auto" uses automatic color palette. Otherwise a vector of length <code>x\$n_symbols</code> is given, i.e. the argument requires a color specified for all (combinations of) observed states even if they are not plotted (if the probability is less than <code>combine.slices</code>).
main	Optional main titles for plots. The default "auto" uses <code>cluster_names</code> as titles, NULL prints no titles.
withlegend	Deprecated. Use <code>with.legend</code> instead.
...	Other parameters passed on to plot.igraph such as <code>vertex.color</code> , <code>vertex.label.cex</code> , or <code>edge.lty</code> .

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

[build_mhmm](#) and [fit_model](#) for building and fitting mixture hidden Markov models; [plot.igraph](#) for plotting directed graphs; and [mhmm_biofam](#) and [mhmm_mvad](#) for the models used in examples.

Examples

```

# Loading mixture hidden Markov model (mhmm object)
# of the biofam data
data("mhmm_biofam")

# Plotting only the first cluster
plot(mhmm_biofam, which.plots = 1)

if (interactive()) {
  # Plotting each cluster (change with Enter)
  plot(mhmm_biofam)

  # Choosing the cluster (one at a time)
  plot(mhmm_biofam, ask = TRUE)

  # Loading MHMM of the mvad data
  data("mhmm_mvad")

  # Plotting models in the same graph (in a grid)

```

```

# Note: the plotting window must be high enough!
set.seed(123)
plot(mhmm_mvad, interactive = FALSE,
      # automatic layout, legend on the right-hand side
      layout = layout_nicely, with.legend = "right",
      # Smaller and less curved edges
      edge.curved = 0.2, cex.edge.width = 0.5, edge.arrow.size = 0.7,
      vertex.label.pos = -4 * pi / 5, vertex.label.dist = 5)
}

```

plot.ssp

*Stack Multichannel Sequence Plots and/or Most Probable Paths Plots
from Hidden Markov Models*

Description

Function `plot.ssp` plots stacked sequence plots from `ssp` objects defined with [ssp](#).

Usage

```
## S3 method for class 'ssp'
plot(x, ...)
```

Arguments

<code>x</code>	An <code>ssp</code> object.
<code>...</code>	Ignored.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, *Journal of Statistical Software*, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

[ssp](#) for more examples and information on defining the plot before using `plot.ssp`; [ssplot](#) for straight plotting of `ssp` objects; and [gridplot](#) for plotting multiple `ssp` objects.

Examples

```

data("biofam3c")

## Building sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

```

```
## Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

# Plotting state distribution plots of observations
ssp1 <- ssp(list(child_seq, marr_seq, left_seq))
plot(ssp1)
```

plot_colors

Plot Colorpalettes

Description

Function `plot_colors` plots colors and their labels for easy visualization of a colorpalette.

Usage

```
plot_colors(x, labels = NULL)
```

Arguments

<code>x</code>	A vector of colors.
<code>labels</code>	A vector of labels for colors. If omitted, given color names are used.

See Also

See e.g. the [colorpalette](#) data and [RColorBrewer](#) package for ready-made color palettes.

Examples

```
plot_colors(colorpalette[[5]], labels = c("one", "two", "three", "four", "five"))

plot_colors(colorpalette[[10]])

plot_colors(1:7)

plot_colors(c("yellow", "orange", "red", "purple", "blue", "green"))

plot_colors(rainbow(15))
```

posterior_probs	<i>Posterior Probabilities for (Mixture) Hidden Markov Models</i>
-----------------	---

Description

Function `posterior_probs` computes the posterior probabilities of hidden states of a (mixture) hidden Markov model.

Usage

```
posterior_probs(model, log_space = FALSE)
```

Arguments

<code>model</code>	A (mixture) hidden Markov model of class <code>hmm</code> or <code>mhmm</code> .
<code>log_space</code>	Compute posterior probabilities in logarithmic scale. The default is FALSE.

Value

Posterior probabilities. In case of multiple observations, these are computed independently for each sequence.

Examples

```
# Load a pre-defined MHMM
data("mhmm_biofam")

# Compute posterior probabilities
pb <- posterior_probs(mhmm_biofam)

# Locally most probable states for the first subject:
pb[, , 1]
```

print.hmm	<i>Print Method for a Hidden Markov Model</i>
-----------	---

Description

Prints the parameters of a (mixture) hidden Markov model.

Usage

```
## S3 method for class 'hmm'  
print(x, digits = 3, ...)  
  
## S3 method for class 'mhmm'  
print(x, digits = 3, ...)  
  
## S3 method for class 'summary.mhmm'  
print(x, digits = 3, ...)
```

Arguments

`x` Hidden Markov model of class `hmm` or `mhmm`.
`digits` Minimum number of significant digits to print.
`...` Further arguments to `print.default`.

See Also

[build_hmm](#) and [fit_model](#) for building and fitting hidden Markov models.

`separate_mhmm`

Reorganize a mixture hidden Markov model to a list of separate hidden Markov models (covariates ignored)

Description

The `separate_mhmm` function reorganizes the parameters of a `mhmm` object into a list where each list component is an object of class `hmm` consisting of the parameters of the corresponding cluster.

Usage

```
separate_mhmm(model)
```

Arguments

`model` Mixture hidden Markov model of class `mhmm`.

Value

List with components of class `hmm`.

See Also

[build_mhmm](#) and [fit_model](#) for building and fitting MHMMs; and [mhmm_biofam](#) for more information on the model used in examples.

Examples

```
# Loading mixture hidden Markov model (mhmm object)
# of the biofam data
data("mhmm_biofam")

# Separate models for clusters
sep_hmm <- separate_mhmm(mhmm_biofam)

# Plotting the model for the first cluster
plot(sep_hmm[[1]])
```

seqdef

Imported Functions from TraMineR

Description

Imported functions for convinience. For details, see the corresponding help pages of [seqstatf](#), [alphabet](#) and [seqdef](#).

seqHMM

The seqHMM package

Description

The seqHMM package is designed for fitting hidden (or latent) Markov models (HMMs) and mixture hidden Markov models (MHMMs) for social sequence data and other categorical time series. The package supports models for one or multiple subjects with one or multiple interdependent sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for easy plotting of multichannel sequences and hidden Markov models. Common restricted versions of (M)HMMs are also supported, namely Markov models, mixture Markov models, and latent class models.

Details

Maximum likelihood estimation via the EM algorithm and direct numerical maximization with analytical gradients is supported. All main algorithms are written in C++. Parallel computation is implemented via OpenMP.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, *Journal of Statistical Software*, 88(3), 1-32. doi:10.18637/jss.v088.i03

Description

These functions are provided for compatibility with older version of the seqHMM package. They will be eventually completely removed.

Usage

```
fit_hmm(  
  model,  
  em_step = TRUE,  
  global_step = FALSE,  
  local_step = FALSE,  
  control_em = list(),  
  control_global = list(),  
  control_local = list(),  
  lb,  
  ub,  
  threads = 1,  
  log_space = FALSE,  
  ...  
)  
  
fit_mhmm(  
  model,  
  em_step = TRUE,  
  global_step = FALSE,  
  local_step = FALSE,  
  control_em = list(),  
  control_global = list(),  
  control_local = list(),  
  lb,  
  ub,  
  threads = 1,  
  log_space = FALSE,  
  ...  
)  
  
trim_hmm(  
  model,  
  maxit = 0,  
  return_loglik = FALSE,  
  zerotol = 1e-08,  
  verbose = TRUE,  
  ...
```

)

Arguments

model	An object of class <code>hmm</code> or <code>mhmm</code> .
em_step	Logical. Whether or not to use the EM algorithm at the start of the parameter estimation. The default is TRUE.
global_step	Logical. Whether or not to use global optimization via <code>nloptr</code> (possibly after the EM step). The default is FALSE.
local_step	Logical. Whether or not to use local optimization via <code>nloptr</code> (possibly after the EM and/or global steps). The default is FALSE.
control_em	Optional list of control parameters for the EM algorithm. Possible arguments are
maxeval	The maximum number of iterations, the default is 1000. Note that iteration counter starts with -1 so with <code>maxeval=1</code> you get already two iterations. This is for backward compatibility reasons.
print_level	The level of printing. Possible values are 0 (prints nothing), 1 (prints information at the start and the end of the algorithm), 2 (prints at every iteration), and for mixture models 3 (print also during optimization of coefficients).
reltol	Relative tolerance for convergence defined as $(logLik_{new} - logLik_{old}) / (abs(logLik_{old}) + 0.1)$. The default is 1e-10.
restart	A list containing options for possible EM restarts with the following components:
times	Number of restarts of the EM algorithm using random initial values. The default is 0, i.e. no restarts.
transition	Logical. Should the original transition probabilities be varied? The default is TRUE.
emission	Logical. Should the original emission probabilities be varied? The default is TRUE.
sd	Standard deviation for <code>rnorm</code> used in randomization. The default is 0.25.
maxeval	Maximum number of iterations, the default is <code>control_em\$maxeval</code>
print_level	Level of printing in restarted EM steps. The default is <code>control_em\$print_level</code> .
reltol	Relative tolerance for convergence at restarted EM steps. The default is <code>control_em\$reltol</code> . If the relative change of the final model of the restart phase is larger than the tolerance for the original EM phase, the final model is re-estimated with the original <code>reltol</code> and <code>maxeval</code> at the end of the EM step.
n_optimum	Save the log-likelihood values of the <code>n_optimum</code> best models (from all estimated models including the the first EM run.). The default is <code>min(times + 1, 25)</code> .
use_original	If TRUE. Use the initial values of the input model as starting points for the permutations. Otherwise permute the results of the first EM run.

control_global	Optional list of additional arguments for <code>nloptr</code> argument <code>opts</code> . The default values are
	<code>algorithm</code> "NLOPT_GD_MSL_LDS" <code>local_opts</code> list(algorithm = "NLOPT_LD_LBFGS", ftol_rel = 1e-6, xtol_rel = 1e-4) <code>maxeval</code> 10000 (maximum number of iterations in global optimization algorithm.) <code>maxtime</code> 60 (maximum time for global optimization. Set to 0 for unlimited time.)
control_local	Optional list of additional arguments for <code>nloptr</code> argument <code>opts</code> . The default values are
	<code>algorithm</code> "NLOPT_LD_LBFGS" <code>ftol_rel</code> 1e-10 <code>xtol_rel</code> 1e-8 <code>maxeval</code> 10000 (maximum number of iterations)
lb	Lower and upper bounds for parameters in Softmax parameterization. The default interval is $[pmin(-25, 2 * initialvalues), pmax(25, 2 * initialvalues)]$, except for gamma coefficients, where the scale of covariates is taken into account. Note that it might still be a good idea to scale covariates around unit scale. Bounds are used only in the global optimization step.
ub	Lower and upper bounds for parameters in Softmax parameterization. The default interval is $[pmin(-25, 2 * initialvalues), pmax(25, 2 * initialvalues)]$, except for gamma coefficients, where the scale of covariates is taken into account. Note that it might still be a good idea to scale covariates around unit scale. Bounds are used only in the global optimization step.
threads	Number of threads to use in parallel computing. The default is 1.
log_space	Make computations using log-space instead of scaling for greater numerical stability at a cost of decreased computational performance. The default is FALSE.
...	Additional arguments to <code>nloptr</code> .
maxit	Number of iterations. After zeroing small values, the model is refitted, and this is repeated until there is nothing to trim or <code>maxit</code> iterations are done.
return_loglik	Return the log-likelihood of the trimmed model together with the model object. The default is FALSE.
zerotol	Values smaller than this are trimmed to zero.
verbose	Print results of trimming. The default is TRUE.

Description

Simulate sequences of observed and hidden states given parameters of a hidden Markov model.

Usage

```
simulate_hmm(
  n_sequences,
  initial_probs,
  transition_probs,
  emission_probs,
  sequence_length
)
```

Arguments

n_sequences Number of simulations.
 initial_probs A vector of initial state probabilities.
 transition_probs
 A matrix of transition probabilities.
 emission_probs A matrix of emission probabilities or a list of such objects (one for each channel).
 sequence_length
 Length for simulated sequences.

Value

A list of state sequence objects of class `stslist`.

See Also

`build_hmm` and `fit_model` for building and fitting hidden Markov models; `ssplot` for plotting multiple sequence data sets; `seqdef` for more information on state sequence objects; and `simulate_mhmm` for simulating mixture hidden Markov models.

Examples

```

# Parameters for the HMM
emission_probs <- matrix(c(0.5, 0.2, 0.5, 0.8), 2, 2)
transition_probs <- matrix(c(5/6, 1/6, 1/6, 5/6), 2, 2)
initial_probs <- c(1, 0)

# Setting the seed for simulation
set.seed(1)

# Simulating sequences
sim <- simulate_hmm(
  n_sequences = 10, initial_probs = initial_probs,
  transition_probs = transition_probs,
  emission_probs = emission_probs,
  sequence_length = 20)

ssplot(sim, sortv = "mds.obs", type = "I")

```

simulate_initial_probs

Simulate Parameters of Hidden Markov Models

Description

These are helper functions for quick construction of initial values for various model building functions. Mostly useful for global optimization algorithms which do not depend on initial values.

Usage

```
simulate_initial_probs(n_states, n_clusters = 1)

simulate_transition_probs(
  n_states,
  n_clusters = 1,
  left_right = FALSE,
  diag_c = 0
)

simulate_emission_probs(n_states, n_symbols, n_clusters = 1)
```

Arguments

<code>n_states</code>	Number of states in each cluster.
<code>n_clusters</code>	Number of clusters.
<code>left_right</code>	Constrain the transition probabilities to upper triangular. Default is FALSE.
<code>diag_c</code>	A constant value to be added to diagonal of transition matrices before scaling.
<code>n_symbols</code>	Number of distinct symbols in each channel.

See Also

[build_hmm](#), [build_mhmm](#), [build_mm](#), [build_mmm](#), and [build_lcm](#) for constructing different types of models.

simulate_mhmm

Simulate Mixture Hidden Markov Models

Description

Simulate sequences of observed and hidden states given the parameters of a mixture hidden Markov model.

Usage

```
simulate_mhmm(
  n_sequences,
  initial_probs,
  transition_probs,
  emission_probs,
  sequence_length,
  formula,
  data,
  coefficients
)
```

Arguments

n_sequences The number of simulations.

initial_probs A list containing vectors of initial state probabilities for the submodel of each cluster.

transition_probs
A list of matrices of transition probabilities for the submodel of each cluster.

emission_probs A list which contains matrices of emission probabilities or a list of such objects (one for each channel) for the submodel of each cluster. Note that the matrices must have dimensions $s \times m$ where s is the number of hidden states and m is the number of unique symbols (observed states) in the data.

sequence_length
The length of the simulated sequences.

formula Covariates as an object of class [formula](#), left side omitted.

data An optional data frame, a list or an environment containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`.

coefficients An optional $k \times l$ matrix of regression coefficients for time-constant covariates for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is set to zero.

Value

A list of state sequence objects of class `stslist`.

See Also

[build_mhmm](#) and [fit_model](#) for building and fitting mixture hidden Markov models; [ssplot](#) for plotting multiple sequence data sets; [seqdef](#) for more information on state sequence objects; and [simulate_hmm](#) for simulating hidden Markov models.

Examples

```
emission_probs_1 <- matrix(c(0.75, 0.05, 0.25, 0.95), 2, 2)
emission_probs_2 <- matrix(c(0.1, 0.8, 0.9, 0.2), 2, 2)
```

```
colnames(emission_probs_1) <- colnames(emission_probs_2) <-
  c("heads", "tails")

transition_probs_1 <- matrix(c(9, 0.1, 1, 9.9) / 10, 2, 2)
transition_probs_2 <- matrix(c(35, 1, 1, 35) / 36, 2, 2)
rownames(emission_probs_1) <- rownames(transition_probs_1) <-
  colnames(transition_probs_1) <- c("coin 1", "coin 2")
rownames(emission_probs_2) <- rownames(transition_probs_2) <-
  colnames(transition_probs_2) <- c("coin 3", "coin 4")

initial_probs_1 <- c(1, 0)
initial_probs_2 <- c(1, 0)

n <- 30
set.seed(123)
covariate_1 <- runif(n)
covariate_2 <- sample(c("A", "B"), size = n, replace = TRUE,
  prob = c(0.3, 0.7))
dataf <- data.frame(covariate_1, covariate_2)

coefs <- cbind(cluster_1 = c(0, 0, 0), cluster_2 = c(-1.5, 3, -0.7))
rownames(coefs) <- c("(Intercept)", "covariate_1", "covariate_2B")

sim <- simulate_mhmm(
  n = n, initial_probs = list(initial_probs_1, initial_probs_2),
  transition_probs = list(transition_probs_1, transition_probs_2),
  emission_probs = list(emission_probs_1, emission_probs_2),
  sequence_length = 20, formula = ~covariate_1 + covariate_2,
  data = dataf, coefficients = coefs)

ssplot(sim$observations, hidden.paths = sim$states, plots = "both",
  sortv = "from.start", sort.channel = 0, type = "I")

hmm <- build_mhmm(sim$observations,
  initial_probs = list(initial_probs_1, initial_probs_2),
  transition_probs = list(transition_probs_1, transition_probs_2),
  emission_probs = list(emission_probs_1, emission_probs_2),
  formula = ~covariate_1 + covariate_2,
  data = dataf)

fit <- fit_model(hmm)
fit$model

paths <- hidden_paths(fit$model)

ssplot(list(estimates = paths, true = sim$states), sortv = "from.start",
  sort.channel = 2, ylab = c("estimated paths", "true (simulated)"),
  type = "I")
```

ssp	<i>Define Arguments for Plotting Multichannel Sequences and/or Most Probable Paths from Hidden Markov Models</i>
------------	--

Description

Function **ssp** defines the arguments for plotting with [plot.ssp](#) or [gridplot](#).

Usage

```
ssp(
  x,
  hidden.paths = NULL,
  plots = "obs",
  type = "d",
  tlim = 0,
  sortv = NULL,
  sort.channel = 1,
  dist.method = "OM",
  with.missing = FALSE,
  missing.color = NULL,
  title = NA,
  title.n = TRUE,
  cex.title = 1,
  title.pos = 1,
  with.legend = "auto",
  ncol.legend = "auto",
  with.missing.legend = "auto",
  legend.prop = 0.3,
  cex.legend = 1,
  hidden.states.colors = "auto",
  hidden.states.labels = "auto",
  xaxis = TRUE,
  xlab = NA,
  xlab = NULL,
  xlab.pos = 1,
  ylab = "auto",
  hidden.states.title = "Hidden states",
  yaxis = FALSE,
  ylab.pos = "auto",
  cex.lab = 1,
  cex.axis = 1,
  withlegend,
  ...
)
```

Arguments

x	Either a hidden Markov model object of class <code>hmm</code> or a state sequence object of class <code>stslist</code> (created with the <code>seqdef</code>) function) or a list of state sequence objects.
hidden.paths	Output from <code>hidden_paths</code> function. Optional, if x is a <code>hmm</code> object or if type = "obs".
plots	What to plot. One of "obs" for observations (the default), "hidden.paths" for most probable paths of hidden states, or "both" for observations and hidden paths together.
type	The type of the plot. Available types are "I" for sequence index plots and "d" for state distribution plots (the default). See <code>seqplot</code> for details.
tlim	Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted). For example, <code>tlim = 1:10</code> plots the first ten subjects in data.
sortv	A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs", or "mds.hidden") for type = "I". The value "mds.hidden" is only available when hidden paths are available. Options "mds.obs" and "mds.hidden" automatically arrange the sequences according to the scores of multidimensional scaling (using <code>cmdscale</code>) for the observed data or hidden states paths. MDS scores are computed from distances/dissimilarities using a metric defined in argument <code>dist.method</code> . See <code>plot.stslist</code> for more details on "from.start" and "from.end".
sort.channel	The number of the channel according to which the "from.start" or "from.end" sorting is done. Sorting according to hidden states is called with value 0. The default value is 1 (the first channel).
dist.method	The metric to be used for computing the distances of the sequences if multidimensional scaling is used for sorting. One of "OM" (optimal matching, the default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest common suffix), "LCS" (longest common subsequence), "HAM" (Hamming distance), and "DHD" (dynamic Hamming distance). Transition rates are used for defining substitution costs if needed. See <code>seqdef</code> for more information on the metrics.
with.missing	Controls whether missing states are included in state distribution plots (type = "d"). The default is FALSE.
missing.color	Alternative color for representing missing values in the sequences. By default, this color is taken from the <code>missing.color</code> attribute of the sequence object.
title	Main title for the graphic. The default is NA: if <code>title.n = TRUE</code> , only the number of subjects is plotted. FALSE prints no title, even when <code>title.n = TRUE</code> .
title.n	Controls whether the number of subjects (in the first channel) is printed in the title of the plot. The default is TRUE: n is plotted if title is anything but FALSE.
cex.title	Expansion factor for setting the size of the font for the title. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
title.pos	Controls the position of the main title of the plot. The default value is 1. Values greater than 1 will place the title higher.

with.legend	Defines if and where the legend for the states is plotted. The default value "auto" (equivalent to TRUE and "right") creates separate legends for each requested plot and positions them on the right-hand side of the plot. Other possible values are "bottom", "right.combined", and "bottom.combined", of which the last two create a combined legend in the selected position. FALSE prints no legend.
ncol.legend	(A vector of) the number of columns for the legend(s). The default "auto" determines number of columns depending on the position of the legend.
with.missing.legend	If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in the data/channel contains missing states and type = "I". If type = "d" missing states are omitted from the legends unless with.missing = TRUE. With the value TRUE a legend for the missing state is added in any case; equivalently FALSE omits the legend for the missing state.
legend.prop	Sets the proportion of the graphic area used for plotting the legend when with.legend is not FALSE. The default value is 0.3. Takes values from 0 to 1.
cex.legend	Expansion factor for setting the size of the font for the labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
hidden.states.colors	A vector of colors assigned to hidden states. The default value "auto" uses the colors assigned to the <code>stslist</code> object (created with <code>seqdef</code>) if hidden.paths is given; otherwise colors from <code>colorpalette</code> are automatically used.
hidden.states.labels	Labels for the hidden states. The default value "auto" uses the names provided in <code>x\$state_names</code> if <code>x</code> is an <code>hmm</code> object; otherwise the number of the hidden state.
xaxis	Controls whether an x-axis is plotted below the plot at the bottom. The default value is TRUE.
xlab	An optional label for the x-axis. If set to NA, no label is drawn.
xtlab	Optional labels for the x-axis tick labels. If unspecified, the column names of the <code>seqdata</code> sequence object are used (see <code>seqdef</code>).
xlab.pos	Controls the position of the x-axis label. The default value is 1. Values greater than 1 will place the label further away from the plot.
ylab	Labels for the channels shown as labels for y-axes. A vector of names for each channel (observations). The default value "auto" uses the names provided in <code>x\$channel_names</code> if <code>x</code> is an <code>hmm</code> object; otherwise the names of the list in <code>x</code> if given, or the number of the channel if names are not given. FALSE prints no labels.
hidden.states.title	Optional label for the hidden state plot (in the y-axis). The default is "Hidden states".
yaxis	Controls whether or not to plot the y-axis. The default is FALSE.
ylab.pos	Controls the position of the y axis labels (labels for channels and/or hidden states). Either "auto" or a numerical vector indicating how far away from the

	plots the titles are positioned. The default value "auto" positions all titles on line 1. Shorter vectors are recycled.
cex.lab	Expansion factor for setting the size of the font for the axis labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
cex.axis	Expansion factor for setting the size of the font for the x-axis tick labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
withlegend	Deprecated. Use with.legend instead.
...	Other arguments to be passed on to seqplot .

Value

Object of class ssp.

See Also

[plot.ssp](#) for plotting objects created with the ssp function; [gridplot](#) for plotting multiple ssp objects; [build_hmm](#) and [fit_model](#) for building and fitting hidden Markov models; [hidden_paths](#) for computing the most probable paths of hidden states; and [biofam3c](#) and [hmm_biofam](#) for information on the data and model used in the example.

Examples

```
data("biofam3c")

## Building sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

## Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

# Defining the plot for state distribution plots of observations
ssp1 <- ssp(list("Parenthood" = child_seq, "Marriage" = marr_seq,
                 "Residence" = left_seq))
# Plotting ssp1
plot(ssp1)

## Not run:
# Defining the plot for sequence index plots of observations
ssp2 <- ssp(
  list(child_seq, marr_seq, left_seq), type = "I", plots = "obs",
  # Sorting subjects according to the beginning of the 2nd channel (marr_seq)
  sortv = "from.start", sort.channel = 2,
  # Controlling the size, positions, and names for channel labels
```

```

ylab.pos = c(1, 2, 1), cex.lab = 1, ylab = c("Children", "Married", "Residence"),
# Plotting without legend
with.legend = FALSE)
plot(ssp2)

# Plotting hidden Markov models

# Loading data
data("hmm_biofam")

# Plotting observations and most probable hidden states paths
ssp3 <- ssp(
  hmm_biofam, type = "I", plots = "both",
  # Sorting according to multidimensional scaling of hidden states paths
  sortv = "mds.hidden",
  # Controlling title
  title = "Biofam", cex.title = 1.5,
  # Labels for x axis and tick marks
  xlab = 15:30, xlab = "Age")
plot(ssp3)

# Computing the most probable paths of hidden states
hid <- hidden_paths(hmm_biofam)
# Giving names for hidden states
library(TraMineR)
alphabet(hid) <- paste("Hidden state", 1:5)

# Plotting observations and hidden state paths
ssp4 <- ssp(
  hmm_biofam, type = "I", plots = "hidden.paths",
  # Sequence object of most probable paths
  hidden.paths = hid,
  # Sorting according to the end of hidden state paths
  sortv = "from.end", sort.channel = 0,
  # Controlling legend position, type, and proportion
  with.legend = "bottom.combined", legend.prop = 0.15,
  # Plotting without title and y label
  title = FALSE, ylab = FALSE)
plot(ssp4)

## End(Not run)

```

ssplot

Stacked Plots of Multichannel Sequences and/or Most Probable Paths from Hidden Markov Models

Description

Function `ssplot` plots stacked sequence plots of sequence object created with the `seqdef` function or observations and/or most probable paths of `hmm` objects.

Usage

```
ssplot(
  x,
  hidden.paths = NULL,
  plots = "obs",
  type = "d",
  tlim = 0,
  sortv = NULL,
  sort.channel = 1,
  dist.method = "OM",
  with.missing = FALSE,
  missing.color = NULL,
  title = NA,
  title.n = TRUE,
  cex.title = 1,
  title.pos = 1,
  with.legend = "auto",
  ncol.legend = "auto",
  with.missing.legend = "auto",
  legend.prop = 0.3,
  cex.legend = 1,
  hidden.states.colors = "auto",
  hidden.states.labels = "auto",
  xaxis = TRUE,
  xlab = NA,
  xlab = NULL,
  xlab.pos = 1,
  ylab = "auto",
  hidden.states.title = "Hidden states",
  yaxis = FALSE,
  ylab.pos = "auto",
  cex.lab = 1,
  cex.axis = 1,
  ...
)
```

Arguments

x	Either a hidden Markov model object of class <code>hmm</code> or a state sequence object of class <code>stslist</code> (created with the <code>seqdef</code> function) or a list of state sequence objects.
hidden.paths	Output from <code>hidden_paths</code> function. Optional, if <code>x</code> is a <code>hmm</code> object or if <code>type = "obs"</code> .
plots	What to plot. One of <code>"obs"</code> for observations (the default), <code>"hidden.paths"</code> for most probable paths of hidden states, or <code>"both"</code> for observations and hidden paths together.
type	The type of the plot. Available types are <code>"I"</code> for sequence index plots and <code>"d"</code> for state distribution plots (the default). See <code>seqplot</code> for details.

<code>tlm</code>	Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted). For example, <code>tlm = 1:10</code> plots the first ten subjects in data.
<code>sortv</code>	A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs", or "mds.hidden") for type = "I". The value "mds.hidden" is only available when hidden paths are available. Options "mds.obs" and "mds.hidden" automatically arrange the sequences according to the scores of multidimensional scaling (using <code>cmdscale</code>) for the observed data or hidden states paths. MDS scores are computed from distances/dissimilarities using a metric defined in argument <code>dist.method</code> . See <code>plot.stslist</code> for more details on "from.start" and "from.end".
<code>sort.channel</code>	The number of the channel according to which the "from.start" or "from.end" sorting is done. Sorting according to hidden states is called with value 0. The default value is 1 (the first channel).
<code>dist.method</code>	The metric to be used for computing the distances of the sequences if multidimensional scaling is used for sorting. One of "OM" (optimal matching, the default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest common suffix), "LCS" (longest common subsequence), "HAM" (Hamming distance), and "DHD" (dynamic Hamming distance). Transition rates are used for defining substitution costs if needed. See <code>seqdef</code> for more information on the metrics.
<code>with.missing</code>	Controls whether missing states are included in state distribution plots (type = "d"). The default is FALSE.
<code>missing.color</code>	Alternative color for representing missing values in the sequences. By default, this color is taken from the <code>missing.color</code> attribute of the sequence object.
<code>title</code>	Main title for the graphic. The default is NA: if <code>title.n = TRUE</code> , only the number of subjects is plotted. FALSE prints no title, even when <code>title.n = TRUE</code> .
<code>title.n</code>	Controls whether the number of subjects (in the first channel) is printed in the title of the plot. The default is TRUE: n is plotted if title is anything but FALSE.
<code>cex.title</code>	Expansion factor for setting the size of the font for the title. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
<code>title.pos</code>	Controls the position of the main title of the plot. The default value is 1. Values greater than 1 will place the title higher.
<code>with.legend</code>	Defines if and where the legend for the states is plotted. The default value "auto" (equivalent to TRUE and "right") creates separate legends for each requested plot and position them on the right-hand side of the plot. Other possible values are "bottom", "right.combined", and "bottom.combined", of which the last two create a combined legend in the selected position. FALSE prints no legend.
<code>ncol.legend</code>	(A vector of) the number of columns for the legend(s). The default "auto" determines number of columns depending on the position of the legend.
<code>with.missing.legend</code>	If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in the data/channel contains missing states

	and <code>type = "I"</code> . If <code>type = "d"</code> missing states are omitted from the legends unless <code>with.missing = TRUE</code> . With the value <code>TRUE</code> a legend for the missing state is added in any case; equivalently <code>FALSE</code> omits the legend for the missing state.
<code>legend.prop</code>	Sets the proportion of the graphic area used for plotting the legend when <code>with.legend</code> is not <code>FALSE</code> . The default value is 0.3. Takes values from 0 to 1.
<code>cex.legend</code>	Expansion factor for setting the size of the font for the labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
<code>hidden.states.colors</code>	A vector of colors assigned to hidden states. The default value "auto" uses the colors assigned to the <code>stslist</code> object (created with <code>seqdef</code>) if <code>hidden.paths</code> is given; otherwise colors from <code>colorpalette</code> are automatically used.
<code>hidden.states.labels</code>	Labels for the hidden states. The default value "auto" uses the names provided in <code>x\$state_names</code> if <code>x</code> is an <code>hmm</code> object; otherwise the number of the hidden state.
<code>xaxis</code>	Controls whether an x-axis is plotted below the plot at the bottom. The default value is <code>TRUE</code> .
<code>xlab</code>	An optional label for the x-axis. If set to <code>NA</code> , no label is drawn.
<code>xtlab</code>	Optional labels for the x-axis tick labels. If unspecified, the column names of the <code>seqdata</code> sequence object are used (see <code>seqdef</code>).
<code>xlab.pos</code>	Controls the position of the x-axis label. The default value is 1. Values greater than 1 will place the label further away from the plot.
<code>ylab</code>	Labels for the channels shown as labels for y-axes. A vector of names for each channel (observations). The default value "auto" uses the names provided in <code>x\$channel_names</code> if <code>x</code> is an <code>hmm</code> object; otherwise the names of the list in <code>x</code> if given, or the number of the channel if names are not given. <code>FALSE</code> prints no labels.
<code>hidden.states.title</code>	Optional label for the hidden state plot (in the y-axis). The default is "Hidden states".
<code>yaxis</code>	Controls whether or not to plot the y-axis. The default is <code>FALSE</code> .
<code>ylab.pos</code>	Controls the position of the y axis labels (labels for channels and/or hidden states). Either "auto" or a numerical vector indicating how far away from the plots the titles are positioned. The default value "auto" positions all titles on line 1. Shorter vectors are recycled.
<code>cex.lab</code>	Expansion factor for setting the size of the font for the axis labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
<code>cex.axis</code>	Expansion factor for setting the size of the font for the x-axis tick labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
<code>...</code>	Other arguments to be passed on to <code>seqplot</code> .

See Also

[ssp](#) for creating ssp objects and [plot.ssp](#) and [gridplot](#) for plotting these; [build_hmm](#) and [fit_model](#) for building and fitting hidden Markov models; [hidden_paths](#) for computing the most probable paths of hidden states; and [biofam3c hmm_biofam](#) for information on the data and model used in the example.

Examples

```
data("biofam3c")

# Creating sequence objects
child_seq <- seqdef(biofam3c$children, start = 15)
marr_seq <- seqdef(biofam3c$married, start = 15)
left_seq <- seqdef(biofam3c$left, start = 15)

## Choosing colors
attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62")
attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A")
attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

# Plotting state distribution plots of observations
ssplot(list("Children" = child_seq, "Marriage" = marr_seq,
"Residence" = left_seq))

## Not run:
# Plotting sequence index plots of observations
ssplot(
  list(child_seq, marr_seq, left_seq), type = "I",
  # Sorting subjects according to the beginning of the 2nd channel (marr_seq)
  sortv = "from.start", sort.channel = 2,
  # Controlling the size, positions, and names for channel labels
  ylab.pos = c(1, 2, 1), cex.lab = 1, ylab = c("Children", "Married", "Residence"),
  # Plotting without legend
  with.legend = FALSE)

# Plotting hidden Markov models

# Loading a ready-made HMM for the biofam data
data("hmm_biofam")

# Plotting observations and hidden states paths
ssplot(
  hmm_biofam, type = "I", plots = "both",
  # Sorting according to multidimensional scaling of hidden states paths
  sortv = "mds.hidden",
  ylab = c("Children", "Married", "Left home"),
  # Controlling title
  title = "Biofam", cex.title = 1.5,
  # Labels for x axis and tick marks
  xlab = 15:30, xlab = "Age")
```

```

# Computing the most probable paths of hidden states
hidden.paths <- hidden_paths(hmm_biofam)
hidden.paths_seq <- seqdef(hidden.paths, labels = paste("Hidden state", 1:5))

# Plotting observations and hidden state paths
ssplot(
  hmm_biofam, type = "I", plots = "hidden.paths",
  # Sequence object of most probable paths
  hidden.paths = hidden.paths_seq,
  # Sorting according to the end of hidden state paths
  sortv = "from.end", sort.channel = 0,
  # Controlling legend position, type, and proportion
  with.legend = "bottom", legend.prop = 0.15,
  # Plotting without title and y label
  title = FALSE, ylab = FALSE)

## End(Not run)

```

summary.mhmm

Summary method for mixture hidden Markov models

Description

Function `summary.mhmm` gives a summary of a mixture hidden Markov model.

Usage

```

## S3 method for class 'mhmm'
summary(
  object,
  parameters = FALSE,
  conditional_se = TRUE,
  log_space = FALSE,
  ...
)

```

Arguments

<code>object</code>	Mixture hidden Markov model of class <code>mhmm</code> .
<code>parameters</code>	Whether or not to return transition, emission, and initial probabilities. <code>FALSE</code> by default.
<code>conditional_se</code>	Return conditional standard errors of coefficients. See <code>vcov.mhmm</code> for details. <code>TRUE</code> by default.
<code>log_space</code>	Make computations using log-space instead of scaling for greater numerical stability at cost of decreased computational performance. Default is <code>FALSE</code> .
<code>...</code>	Further arguments to <code>vcov.mhmm</code> .

Details

The `summary.mhmm` function computes features from a mixture hidden Markov model and stores them as a list. A `print` method prints summaries of these: log-likelihood and BIC, coefficients and standard errors of covariates, means of prior cluster probabilities, and information on most probable clusters.

Value

transition_probs Transition probabilities. Only returned if `parameters = TRUE`.
emission_probs Emission probabilities. Only returned if `parameters = TRUE`.
initial_probs Initial state probabilities. Only returned if `parameters = TRUE`.
logLik Log-likelihood.
BIC Bayesian information criterion.
most_probable_cluster The most probable cluster according to posterior probabilities.
coefficients Coefficients of covariates.
vcov Variance-covariance matrix of coefficients.
prior_cluster_probabilities Prior cluster probabilities (mixing proportions) given the covariates.
posterior_cluster_probabilities Posterior cluster membership probabilities.
classification_table Cluster probabilities (columns) by the most probable cluster (rows).

See Also

`build_mhmm` and `fit_model` for building and fitting mixture hidden Markov models; and `mhmm_biofam` for information on the model used in examples.

Examples

```
# Loading mixture hidden Markov model (mhmm object)
# of the biofam data
data("mhmm_biofam")

# Model summary
summary(mhmm_biofam)
```

Description

Function `trim_model` tries to set small insignificant probabilities to zero without decreasing the likelihood.

Usage

```
trim_model(
  model,
  maxit = 0,
  return_loglik = FALSE,
  zerotol = 1e-08,
  verbose = TRUE,
  ...
)
```

Arguments

model	Model of class <code>hmm</code> or <code>mhmm</code> for which trimming is performed.
maxit	Number of iterations. After zeroing small values, the model is refitted, and this is repeated until there is nothing to trim or <code>maxit</code> iterations are done.
return_loglik	Return the log-likelihood of the trimmed model together with the model object. The default is FALSE.
zerotol	Values smaller than this are trimmed to zero.
verbose	Print results of trimming. The default is TRUE.
...	Further parameters passed on to <code>fit_model</code> .

See Also

`build_hmm` and `fit_model` for building and fitting hidden Markov models; and `hmm_biofam` for information on the model used in the example.

Examples

```
data("hmm_biofam")

# Testing if changing parameter values smaller than 1e-03 to zero
# leads to improved log-likelihood.
hmm_trim <- trim_model(hmm_biofam, zerotol = 1e-03, maxit = 10)
```

vcov.mhmm

Variance-Covariance Matrix for Coefficients of Covariates of Mixture Hidden Markov Model

Description

Returns the asymptotic covariances matrix of maximum likelihood estimates of the coefficients corresponding to the explanatory variables of the model.

Usage

```
## S3 method for class 'mhmm'
vcov(object, conditional = TRUE, threads = 1, log_space = FALSE, ...)
```

Arguments

object	Object of class <code>mhmm</code> .
conditional	If TRUE (default), the standard errors are computed conditional on other model parameters. See details.
threads	Number of threads to use in parallel computing. Default is 1.
log_space	Make computations using log-space instead of scaling for greater numerical stability at cost of decreased computational performance. Default is FALSE.
...	Additional arguments to function <code>jacobian</code> of <code>numDeriv</code> package.

Details

The conditional standard errors are computed using analytical formulas by assuming that the coefficient estimates are not correlated with other model parameter estimates (or that the other parameters are assumed to be fixed). This often underestimates the true standard errors, but is substantially faster approach for preliminary analysis. The non-conditional standard errors are based on the numerical approximation of the full Hessian of the coefficients and the model parameters corresponding to nonzero probabilities. Computing the non-conditional standard errors can be slow for large models as the Jacobian of analytical gradients is computed using finite difference approximation.

Value

Matrix containing the variance-covariance matrix of coefficients.

Index

* **datasets**
 biofam3c, 3
 colorpalette, 20
 hmm_biofam, 36
 hmm_mvad, 38
 mhmm_biofam, 43
 mhmm_mvad, 47

alphabet, 66
alphabet (seqdef), 66

biofam, 3, 4, 36, 38, 44, 46
biofam3c, 3, 38, 46, 77, 82
build_hmm, 4, 25, 38–40, 42, 54, 55, 65, 70, 71, 77, 82, 85
build_lcm, 8, 25, 59, 71
build_mhmm, 11, 25, 41, 46, 48, 52, 59, 61, 65, 71, 72, 84
build_mm, 16, 25, 54, 71
build_mmm, 18, 25, 59, 71

cmdscale, 50, 75, 80
colorpalette, 20, 51, 52, 63, 76, 81

estimate_coef, 21

fit_hmm (seqHMM-deprecated), 67
fit_mhmm (seqHMM-deprecated), 67
fit_model, 6, 9, 13, 16, 19, 21, 38–42, 46, 48, 52, 55, 61, 65, 70, 72, 77, 82, 84, 85
formula, 9, 12, 18, 72
forward_backward, 32

gridplot, 33, 62, 74, 77, 82

hidden_paths, 35, 50, 52, 75, 77, 79, 82
hmm_biofam, 36, 36, 42, 55, 77, 82, 85
hmm_mvad, 38, 55

igraph.plotting, 54, 60

layout_, 54, 59

logLik.hmm, 40
logLik.mhmm, 40

mc_to_sc, 41, 43, 54, 55, 59
mc_to_sc_data, 42
menu, 50, 59
mhmm_biofam, 43, 61, 65, 84
mhmm_mvad, 47, 61
mssplot, 25, 36, 49
mvad, 38, 39, 47, 48

nloptr, 22, 23, 68, 69

par, 54, 60
plot.hmm, 6, 17, 25, 53
plot.igraph, 55, 61
plot.mhmm, 9, 13, 19, 25, 52, 58
plot.ssp, 34, 62, 74, 77, 82
plot.stslist, 50, 75, 80
plot_colors, 20, 63
posterior_probs, 64
print.hmm, 64
print.mhmm (print.hmm), 64
print.summary.mhmm (print.hmm), 64

separate_mhmm, 9, 13, 19, 25, 65
seqdef, 5, 8, 12, 16, 18, 36, 42, 43, 50, 51, 66, 66, 70, 72, 75, 76, 78–81
seqHMM, 66
seqHMM-deprecated, 67
seqIplot, 36
seqplot, 50, 52, 55, 61, 75, 77, 79, 81
seqstatf, 66
seqstatf (seqdef), 66
simulate_emission_probs
 (simulate_initial_probs), 71
simulate_hmm, 69, 72
simulate_initial_probs, 71
simulate_mhmm, 70, 71
simulate_transition_probs
 (simulate_initial_probs), 71

`ssp`, 33, 34, 62, 73, 82
`ssplot`, 25, 36, 43, 62, 70, 72, 78
`summary.mhmm`, 9, 13, 19, 25, 83
`trim_hmm` (seqHMM-deprecated), 67
`trim_model`, 84
`vcov.mhmm`, 83, 85