Structural equation modeling is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with inter-correlated dependent and independent variables. Here we implement a simple method for spatially explicit structural equation modeling based on the analysis of variance co-variance matrices calculated across a range of lag distances. This method provides readily interpreted plots of the change in path coefficients across scale.
| Version: | 1.0.2 | 
| Depends: | R (≥ 1.8.0) | 
| Imports: | lavaan, mgcv, gplots | 
| Published: | 2016-06-10 | 
| Author: | Eric Lamb [aut, cre], Kerrie Mengersen [aut], Katherine Stewart [aut], Udayanga Attanayake [aut], Steven Siciliano [aut] | 
| Maintainer: | Eric Lamb <eric.lamb at usask.ca> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | http://www.r-project.org, http://homepage.usask.ca/~egl388/index.html | 
| NeedsCompilation: | no | 
| Citation: | sesem citation info | 
| Materials: | NEWS | 
| CRAN checks: | sesem results | 
| Reference manual: | sesem.pdf | 
| Package source: | sesem_1.0.2.tar.gz | 
| Windows binaries: | r-devel: sesem_1.0.2.zip, r-release: sesem_1.0.2.zip, r-oldrel: sesem_1.0.2.zip | 
| macOS binaries: | r-release (arm64): sesem_1.0.2.tgz, r-oldrel (arm64): sesem_1.0.2.tgz, r-release (x86_64): sesem_1.0.2.tgz, r-oldrel (x86_64): sesem_1.0.2.tgz | 
| Old sources: | sesem archive | 
Please use the canonical form https://CRAN.R-project.org/package=sesem to link to this page.