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Introduction

The revised seroincidence calculator package provides three refinements to the method for calcu-
lating seroincidence published earlier (Teunis et al. 2012) and implemented in R package seroin-

cidence, versions 1.x: (1) inclusion of infection episode with rising antibody levels, (2) non–
exponential decay of serum antibodies after infection, and (3) age–dependent correction for subjects
who have never seroconverted. It is important to note that, although the implemented methods
use a specific parametric model, as proposed in (de Graaf et al. 2014) and augmented in (Teunis
et al. 2016), the methods used to calculate the likelihood function allow seroresponses of arbitrary
shape.

1. A simple model for the seroresponse

The current version of the seroincidence package uses the model of (Teunis et al. 2016) for the
shape of the seroresponse:

Infection/colonization episode Waning immunity episode
b′(t) = µ0b(t) − cy(t) b(t) = 0
y′(t) = µy(t) y′(t) = −νy(t)r

With baseline antibody concentration y(0) = y0 and initial pathogen concentration b(0) = b0. The
serum antibody response y(t) can be written as

y(t) = y+(t) + y−(t)

where

y+(t) = y0eµt[0 ≤ t < t1]

y−(t) = y1

(

1 + (r − 1)yr−1
1 ν(t− t1)

)

−
1

r−1 [t1 ≤ t < ∞]

Since the peak level is y1 = y0eµt1 the (unobservable) growth rate µ can be written as

µ =
1

t1
log

(

y1

y0

)

Antibody decay is different from exponential (log–linear) decay. When the shape parameter r > 1,
log concentrations decrease rapidly after infection has terminated, but decay then slows down and
low antibody concentrations are maintained for a long period. When r approaches 1, exponential
decay is restored.

2. Backward recurrence time

Considering the (fundamental) uniform distribution uf of sampling within a given interval, the
interval length distribution p(∆t) and the distribution of (cross–sectionally) sampled interval length
(Teunis et al. 2012)

q(∆t) =
p(∆t) · ∆t

∆tp
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Figure 1: The antibody level at t = 0 is y0; the rising branch ends at t = t1 where the peak antibody
level y1 is reached. Any antibody level y0 ≤ y(t) < y1 occurs twice.

the joint distribution of backward recurrence time and cross–sectional interval length is the product
uf · q because these probabilities are independent.

The distribution of backward recurrence time is the marginal distribution

u(τ) =

∫

∞

∆t=0
uf (τ ; ∆t) · q(∆t)d∆t

=

∫

∞

0

[0 ≤ τ ≤ ∆t]

∆t
·
p(∆t) · ∆t

∆tp
d∆t

=
1

∆tp

∫

∞

τ
p(∆t)d∆t

3. Incidence of seroconversions

To calculate the incidence of seroconversions, as in (Teunis et al. 2012), the distribution p(∆t) of
intervals ∆t between seroconversions, is important. Assuming any subject is sampled completely
at random during their intervals between seroconversions, and accounting for interval length bias
(Satten et al. 2004; Zelen 2004), the distribution of backward recurrence times τ can be written as
(Teunis et al. 2012)

u(τ) =
1

∆t

∫

∞

τ=0
p(∆t)d∆t =

1 − P (∆t)

∆t

where ∆t is the p–distribution expected value of ∆t.

This density is employed to estimate seroconversion rates. The antibody concentration y is the
observable quantity, and we need to express the probability (density) of observed y in terms of the
density of backward recurrence time.

First, the backward recurrence time can τ be expressed as a function of the serum antibody con-
centration y

τ(y) = τ+(y) + τ−(y)
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where

τ+(y) =
1

µ
log

(

y+

y0

)

[0 ≤ τ < t1]

τ−(y) =



t1 +
y

−(r−1)
−

− y
−(r−1)
1

ν(r − 1)



 [t1 ≤ τ < ∞]

with corresponding derivatives

dτ+

dy
=

1

µy+
and

dτ−

dy
= −

1

νyr
−

Now, consider the probability that an antibody level y′, corresponding to a time since infection τ ′,
is less than or equal to y (see Figure 1)

P (y′ ≤ y) = P
(

y0 ≤ y+(τ ′) ≤ y+(τ) ∨ y−(τ ′) ≤ y−(τ) ≤ t1
)

+ [y1 < y]

= P

(

0 ≤ τ ′ ≤
1

µ
log

(

y+

y0

))

+ P



t1 +
y

−(r−1)
−

− y
−(r−1)
1

ν(r − 1)
≤ τ ′ < ∞



+ [y1 < y]

The probability density for y then is

ρ(y) =
d

dy
P (y′ ≤ y)

=
d

dτ+

dτ+

dy+
P
(

0 ≤ τ ′ ≤ τ+(y)
)

+
d

dτ−

dτ−

dy−

P
(

t1 + τ−(y) ≤ τ ′ < ∞
)

= ρ+(y+) + ρ−(y−)

So that

ρ+(y+) =
1

µy+
u

(

1

µ
log

(

y+

y0

))

ρ−(y−) =
1

νyr
−

u



t1 +
y

−(r−1)
−

− y
−(r−1)
1

ν(r − 1)





(1)

when [y0 ≤ y < y1] there are two contributions to the density, one from the rising and one from
the decaying branch of the antibody response.

If, as assumed before (Teunis et al. 2012), intervals between incident infections are generated by a
process with Gamma probability density, ∆t = (m + 1)/λ. The cumulative distribution function
for τ is

Pm(τ) = 1 −
Γ(m+ 1, λτ)

m!
(2)

and the density of backward recurrence times is

um(τ) =
1 − Pm(τ)

∆t
=
λΓ(m+ 1, λτ)

(m+ 1)!
=
λe−λτ

m+ 1

m
∑

j=0

(λτ)j

j!
(3)
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Combining equations (1) and (3) the marginal density of y can be found

ρ+(y+) = [y0 ≤ y+ < y1]
λy0

µ(m+ 1)

(

y+

y0

)

−(1+λ/µ) m
∑

j=0

(

λ
µ log(y+/y0)

)j

j!
(4)

and

ρ−(y−) = [0 < y− ≤ y1]
λ

νyr
−

(m+ 1)
e

−λ

(

t1+
y

−(r−1)
−

−y
−(r−1)
1

ν(r−1)

)

×
m
∑

j=0

λj

j!



t1 +
y

−(r−1)
−

− y
−(r−1)
1

ν(r − 1)





j

(5)

where ρ+ and ρ− refer to the contributions of the rising and decaying part of the seroresponse to
the density of y.

The within–host parameters θ = (y0, y1, t1, ν, r) vary among responses of individual subjects. Het-
erogeneity in these parameters may be described by their joint distribution, which can be used
to calculate the marginal distribution ρ(y) (Teunis et al. 2012). Since a Monte Carlo sample of
the posterior joint distribution is available from the longitudinal model (Teunis et al. 2016) the
marginal distribution of ρ(y) may be approximated by the sum

ρ(y) =
1

N

N
∑

n=1

ρ+(y|λ,m,θn) + ρ−(y|λ,m,θn) (6)

for a Monte Carlo sample (θ1,θ2, . . . ,θN ). A cross–sectional sample of antibody concentrations
(Y1, Y2, . . . , YK) can now be used to calculate a likelihood

ℓ(λ,m) =
K
∏

k=1

ρ(Yk|λ,m)

that can be used to estimate (λ,m).

4. True seronegative subjects

At the time that a cross–sectional serum sample is collected, the subject whose blood is drawn
may have never been infected in their lifetime. The antibody concentration y in that sample then
represents a true seronegative. For such a sample, the backward recurrence time does not exist.
For a given longitudinal response, the backward recurrence time τ corresponding with measured
antibody concentration Y can be calculated. If that backward recurrence time is longer than the
age of the person (at time of sampling), their antibody concentration Y cannot have resulted from
prior seroconversion.

If, in the summation in equation (6), terms not satisfying the condition τ(y) < a are discarded, the
resulting partial sum

ρ∗(y, a) =
1

N

N
∑

n=1

[τ(y,θn) < a](ρ+(y|λ,m,θn) + (ρ−(y|λ,m,θn)
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counts only those seroconversions that can have occurred during the lifespan of the person whose
serum was sampled.

Serum from a true seronegative subject is expected to have a low antibody concentration, represen-
tative of a “true” negative sample (de Greeff et al. 2012). The antibody concentrations y in sera
from such truly negative subjects are not expected to decay over time: the baseline distribution
ρ0(y) may be assumed fixed and independent of m and λ. Note that also when y corresponds to
a backward recurrence time within the lifespan of a person, that same antibody concentration y
could still result from the baseline distribution ρ0(y).

Given the interval distribution for incident infections, the probability that a sampled subject has
never seroconverted depends on their age. For the gamma process assumed above, the survival func-
tion Pm(a|m,λ) gives the probability of a subject having not seroconverted before age a (equation
(2)).

Thus, for a serum sample with antibody concentration y from a subject of age a the probability
density is

ψ(λ,m|y, a,θ,θ0) = ρ∗(y, a) + Pm(a|m,λ)ρ0(y|θ0)

When the seroconversion rate is low, or a subject is young, or both, the probability of a true
negative may be considerable.

5. Censored observations

In case observations are censored at yc such that an observed Y = max(Y, yc), then for yc < Y the
density ρ(y) as in equations (4) and (5) holds, but the likelihood of any Y ≤ yc can be calculated

ℓ(λ,m|y ≤ yc) =

∫ yc

z=0
ρ(z, λ,m)dz = R(yc|λ,m)

We need the cumulative distribution R(y) for the backward recurrence time, from equation (3).

Um(τ) =
1

m+ 1

m
∑

j=0

Pj(τ |λ)

while the cumulative distribution of antibody levels y is

P (y′ ≤ y) = U

(

1

µ
log

(

y

y0

))

[y0 ≤ y < y1]+

(

1 − U

(

t1 +
y−(r−1) − y

−(r−1)
1

ν(r − 1)

))

[y ≤ y1] + [y1 < y]

so that

R(y) =
1

m+ 1

m
∑

j=0

Pj

(

1

µ
log

(

y

y0

)

|λ

)

[y0 ≤ y < y1]

+



1 −
1

m+ 1

m
∑

j=0

Pj

(

t1 +
y−(r−1) − y

−(r−1)
1

ν(r − 1)
|λ

)



 [y ≤ y1]

+ [y1 < y]
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Using equation (2) this can be written in terms of incomplete gamma functions

R(y) =
1

m+ 1

m
∑

j=0



1 −
Γ
(

j + 1, λ
µ log

(

y
y0

))

j!



 [y0 ≤ y < y1]

+









1 −
1

m+ 1

m
∑

j=0









1 −
Γ

(

j + 1, λ

(

t1 +
y−(r−1)

−y
−(r−1)
1

ν(r−1)

))

j!

















[y < y1]

+ [y1 < y]

or

R(y) =



1 −
1

m+ 1

m
∑

j=0

Γ
(

j + 1, λ
µ log

(

y
y0

))

j!



 [y0 ≤ y < y1]

+
1

m+ 1

m
∑

j=0

Γ

(

j + 1, λ

(

t1 +
y−(r−1)

−y
−(r−1)
1

ν(r−1)

))

j!
[y < y1]

+ [y1 < y]
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