
Package ‘sjmisc’
December 3, 2021

Type Package

Encoding UTF-8

Title Data and Variable Transformation Functions

Version 2.8.9

Maintainer Daniel Lüdecke <d.luedecke@uke.de>

Description Collection of miscellaneous utility functions, supporting data
transformation tasks like recoding, dichotomizing or grouping variables,
setting and replacing missing values. The data transformation functions
also support labelled data, and all integrate seamlessly into a
'tidyverse'-workflow.

License GPL-3

Depends R (>= 3.4)

Imports dplyr, insight, magrittr, methods, purrr, rlang, sjlabelled
(>= 1.1.1), stats, tidyselect, utils

Suggests ggplot2, graphics, haven (>= 2.0.0), mice, nnet, sjPlot,
sjstats, knitr, rmarkdown, stringdist, testthat, tidyr

URL https://strengejacke.github.io/sjmisc/

BugReports https://github.com/strengejacke/sjmisc/issues

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>),
Iago Giné-Vázquez [ctb],
Alexander Bartel [ctb] (<https://orcid.org/0000-0002-1280-6138>)

Repository CRAN

Date/Publication 2021-12-03 10:40:02 UTC

1

https://strengejacke.github.io/sjmisc/
https://github.com/strengejacke/sjmisc/issues
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0002-1280-6138

2 R topics documented:

R topics documented:
sjmisc-package . 3
add_columns . 4
add_rows . 6
add_variables . 7
all_na . 9
big_mark . 9
count_na . 10
descr . 11
de_mean . 13
dicho . 14
efc . 17
empty_cols . 18
find_var . 19
flat_table . 21
frq . 22
group_str . 26
group_var . 28
has_na . 31
is_crossed . 32
is_empty . 34
is_even . 35
is_float . 36
is_num_fac . 37
merge_imputations . 38
move_columns . 39
numeric_to_factor . 41
rec . 42
recode_to . 46
rec_pattern . 48
ref_lvl . 49
remove_var . 51
replace_na . 52
reshape_longer . 54
rotate_df . 56
round_num . 57
row_count . 58
row_sums . 59
seq_col . 61
set_na_if . 62
shorten_string . 63
split_var . 64
spread_coef . 66
std . 68
str_contains . 71
str_find . 73
str_start . 74

sjmisc-package 3

tidy_values . 76
to_dummy . 76
to_long . 78
to_value . 80
trim . 81
typical_value . 82
var_rename . 83
var_type . 84
word_wrap . 85
zap_inf . 86
%nin% . 87

Index 89

sjmisc-package Data and Variable Transformation Functions

Description

Purpose of this package

Collection of miscellaneous utility functions, supporting data transformation tasks like recoding,
dichotomizing or grouping variables, setting and replacing missing values. The data transformation
functions also support labelled data, and all integrate seamlessly into a ’tidyverse’-workflow.

Design philosophy - consistent api

The design of this package follows, where appropriate, the tidyverse-approach, with the first argu-
ment of a function always being the data (either a data frame or vector), followed by variable names
that should be processed by the function. If no variables are specified as argument, the function
applies to the complete data that was indicated as first function argument.

There are two types of function designs:

transformation/recoding functions Functions like rec() or dicho(), which transform or recode
variables, typically return the complete data frame that was given as first argument, addition-
ally including the transformed and recoded variables specified in the ...-ellipses argument.
The variables usually get a suffix, so original variables are preserved in the data.

coercing/converting functions Functions like to_factor() or to_label(), which convert vari-
ables into other types or add additional information like variable or value labels as attribute,
also typically return the complete data frame that was given as first argument. However, the
variables specified in the ...-ellipses argument are converted ("overwritten"), all other vari-
ables remain unchanged. Hence, these functions do not return any new, additional variables.

Author(s)

Daniel Lüdecke <d.luedecke@uke.de>

4 add_columns

add_columns Add or replace data frame columns

Description

add_columns() combines two or more data frames, but unlike cbind or dplyr::bind_cols(),
this function binds data as last columns of a data frame (i.e., behind columns specified in ...).
This can be useful in a "pipe"-workflow, where a data frame returned by a previous function should
be appended at the end of another data frame that is processed in add_colums().

replace_columns() replaces all columns in data with identically named columns in ..., and
adds remaining (non-duplicated) columns from ... to data.

add_id() simply adds an ID-column to the data frame, with values from 1 to nrow(data), re-
spectively for grouped data frames, values from 1 to group size. See ’Examples’.

Usage

add_columns(data, ..., replace = TRUE)

replace_columns(data, ..., add.unique = TRUE)

add_id(data, var = "ID")

Arguments

data A data frame. For add_columns(), will be bound after data frames specified in
.... For replace_columns(), duplicated columns in data will be replaced by
columns in

... More data frames to combine, resp. more data frames with columns that should
replace columns in data.

replace Logical, if TRUE (default), columns in ... with identical names in data will
replace the columns in data. The order of columns after replacing is preserved.

add.unique Logical, if TRUE (default), remaining columns in ... that did not replace any
column in data, are appended as new columns to data.

var Name of new the ID-variable.

Value

For add_columns(), a data frame, where columns of data are appended after columns of

For replace_columns(), a data frame where columns in data will be replaced by identically
named columns in ..., and remaining columns from ... will be appended to data (if add.unique
= TRUE).

For add_id(), a new column with ID numbers. This column is always the first column in the
returned data frame.

add_columns 5

Note

For add_columns(), by default, columns in data with identical names like columns in one of
the data frames in ... will be dropped (i.e. variables with identical names in ... will replace
existing variables in data). Use replace = FALSE to keep all columns. Identical column names
will then be renamed, to ensure unique column names (which happens by default when using
dplyr::bind_cols()). When replacing columns, replaced columns are not added to the end of
the data frame. Rather, the original order of columns will be preserved.

Examples

data(efc)
d1 <- efc[, 1:3]
d2 <- efc[, 4:6]

library(dplyr)
head(bind_cols(d1, d2))
add_columns(d1, d2) %>% head()

d1 <- efc[, 1:3]
d2 <- efc[, 2:6]

add_columns(d1, d2, replace = TRUE) %>% head()
add_columns(d1, d2, replace = FALSE) %>% head()

use case: we take the original data frame, select specific
variables and do some transformations or recodings
(standardization in this example) and add the new, transformed
variables *to the end* of the original data frame
efc %>%

select(e17age, c160age) %>%
std() %>%
add_columns(efc) %>%
head()

new variables with same name will overwrite old variables
in "efc". order of columns is not changed.
efc %>%

select(e16sex, e42dep) %>%
to_factor() %>%
add_columns(efc) %>%
head()

keep both old and new variables, automatically
rename variables with identical name
efc %>%

select(e16sex, e42dep) %>%
to_factor() %>%
add_columns(efc, replace = FALSE) %>%
head()

create sample data frames
d1 <- efc[, 1:10]

6 add_rows

d2 <- efc[, 2:3]
d3 <- efc[, 7:8]
d4 <- efc[, 10:12]

show original
head(d1)

library(sjlabelled)
slightly change variables, to see effect
d2 <- as_label(d2)
d3 <- as_label(d3)

replace duplicated columns, append remaining
replace_columns(d1, d2, d3, d4) %>% head()

replace duplicated columns, omit remaining
replace_columns(d1, d2, d3, d4, add.unique = FALSE) %>% head()

add ID to dataset
library(dplyr)
data(mtcars)
add_id(mtcars)

mtcars %>%
group_by(gear) %>%
add_id() %>%
arrange(gear, ID) %>%
print(n = 100)

add_rows Merge labelled data frames

Description

Merges (full join) data frames and preserve value and variable labels.

Usage

add_rows(..., id = NULL)

merge_df(..., id = NULL)

Arguments

... Two or more data frames to be merged.

id Optional name for ID column that will be created to indicate the source data
frames for appended rows.

add_variables 7

Details

This function works like dplyr::bind_rows(), but preserves variable and value label attributes.
add_rows() row-binds all data frames in ..., even if these have different numbers of columns.
Non-matching columns will be column-bound and filled with NA-values for rows in those data
frames that do not have this column.

Value and variable labels are preserved. If matching columns have different value label attributes,
attributes from first data frame will be used.

merge_df() is an alias for add_rows().

Value

A full joined data frame.

Examples

library(dplyr)
data(efc)
x1 <- efc %>% select(1:5) %>% slice(1:10)
x2 <- efc %>% select(3:7) %>% slice(11:20)

mydf <- add_rows(x1, x2)
mydf
str(mydf)

Not run:
library(sjPlot)
view_df(mydf)
End(Not run)

x3 <- efc %>% select(5:9) %>% slice(21:30)
x4 <- efc %>% select(11:14) %>% slice(31:40)

mydf <- add_rows(x1, x2, x3, x4, id = "subsets")
mydf
str(mydf)

add_variables Add variables or cases to data frames

Description

add_variables() adds a new column to a data frame, while add_case() adds a new row to a data
frame. These are convenient functions to add columns or rows not only at the end of a data frame,
but at any column or row position. Furthermore, they allow easy integration into a pipe-workflow.

8 add_variables

Usage

add_variables(data, ..., .after = Inf, .before = NULL)

add_case(data, ..., .after = Inf, .before = NULL)

Arguments

data A data frame.

... One or more named vectors that indicate the variables or values, which will be
added as new column or row to data. For add_case(), non-matching columns
in data will be filled with NA.

.after, .before

Numerical index of row or column, where after or before the new variable or
case should be added. If .after = -1, variables or cases are added at the be-
ginning; if .after = Inf, variables and cases are added at the end. In case of
add_variables(), .after and .before may also be a character name indicat-
ing the column in data, after or infront of what ... should be inserted.

Value

data, including the new variables or cases from

Note

For add_case(), if variable does not exist, a new variable is created and existing cases for this new
variable get the value NA. See ’Examples’.

Examples

d <- data.frame(
a = c(1, 2, 3),
b = c("a", "b", "c"),
c = c(10, 20, 30),
stringsAsFactors = FALSE

)

add_case(d, b = "d")
add_case(d, b = "d", a = 5, .before = 1)

adding a new case for a new variable
add_case(d, e = "new case")

add_variables(d, new = 5)
add_variables(d, new = c(4, 4, 4), new2 = c(5, 5, 5), .after = "b")

all_na 9

all_na Check if vector only has NA values

Description

Check if all values in a vector are NA.

Usage

all_na(x)

Arguments

x A vector or data frame.

Value

Logical, TRUE if x has only NA values, FALSE if x has at least one non-missing value.

Examples

x <- c(NA, NA, NA)
y <- c(1, NA, NA)

all_na(x)
all_na(y)
all_na(data.frame(x, y))
all_na(list(x, y))

big_mark Format numbers

Description

big_mark() formats large numbers with big marks, while prcn() converts a numeric scalar be-
tween 0 and 1 into a character vector, representing the percentage-value.

Usage

big_mark(x, big.mark = ",", ...)

prcn(x)

10 count_na

Arguments

x A vector or data frame. All numeric inputs (including numeric character) vec-
tors) will be prettified. For prcn(), a number between 0 and 1, or a vector or
data frame with such numbers.

big.mark Character, used as mark between every 3 decimals before the decimal point.

... Other arguments passed down to the prettyNum-function.

Value

For big_mark(), a prettified x as character, with big marks. For prcn, a character vector with a
percentage number.

Examples

simple big mark
big_mark(1234567)

big marks for several values at once, mixed numeric and character
big_mark(c(1234567, "55443322"))

pre-defined width of character output
big_mark(c(1234567, 55443322), width = 15)

convert numbers into percentage, as character
prcn(0.2389)
prcn(c(0.2143887, 0.55443, 0.12345))

dat <- data.frame(
a = c(.321, .121, .64543),
b = c("a", "b", "c"),
c = c(.435, .54352, .234432)

)
prcn(dat)

count_na Frequency table of tagged NA values

Description

This method counts tagged NA values (see tagged_na) in a vector and prints a frequency table of
counted tagged NAs.

Usage

count_na(x, ...)

descr 11

Arguments

x A vector or data frame.
... Optional, unquoted names of variables that should be selected for further pro-

cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

Value

A data frame with counted tagged NA values.

Examples

if (require("haven")) {
x <- labelled(

x = c(1:3, tagged_na("a", "c", "z"),
4:1, tagged_na("a", "a", "c"),
1:3, tagged_na("z", "c", "c"),
1:4, tagged_na("a", "c", "z")),

labels = c("Agreement" = 1, "Disagreement" = 4,
"First" = tagged_na("c"), "Refused" = tagged_na("a"),
"Not home" = tagged_na("z"))

)
count_na(x)

y <- labelled(
x = c(1:3, tagged_na("e", "d", "f"),

4:1, tagged_na("f", "f", "d"),
1:3, tagged_na("f", "d", "d"),
1:4, tagged_na("f", "d", "f")),

labels = c("Agreement" = 1, "Disagreement" = 4, "An E" = tagged_na("e"),
"A D" = tagged_na("d"), "The eff" = tagged_na("f"))

)

create data frame
dat <- data.frame(x, y)

possible count()-function calls
count_na(dat)
count_na(dat$x)
count_na(dat, x)
count_na(dat, x, y)

}

descr Basic descriptive statistics

Description

This function prints a basic descriptive statistic, including variable labels.

../doc/design_philosophy.html

12 descr

Usage

descr(
x,
...,
max.length = NULL,
weights = NULL,
show = "all",
out = c("txt", "viewer", "browser"),
encoding = "UTF-8",
file = NULL

)

Arguments

x A vector or a data frame. May also be a grouped data frame (see ’Note’ and
’Examples’).

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

max.length Numeric, indicating the maximum length of variable labels in the output. If
variable names are longer than max.length, they will be shortened to the last
whole word within the first max.length chars.

weights Bare name, or name as string, of a variable in x that indicates the vector of
weights, which will be applied to weight all observations. Default is NULL, so
no weights are used.

show Character vector, indicating which information (columns) that describe the data
should be returned. May be one or more of "type","label","n","NA.prc","mean","sd","se","md","trimmed","range","iqr","skew".
There are two shortcuts: show = "all" (default) shows all information, show =
"short" just shows n, missing percentage, mean and standard deviation.

out Character vector, indicating whether the results should be printed to console
(out = "txt") or as HTML-table in the viewer-pane (out = "viewer") or browser
(out = "browser").

encoding Character vector, indicating the charset encoding used for variable and value
labels. Default is "UTF-8". Only used when out is not "txt".

file Destination file, if the output should be saved as file. Only used when out is not
"txt".

Value

A data frame with basic descriptive statistics.

Note

data may also be a grouped data frame (see group_by) with up to two grouping variables. Descrip-
tive tables are created for each subgroup then.

../doc/design_philosophy.html

de_mean 13

Examples

data(efc)
descr(efc, e17age, c160age)

efc$weights <- abs(rnorm(nrow(efc), 1, .3))
descr(efc, c12hour, barthtot, weights = weights)

library(dplyr)
efc %>% select(e42dep, e15relat, c172code) %>% descr()

show just a few elements
efc %>% select(e42dep, e15relat, c172code) %>% descr(show = "short")

with grouped data frames
efc %>%

group_by(e16sex) %>%
select(e16sex, e42dep, e15relat, c172code) %>%
descr()

you can select variables also inside 'descr()'
efc %>%

group_by(e16sex, c172code) %>%
descr(e16sex, c172code, e17age, c160age)

or even use select-helpers
descr(efc, contains("cop"), max.length = 20)

de_mean Compute group-meaned and de-meaned variables

Description

de_mean() computes group- and de-meaned versions of a variable that can be used in regression
analysis to model the between- and within-subject effect.

Usage

de_mean(x, ..., grp, append = TRUE, suffix.dm = "_dm", suffix.gm = "_gm")

Arguments

x A data frame.

... Names of variables that should be group- and de-meaned.

grp Quoted or unquoted name of the variable that indicates the group- or cluster-ID.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

14 dicho

suffix.dm, suffix.gm

String value, will be appended to the names of the group-meaned and de-meaned
variables of x. By default, de-meaned variables will be suffixed with "_dm" and
grouped-meaned variables with "_gm".

Details

de_mean() is intended to create group- and de-meaned variables for complex random-effect-within-
between models (see Bell et al. 2018), where group-effects (random effects) and fixed effects corre-
late (see Bafumi and Gelman 2006)). This violation of one of the Gauss-Markov-assumptions can
happen, for instance, when analysing panel data. To control for correlating predictors and group
effects, it is recommended to include the group-meaned and de-meaned version of time-varying
covariates in the model. By this, one can fit complex multilevel models for panel data, including
time-varying, time-invariant predictors and random effects. This approach is superior to simple
fixed-effects models, which lack information of variation in the group-effects or between-subject
effects.

A description of how to translate the formulas described in Bell et al. 2018 into R using lmer()
from lme4 or glmmTMB() from glmmTMB can be found here: for lmer() and for glmmTMB().

Value

For append = TRUE, x including the group-/de-meaned variables as new columns is returned; if
append = FALSE, only the group-/de-meaned variables will be returned.

References

Bafumi J, Gelman A. 2006. Fitting Multilevel Models When Predictors and Group Effects Corre-
late. In. Philadelphia, PA: Annual meeting of the American Political Science Association.

Bell A, Fairbrother M, Jones K. 2018. Fixed and Random Effects Models: Making an Informed
Choice. Quality & Quantity. doi: 10.1007/s111350180802x

Examples

data(efc)
efc$ID <- sample(1:4, nrow(efc), replace = TRUE) # fake-ID
de_mean(efc, c12hour, barthtot, grp = ID, append = FALSE)

dicho Dichotomize variables

Description

Dichotomizes variables into dummy variables (0/1). Dichotomization is either done by median,
mean or a specific value (see dich.by). dicho_if() is a scoped variant of dicho(), where recoding
will be applied only to those variables that match the logical condition of predicate.

https://strengejacke.github.io/mixed-models-snippets/random-effects-within-between-effects-model.html
https://strengejacke.github.io/mixed-models-snippets/random-effects-within-between-effects-model-glmmtmb.html
https://doi.org/10.1007/s11135-018-0802-x

dicho 15

Usage

dicho(
x,
...,
dich.by = "median",
as.num = FALSE,
var.label = NULL,
val.labels = NULL,
append = TRUE,
suffix = "_d"

)

dicho_if(
x,
predicate,
dich.by = "median",
as.num = FALSE,
var.label = NULL,
val.labels = NULL,
append = TRUE,
suffix = "_d"

)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

dich.by Indicates the split criterion where a variable is dichotomized. Must be one of
the following values (may be abbreviated):

"median" or "md" by default, x is split into two groups at the median.
"mean" or "m" splits x into two groups at the mean of x.
numeric value splits x into two groups at the specific value. Note that the value

is inclusive, i.e. dich.by = 10 will split x into one group with values from
lowest to 10 and another group with values greater than 10.

as.num Logical, if TRUE, return value will be numeric, not a factor.

var.label Optional string, to set variable label attribute for the returned variable (see vi-
gnette Labelled Data and the sjlabelled-Package). If NULL (default), variable
label attribute of x will be used (if present). If empty, variable label attributes
will be removed.

val.labels Optional character vector (of length two), to set value label attributes of di-
chotomized variable (see set_labels). If NULL (default), no value labels will
be set.

../doc/design_philosophy.html
https://cran.r-project.org/package=sjlabelled/vignettes/intro_sjlabelled.html

16 dicho

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

suffix Indicates which suffix will be added to each dummy variable. Use "numeric"
to number dummy variables, e.g. x_1, x_2, x_3 etc. Use "label" to add value
label, e.g. x_low, x_mid, x_high. May be abbreviated.

predicate A predicate function to be applied to the columns. The variables for which
predicate returns TRUE are selected.

Details

dicho() also works on grouped data frames (see group_by). In this case, dichotomization is ap-
plied to the subsets of variables in x. See ’Examples’.

Value

x, dichotomized. If x is a data frame, for append = TRUE, x including the dichotomized. variables
as new columns is returned; if append = FALSE, only the dichotomized variables will be returned.
If append = TRUE and suffix = "", recoded variables will replace (overwrite) existing variables.

Note

Variable label attributes are preserved (unless changed via var.label-argument).

Examples

data(efc)
summary(efc$c12hour)
split at median
table(dicho(efc$c12hour))
split at mean
table(dicho(efc$c12hour, dich.by = "mean"))
split between value lowest to 30, and above 30
table(dicho(efc$c12hour, dich.by = 30))

sample data frame, values from 1-4
head(efc[, 6:10])

dichtomized values (1 to 2 = 0, 3 to 4 = 1)
library(dplyr)
efc %>%

select(6:10) %>%
dicho(dich.by = 2) %>%
head()

dichtomize several variables in a data frame
dicho(efc, c12hour, e17age, c160age, append = FALSE)

dichotomize and set labels
frq(dicho(

efc, e42dep,
var.label = "Dependency (dichotomized)",

efc 17

val.labels = c("lower", "higher"),
append = FALSE

))

works also with gouped data frames
mtcars %>%

dicho(disp, append = FALSE) %>%
table()

mtcars %>%
group_by(cyl) %>%
dicho(disp, append = FALSE) %>%
table()

dichotomizing grouped data frames leads to different
results for a dichotomized variable, because the split
value is different for each group.
compare:
mtcars %>%

group_by(cyl) %>%
summarise(median = median(disp))

median(mtcars$disp)

dichotomize only variables with more than 10 unique values
p <- function(x) dplyr::n_distinct(x) > 10
dicho_if(efc, predicate = p, append = FALSE)

efc Sample dataset from the EUROFAMCARE project

Description

A SPSS sample data set, imported with the read_spss function.

Examples

Attach EFC-data
data(efc)

Show structure
str(efc)

show first rows
head(efc)

18 empty_cols

empty_cols Return or remove variables or observations that are completely miss-
ing

Description

These functions check which rows or columns of a data frame completely contain missing values,
i.e. which observations or variables completely have missing values, and either 1) returns their
indices; or 2) removes them from the data frame.

Usage

empty_cols(x)

empty_rows(x)

remove_empty_cols(x)

remove_empty_rows(x)

Arguments

x A data frame.

Value

For empty_cols and empty_rows, a numeric (named) vector with row or column indices of those
variables that completely have missing values.

For remove_empty_cols and remove_empty_rows, a data frame with "empty" columns or rows
removed.

Examples

tmp <- data.frame(a = c(1, 2, 3, NA, 5),
b = c(1, NA, 3, NA , 5),
c = c(NA, NA, NA, NA, NA),
d = c(1, NA, 3, NA, 5))

tmp

empty_cols(tmp)
empty_rows(tmp)

remove_empty_cols(tmp)
remove_empty_rows(tmp)

find_var 19

find_var Find variable by name or label

Description

This functions finds variables in a data frame, which variable names or variable (and value) label
attribute match a specific pattern. Regular expression for the pattern is supported.

Usage

find_var(
data,
pattern,
ignore.case = TRUE,
search = c("name_label", "name_value", "label_value", "name", "label", "value",

"all"),
out = c("table", "df", "index"),
fuzzy = FALSE,
regex = FALSE

)

find_in_data(
data,
pattern,
ignore.case = TRUE,
search = c("name_label", "name_value", "label_value", "name", "label", "value",

"all"),
out = c("table", "df", "index"),
fuzzy = FALSE,
regex = FALSE

)

Arguments

data A data frame.

pattern Character string to be matched in data. May also be a character vector of length
> 1 (see ’Examples’). pattern is searched for in column names and variable
label attributes of data (see get_label). pattern might also be a regular-
expression object, as returned by stringr::regex(). Alternatively, use regex
= TRUE to treat pattern as a regular expression rather than a fixed string.

ignore.case Logical, whether matching should be case sensitive or not. ignore.case is
ignored when pattern is no regular expression or regex = FALSE.

search Character string, indicating where pattern is sought. Use one of following
options:

"name_label" The default, searches for pattern in variable names and vari-
able labels.

20 find_var

"name_value" Searches for pattern in variable names and value labels.
"label_value" Searches for pattern in variable and value labels.
"name" Searches for pattern in variable names.
"label" Searches for pattern in variable labels
"value" Searches for pattern in value labels.
"all" Searches for pattern in variable names, variable and value labels.

out Output (return) format of the search results. May be abbreviated and must be
one of:

"table" A tabular overview (as data frame) with column indices, variable names
and labels of matching variables.

"df" A data frame with all matching variables.
"index" A named vector with column indices of all matching variables.

fuzzy Logical, if TRUE, "fuzzy matching" (partial and close distance matching) will be
used to find pattern in data if no exact match was found.

regex Logical, if TRUE, pattern is treated as a regular expression rather than a fixed
string.

Details

This function searches for pattern in data’s column names and - for labelled data - in all variable
and value labels of data’s variables (see get_label for details on variable labels and labelled data).
Regular expressions are supported as well, by simply using pattern = stringr::regex(...) or
regex = TRUE.

Value

By default (i.e. out = "table", returns a data frame with three columns: column number, variable
name and variable label. If out = "index", returns a named vector with column indices of matching
variables (variable names are used as names-attribute); if out = "df", returns the matching variables
as data frame

Examples

data(efc)

find variables with "cop" in variable name
find_var(efc, "cop")

return data frame with matching variables
find_var(efc, "cop", out = "df")

or return column numbers
find_var(efc, "cop", out = "index")

find variables with "dependency" in names and variable labels
library(sjlabelled)
find_var(efc, "dependency")
get_label(efc$e42dep)

flat_table 21

find variables with "level" in names and value labels
res <- find_var(efc, "level", search = "name_value", out = "df")
res
get_labels(res, attr.only = FALSE)

use sjPlot::view_df() to view results
Not run:
library(sjPlot)
view_df(res)
End(Not run)

flat_table Flat (proportional) tables

Description

This function creates a labelled flat table or flat proportional (marginal) table.

Usage

flat_table(
data,
...,
margin = c("counts", "cell", "row", "col"),
digits = 2,
show.values = FALSE,
weights = NULL

)

Arguments

data A data frame. May also be a grouped data frame (see ’Note’ and ’Examples’).

... One or more variables of data that should be printed as table.

margin Specify the table margin that should be computed for proportional tables. By
default, counts are printed. Use margin = "cell", margin = "col" or margin =
"row" to print cell, column or row percentages of the table margins.

digits Numeric; for proportional tables, digits indicates the number of decimal places.

show.values Logical, if TRUE, value labels are prefixed by the associated value.

weights Bare name, or name as string, of a variable in x that indicates the vector of
weights, which will be applied to weight all observations. Default is NULL, so
no weights are used.

Value

An object of class ftable.

22 frq

Note

data may also be a grouped data frame (see group_by) with up to two grouping variables. Cross
tables are created for each subgroup then.

See Also

frq for simple frequency table of labelled vectors.

Examples

data(efc)

flat table with counts
flat_table(efc, e42dep, c172code, e16sex)

flat table with proportions
flat_table(efc, e42dep, c172code, e16sex, margin = "row")

flat table from grouped data frame. You need to select
the grouping variables and at least two more variables for
cross tabulation.
library(dplyr)
efc %>%

group_by(e16sex) %>%
select(e16sex, c172code, e42dep) %>%
flat_table()

efc %>%
group_by(e16sex, e42dep) %>%
select(e16sex, e42dep, c172code, n4pstu) %>%
flat_table()

now it gets weird...
efc %>%

group_by(e16sex, e42dep) %>%
select(e16sex, e42dep, c172code, n4pstu, c161sex) %>%
flat_table()

frq Frequency table of labelled variables

Description

This function returns a frequency table of labelled vectors, as data frame.

frq 23

Usage

frq(
x,
...,
sort.frq = c("none", "asc", "desc"),
weights = NULL,
auto.grp = NULL,
show.strings = TRUE,
show.na = TRUE,
grp.strings = NULL,
min.frq = 0,
out = c("txt", "viewer", "browser"),
title = NULL,
encoding = "UTF-8",
file = NULL

)

Arguments

x A vector or a data frame. May also be a grouped data frame (see ’Note’ and
’Examples’).

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

sort.frq Determines whether categories should be sorted according to their frequencies
or not. Default is "none", so categories are not sorted by frequency. Use "asc"
or "desc" for sorting categories ascending or descending order.

weights Bare name, or name as string, of a variable in x that indicates the vector of
weights, which will be applied to weight all observations. Default is NULL, so
no weights are used.

auto.grp Numeric value, indicating the minimum amount of unique values in a variable,
at which automatic grouping into smaller units is done (see group_var). Default
value for auto.group is NULL, i.e. auto-grouping is off.

show.strings Logical, if TRUE, frequency tables for character vectors will not be printed. This
is useful when printing frequency tables of all variables from a data frame, and
due to computational reasons character vectors should not be printed.

show.na Logical, or "auto". If TRUE, the output always contains information on missing
values, even if variables have no missing values. If FALSE, information on miss-
ing values are removed from the output. If show.na = "auto", information on
missing values is only shown when variables actually have missing values, else
it’s not shown.

grp.strings Numeric, if not NULL, groups string values in character vectors, based on their
similarity. See group_str and str_find for details on grouping, and their
precision-argument to get more details on the distance of strings to be treated
as equal.

../doc/design_philosophy.html

24 frq

min.frq Numeric, indicating the minimum frequency for which a value will be shown
in the output (except for the missing values, prevailing show.na). Default value
for min.frq is 0, so all value frequencies are shown. All values or categories
that have less than min.frq occurences in the data will be summarized in a "n
< 100" category.

out Character vector, indicating whether the results should be printed to console
(out = "txt") or as HTML-table in the viewer-pane (out = "viewer") or browser
(out = "browser").

title String, will be used as alternative title to the variable label. If x is a grouped data
frame, title must be a vector of same length as groups.

encoding Character vector, indicating the charset encoding used for variable and value
labels. Default is "UTF-8". Only used when out is not "txt".

file Destination file, if the output should be saved as file. Only used when out is not
"txt".

Details

The . . . -argument not only accepts variable names or expressions from select-helpers. You can
also use logical conditions, math operations, or combining variables to produce "crosstables". See
’Examples’ for more details.

Value

A list of data frames with values, value labels, frequencies, raw, valid and cumulative percentages
of x.

Note

x may also be a grouped data frame (see group_by) with up to two grouping variables. Frequency
tables are created for each subgroup then.

The print()-method adds a table header with information on the variable label, variable type,
total and valid N, and mean and standard deviations. Mean and SD are always printed, even for
categorical variables (factors) or character vectors. In this case, values are coerced into numeric
vector to calculate the summary statistics.

To print tables in markdown or HTML format, use print_md() or print_html().

See Also

flat_table for labelled (proportional) tables.

Examples

simple vector
data(efc)
frq(efc$e42dep)

with grouped data frames, in a pipe

frq 25

library(dplyr)
efc %>%

group_by(e16sex, c172code) %>%
frq(e42dep)

show only categories with a minimal amount of frequencies
frq(mtcars$gear)

frq(mtcars$gear, min.frq = 10)

frq(mtcars$gear, min.frq = 15)

with select-helpers: all variables from the COPE-Index
(which all have a "cop" in their name)
frq(efc, contains("cop"))

all variables from column "c161sex" to column "c175empl"
frq(efc, c161sex:c175empl)

for non-labelled data, variable name is printed,
and "label" column is removed from output
data(iris)
frq(iris, Species)

also works on grouped data frames
efc %>%

group_by(c172code) %>%
frq(is.na(nur_pst))

group variables with large range and with weights
efc$weights <- abs(rnorm(n = nrow(efc), mean = 1, sd = .5))
frq(efc, c160age, auto.grp = 5, weights = weights)

different weight options
frq(efc, c172code, weights = weights)
frq(efc, c172code, weights = "weights")
frq(efc, c172code, weights = efc$weights)
frq(efc$c172code, weights = efc$weights)

group string values
dummy <- efc[1:50, 3, drop = FALSE]
dummy$words <- sample(

c("Hello", "Helo", "Hole", "Apple", "Ape",
"New", "Old", "System", "Systemic"),

size = nrow(dummy),
replace = TRUE

)

frq(dummy)
frq(dummy, grp.strings = 2)

other expressions than variables

26 group_str

logical conditions
frq(mtcars, cyl ==6)

frq(efc, is.na(nur_pst), contains("cop"))

iris %>%
frq(starts_with("Petal"), Sepal.Length > 5)

computation of variables "on the fly"
frq(mtcars, (gear + carb) / cyl)

crosstables
set.seed(123)
d <- data.frame(

var_x = sample(letters[1:3], size = 30, replace = TRUE),
var_y = sample(1:2, size = 30, replace = TRUE),
var_z = sample(LETTERS[8:10], size = 30, replace = TRUE)

)
table(dvar_x, dvar_z)
frq(d, paste0(var_x, var_z))
frq(d, paste0(var_x, var_y, var_z))

group_str Group near elements of string vectors

Description

This function groups elements of a string vector (character or string variable) according to the
element’s distance (’similatiry’). The more similar two string elements are, the higher is the chance
to be combined into a group.

Usage

group_str(
strings,
precision = 2,
strict = FALSE,
trim.whitespace = TRUE,
remove.empty = TRUE,
verbose = FALSE,
maxdist

)

Arguments

strings Character vector with string elements.

precision Maximum distance ("precision") between two string elements, which is allowed
to treat them as similar or equal. Smaller values mean less tolerance in matching.

group_str 27

strict Logical; if TRUE, value matching is more strictly. See ’Examples’.

trim.whitespace

Logical; if TRUE (default), leading and trailing white spaces will be removed
from string values.

remove.empty Logical; if TRUE (default), empty string values will be removed from the charac-
ter vector strings.

verbose Logical; if TRUE, the progress bar is displayed when computing the distance
matrix. Default in FALSE, hence the bar is hidden.

maxdist Deprecated. Please use precision now.

Value

A character vector where similar string elements (values) are recoded into a new, single value. The
return value is of same length as strings, i.e. grouped elements appear multiple times, so the count
for each grouped string is still avaiable (see ’Examples’).

See Also

str_find

Examples

oldstring <- c("Hello", "Helo", "Hole", "Apple",
"Ape", "New", "Old", "System", "Systemic")

newstring <- group_str(oldstring)

see result
newstring

count for each groups
table(newstring)

print table to compare original and grouped string
frq(oldstring)
frq(newstring)

larger groups
newstring <- group_str(oldstring, precision = 3)
frq(oldstring)
frq(newstring)

be more strict with matching pairs
newstring <- group_str(oldstring, precision = 3, strict = TRUE)
frq(oldstring)
frq(newstring)

28 group_var

group_var Recode numeric variables into equal-ranged groups

Description

Recode numeric variables into equal ranged, grouped factors, i.e. a variable is cut into a smaller
number of groups, where each group has the same value range. group_labels() creates the related
value labels. group_var_if() and group_labels_if() are scoped variants of group_var() and
group_labels(), where grouping will be applied only to those variables that match the logical
condition of predicate.

Usage

group_var(
x,
...,
size = 5,
as.num = TRUE,
right.interval = FALSE,
n = 30,
append = TRUE,
suffix = "_gr"

)

group_var_if(
x,
predicate,
size = 5,
as.num = TRUE,
right.interval = FALSE,
n = 30,
append = TRUE,
suffix = "_gr"

)

group_labels(x, ..., size = 5, right.interval = FALSE, n = 30)

group_labels_if(x, predicate, size = 5, right.interval = FALSE, n = 30)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

../doc/design_philosophy.html

group_var 29

size Numeric; group-size, i.e. the range for grouping. By default, for each 5 cate-
gories of x a new group is defined, i.e. size = 5. Use size = "auto" to automat-
ically resize a variable into a maximum of 30 groups (which is the ggplot-default
grouping when plotting histograms). Use n to determine the amount of groups.

as.num Logical, if TRUE, return value will be numeric, not a factor.

right.interval Logical; if TRUE, grouping starts with the lower bound of size. See ’Details’.

n Sets the maximum number of groups that are defined when auto-grouping is on
(size = "auto"). Default is 30. If size is not set to "auto", this argument will
be ignored.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

suffix Indicates which suffix will be added to each dummy variable. Use "numeric"
to number dummy variables, e.g. x_1, x_2, x_3 etc. Use "label" to add value
label, e.g. x_low, x_mid, x_high. May be abbreviated.

predicate A predicate function to be applied to the columns. The variables for which
predicate returns TRUE are selected.

Details

If size is set to a specific value, the variable is recoded into several groups, where each group has
a maximum range of size. Hence, the amount of groups differ depending on the range of x.

If size = "auto", the variable is recoded into a maximum of n groups. Hence, independent from
the range of x, always the same amount of groups are created, so the range within each group differs
(depending on x’s range).

right.interval determins which boundary values to include when grouping is done. If TRUE,
grouping starts with the lower bound of size. For example, having a variable ranging from 50 to
80, groups cover the ranges from 50-54, 55-59, 60-64 etc. If FALSE (default), grouping starts with
the upper bound of size. In this case, groups cover the ranges from 46-50, 51-55, 56-60, 61-65
etc. Note: This will cover a range from 46-50 as first group, even if values from 46 to 49 are not
present. See ’Examples’.

If you want to split a variable into a certain amount of equal sized groups (instead of having groups
where values have all the same range), use the split_var function!

group_var() also works on grouped data frames (see group_by). In this case, grouping is ap-
plied to the subsets of variables in x. See ’Examples’.

Value

• For group_var(), a grouped variable, either as numeric or as factor (see paramter as.num).
If x is a data frame, only the grouped variables will be returned.

• For group_labels(), a string vector or a list of string vectors containing labels based on
the grouped categories of x, formatted as "from lower bound to upper bound", e.g. "10-19"
"20-29" "30-39" etc. See ’Examples’.

30 group_var

Note

Variable label attributes (see, for instance, set_label) are preserved. Usually you should use the
same values for size and right.interval in group_labels() as used in the group_var function
if you want matching labels for the related recoded variable.

See Also

split_var to split variables into equal sized groups, group_str for grouping string vectors or
rec_pattern and rec for another convenient way of recoding variables into smaller groups.

Examples

age <- abs(round(rnorm(100, 65, 20)))
age.grp <- group_var(age, size = 10)
hist(age)
hist(age.grp)

age.grpvar <- group_labels(age, size = 10)
table(age.grp)
print(age.grpvar)

histogram with EUROFAMCARE sample dataset
variable not grouped
library(sjlabelled)
data(efc)
hist(efc$e17age, main = get_label(efc$e17age))

bar plot with EUROFAMCARE sample dataset
grouped variable
ageGrp <- group_var(efc$e17age)
ageGrpLab <- group_labels(efc$e17age)
barplot(table(ageGrp), main = get_label(efc$e17age), names.arg = ageGrpLab)

within a pipe-chain
library(dplyr)
efc %>%

select(e17age, c12hour, c160age) %>%
group_var(size = 20)

create vector with values from 50 to 80
dummy <- round(runif(200, 50, 80))
labels with grouping starting at lower bound
group_labels(dummy)
labels with grouping startint at upper bound
group_labels(dummy, right.interval = TRUE)

works also with gouped data frames
mtcars %>%

group_var(disp, size = 4, append = FALSE) %>%
table()

mtcars %>%

has_na 31

group_by(cyl) %>%
group_var(disp, size = 4, append = FALSE) %>%
table()

has_na Check if variables or cases have missing / infinite values

Description

This functions checks if variables or observations in a data frame have NA, NaN or Inf values.

Usage

has_na(x, ..., by = c("col", "row"), out = c("table", "df", "index"))

incomplete_cases(x, ...)

complete_cases(x, ...)

complete_vars(x, ...)

incomplete_vars(x, ...)

Arguments

x A data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

by Whether to check column- or row-wise for missing and infinite values. If by =
"col", has_na() checks for NA/NaN/Inf in columns; If by = "row", has_na()
checks each row for these values.

out Output (return) format of the results. May be abbreviated.

Value

If x is a vector, returns TRUE if x has any missing or infinite values. If x is a data frame, returns
TRUE for each variable (if by = "col") or observation (if by = "row") that has any missing or infinite
values. If out = "table", results are returned as data frame, with column number, variable name
and label, and a logical vector indicating if a variable has missing values or not. However, it’s
printed in colors, with green rows indicating that a variable has no missings, while red rows indicate
the presence of missings or infinite values. If out = "index", a named vector is returned.

../doc/design_philosophy.html

32 is_crossed

Note

complete_cases() and incomplete_cases() are convenient shortcuts for has_na(by = "row",out
= "index"), where the first only returns case-id’s for all complete cases, and the latter only for non-
complete cases.

complete_vars() and incomplete_vars() are convenient shortcuts for has_na(by = "col",out
= "index"), and again only return those column-id’s for variables which are (in-)complete.

Examples

data(efc)
has_na(efc$e42dep)
has_na(efc, e42dep, tot_sc_e, c161sex)
has_na(efc)

has_na(efc, e42dep, tot_sc_e, c161sex, out = "index")
has_na(efc, out = "df")

has_na(efc, by = "row")
has_na(efc, e42dep, tot_sc_e, c161sex, by = "row", out = "index")
has_na(efc, by = "row", out = "df")

complete_cases(efc, e42dep, tot_sc_e, c161sex)
incomplete_cases(efc, e42dep, tot_sc_e, c161sex)
complete_vars(efc, e42dep, tot_sc_e, c161sex)
incomplete_vars(efc, e42dep, tot_sc_e, c161sex)

is_crossed Check whether two factors are crossed or nested

Description

These functions checks whether two factors are (fully) crossed or nested, i.e. if each level of
one factor occurs in combination with each level of the other factor (is_crossed()) resp. if
each category of the first factor co-occurs with only one category of the other (is_nested()).
is_cross_classified() checks if one factor level occurs in some, but not all levels of another
factor.

Usage

is_crossed(f1, f2)

is_nested(f1, f2)

is_cross_classified(f1, f2)

is_crossed 33

Arguments

f1 Numeric vector or factor.

f2 Numeric vector or factor.

Value

Logical. For is_crossed(), TRUE if factors are (fully) crossed, FALSE otherwise. For is_nested(),
TRUE if factors are nested, FALSE otherwise. For is_cross_classified(), TRUE, if one factor level
occurs in some, but not all levels of another factor.

Note

If factors are nested, a message is displayed to tell whether f1 is nested within f2 or vice versa.

References

Grace, K. The Difference Between Crossed and Nested Factors. (web)

Examples

crossed factors, each category of
x appears in each category of y
x <- c(1,4,3,2,3,2,1,4)
y <- c(1,1,1,2,2,1,2,2)
show distribution
table(x, y)
check if crossed
is_crossed(x, y)

not crossed factors
x <- c(1,4,3,2,3,2,1,4)
y <- c(1,1,1,2,1,1,2,2)
show distribution
table(x, y)
check if crossed
is_crossed(x, y)

nested factors, each category of
x appears in one category of y
x <- c(1,2,3,4,5,6,7,8,9)
y <- c(1,1,1,2,2,2,3,3,3)
show distribution
table(x, y)
check if nested
is_nested(x, y)
is_nested(y, x)

not nested factors
x <- c(1,2,3,4,5,6,7,8,9,1,2)
y <- c(1,1,1,2,2,2,3,3,3,2,3)

https://www.theanalysisfactor.com/the-difference-between-crossed-and-nested-factors/

34 is_empty

show distribution
table(x, y)
check if nested
is_nested(x, y)
is_nested(y, x)

also not fully crossed
is_crossed(x, y)

but partially crossed
is_cross_classified(x, y)

is_empty Check whether string, list or vector is empty

Description

This function checks whether a string or character vector (of length 1), a list or any vector (numeric,
atomic) is empty or not.

Usage

is_empty(x, first.only = TRUE, all.na.empty = TRUE)

Arguments

x String, character vector, list, data.frame or numeric vector or factor.

first.only Logical, if FALSE and x is a character vector, each element of x will be checked
if empty. If TRUE, only the first element of x will be checked.

all.na.empty Logical, if x is a vector with NA-values only, is_empty will return FALSE if
all.na.empty = FALSE, and will return TRUE if all.na.empty = TRUE (default).

Value

Logical, TRUE if x is a character vector or string and is empty, TRUE if x is a vector or list and of
length 0, FALSE otherwise.

Note

NULL- or NA-values are also considered as "empty" (see ’Examples’) and will return TRUE, unless
all.na.empty==FALSE.

is_even 35

Examples

is_empty("test")
is_empty("")
is_empty(NA)
is_empty(NULL)

string is not empty
is_empty(" ")

however, this trimmed string is
is_empty(trim(" "))

numeric vector
x <- 1
is_empty(x)
x <- x[-1]
is_empty(x)

check multiple elements of character vectors
is_empty(c("", "a"))
is_empty(c("", "a"), first.only = FALSE)

empty data frame
d <- data.frame()
is_empty(d)

empty list
is_empty(list(NULL))

NA vector
x <- rep(NA,5)
is_empty(x)
is_empty(x, all.na.empty = FALSE)

is_even Check whether value is even or odd

Description

Checks whether x is an even or odd number. Only accepts numeric vectors.

Usage

is_even(x)

is_odd(x)

Arguments

x Numeric vector or single numeric value, or a data frame or list with such vectors.

36 is_float

Value

is_even() returns TRUE for each even value of x, FALSE for odd values. is_odd() returns TRUE for
each odd value of x and FALSE for even values.

Examples

is_even(4)
is_even(5)
is_even(1:4)

is_odd(4)
is_odd(5)
is_odd(1:4)

is_float Check if a variable is of (non-integer) double type or a whole number

Description

is_float() checks whether an input vector or value is a numeric non-integer (double), depending
on fractional parts of the value(s). is_whole() does the opposite and checks whether an input
vector is a whole number (without fractional parts).

Usage

is_float(x)

is_whole(x)

Arguments

x A value, vector or data frame.

Value

For is_float(), TRUE if x is a floating value (non-integer double), FALSE otherwise (also returns
FALSE for character vectors and factors). For is_whole(), TRUE if x is a vector with whole numbers
only, FALSE otherwise (returns TRUE for character vectors and factors).

Examples

data(mtcars)
data(iris)

is.double(4)
is_float(4)
is_float(4.2)

is_num_fac 37

is_float(iris)

is_whole(4)
is_whole(4.2)
is_whole(mtcars)

is_num_fac Check whether a factor has numeric levels only

Description

is_num_fac() checks whether a factor has only numeric or any non-numeric factor levels, while
is_num_chr() checks whether a character vector has only numeric strings.

Usage

is_num_fac(x)

is_num_chr(x)

Arguments

x A factor for is_num_fac() and a character vector for is_num_chr()

Value

Logical, TRUE if factor has numeric factor levels only, or if character vector has numeric strings
only, FALSE otherwise.

Examples

numeric factor levels
f1 <- factor(c(NA, 1, 3, NA, 2, 4))
is_num_fac(f1)

not completeley numeric factor levels
f2 <- factor(c(NA, "C", 1, 3, "A", NA, 2, 4))
is_num_fac(f2)

not completeley numeric factor levels
f3 <- factor(c("Justus", "Bob", "Peter"))
is_num_fac(f3)

is_num_chr(c("a", "1"))
is_num_chr(c("2", "1"))

38 merge_imputations

merge_imputations Merges multiple imputed data frames into a single data frame

Description

This function merges multiple imputed data frames from mice::mids()-objects into a single data
frame by computing the mean or selecting the most likely imputed value.

Usage

merge_imputations(
dat,
imp,
ori = NULL,
summary = c("none", "dens", "hist", "sd"),
filter = NULL

)

Arguments

dat The data frame that was imputed and used as argument in the mice-function call.

imp The mice::mids()-object with the imputed data frames from dat.

ori Optional, if ori is specified, the imputed variables are appended to this data
frame; else, a new data frame with the imputed variables is returned.

summary After merging multiple imputed data, summary displays a graphical summary of
the "quality" of the merged values, compared to the original imputed values.

"dens" Creates a density plot, which shows the distribution of the mean of the
imputed values for each variable at each observation. The larger the areas
overlap, the better is the fit of the merged value compared to the imputed
value.

"hist" Similar to summary = "dens", however, mean and merged values are
shown as histogram. Bins should have almost equal height for both groups
(mean and merged).

"sd" Creates a dot plot, where data points indicate the standard deviation for all
imputed values (y-axis) at each merged value (x-axis) for all imputed vari-
ables. The higher the standard deviation, the less precise is the imputation,
and hence the merged value.

filter A character vector with variable names that should be plotted. All non-defined
variables will not be shown in the plot.

Details

This method merges multiple imputations of variables into a single variable by computing the
(rounded) mean of all imputed values of missing values. By this, each missing value is replaced by
those values that have been imputed the most times.

move_columns 39

imp must be a mids-object, which is returned by the mice()-function of the mice-package. merge_imputations()
than creates a data frame for each imputed variable, by combining all imputations (as returned by
the complete-function) of each variable, and computing the row means of this data frame. The
mean value is then rounded for integer values (and not for numerical values with fractional part),
which corresponds to the most frequent imputed value (mode) for a missing value. Missings in the
original variable are replaced by the most frequent imputed value.

Value

A data frame with (merged) imputed variables; or ori with appended imputed variables, if ori was
specified. If summary is included, returns a list with the data frame data with (merged) imputed
variables and some other summary information, including the plot as ggplot-object.

Note

Typically, further analyses are conducted on pooled results of multiple imputed data sets (see pool),
however, sometimes (in social sciences) it is also feasible to compute the mean or mode of multiple
imputed variables (see Burns et al. 2011).

References

Burns RA, Butterworth P, Kiely KM, Bielak AAM, Luszcz MA, Mitchell P, et al. 2011. Multiple
imputation was an efficient method for harmonizing the Mini-Mental State Examination with miss-
ing item-level data. Journal of Clinical Epidemiology;64:787-93 doi: 10.1016/j.jclinepi.2010.10.011

Examples

if (require("mice")) {
imp <- mice(nhanes)

return data frame with imputed variables
merge_imputations(nhanes, imp)

append imputed variables to original data frame
merge_imputations(nhanes, imp, nhanes)

show summary of quality of merging imputations
merge_imputations(nhanes, imp, summary = "dens", filter = c("chl", "hyp"))

}

move_columns Move columns to other positions in a data frame

Description

move_columns() moves one or more columns in a data frame to another position.

https://doi.org/10.1016/j.jclinepi.2010.10.011

40 move_columns

Usage

move_columns(data, ..., .before, .after)

Arguments

data A data frame.

... Unquoted names or character vector with names of variables that should be
move to another position. You may also use functions like : or tidyselect’s
select-helpers.

.before Optional, column name or numeric index of the position where col should be
moved to. If not missing, col is moved to the position before the column indi-
cated by .before.

.after Optional, column name or numeric index of the position where col should be
moved to. If not missing, col is moved to the position after the column indicated
by .after.

Value

data, with resorted columns.

Note

If neither .before nor .after are specified, the column is moved to the end of the data frame by
default. .before and .after are evaluated in a non-standard fashion, so you need quasi-quotation
when the value for .before or .after is a vector with the target-column value. See ’Examples’.

Examples

Not run:
data(iris)

iris %>%
move_columns(Sepal.Width, .after = "Species") %>%
head()

iris %>%
move_columns(Sepal.Width, .before = Sepal.Length) %>%
head()

iris %>%
move_columns(Species, .before = 1) %>%
head()

iris %>%
move_columns("Species", "Petal.Length", .after = 1) %>%
head()

library(dplyr)
iris %>%

move_columns(contains("Width"), .after = "Species") %>%

numeric_to_factor 41

head()
End(Not run)

using quasi-quotation
target <- "Petal.Width"
does not work, column is moved to the end
iris %>%

move_columns(Sepal.Width, .after = target) %>%
head()

using !! works
iris %>%

move_columns(Sepal.Width, .after = !!target) %>%
head()

numeric_to_factor Convert numeric vectors into factors associated value labels

Description

This function converts numeric variables into factors, and uses associated value labels as factor
levels.

Usage

numeric_to_factor(x, n = 4)

Arguments

x A data frame.

n Numeric, indicating the maximum amount of unique values in x to be considered
as "factor". Variables with more unique values than n are not converted to factor.

Details

If x is a labelled vector, associated value labels will be used as level. Else, the numeric vector is
simply coerced using as.factor().

Value

x, with numeric values with a maximum of n unique values being converted to factors.

Examples

library(dplyr)
data(efc)
efc %>%

select(e42dep, e16sex, c12hour, c160age, c172code) %>%
numeric_to_factor()

42 rec

rec Recode variables

Description

rec() recodes values of variables, where variable selection is based on variable names or col-
umn position, or on select helpers (see documentation on ...). rec_if() is a scoped variant of
rec(), where recoding will be applied only to those variables that match the logical condition of
predicate.

Usage

rec(
x,
...,
rec,
as.num = TRUE,
var.label = NULL,
val.labels = NULL,
append = TRUE,
suffix = "_r",
to.factor = !as.num

)

rec_if(
x,
predicate,
rec,
as.num = TRUE,
var.label = NULL,
val.labels = NULL,
append = TRUE,
suffix = "_r",
to.factor = !as.num

)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

rec String with recode pairs of old and new values. See ’Details’ for examples.
rec_pattern is a convenient function to create recode strings for grouping vari-
ables.

../doc/design_philosophy.html

rec 43

as.num Logical, if TRUE, return value will be numeric, not a factor.

var.label Optional string, to set variable label attribute for the returned variable (see vi-
gnette Labelled Data and the sjlabelled-Package). If NULL (default), variable
label attribute of x will be used (if present). If empty, variable label attributes
will be removed.

val.labels Optional character vector, to set value label attributes of recoded variable (see
vignette Labelled Data and the sjlabelled-Package). If NULL (default), no value
labels will be set. Value labels can also be directly defined in the rec-syntax,
see ’Details’.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

suffix String value, will be appended to variable (column) names of x, if x is a data
frame. If x is not a data frame, this argument will be ignored. The default value
to suffix column names in a data frame depends on the function call:

• recoded variables (rec()) will be suffixed with "_r"

• recoded variables (recode_to()) will be suffixed with "_r0"

• dichotomized variables (dicho()) will be suffixed with "_d"

• grouped variables (split_var()) will be suffixed with "_g"

• grouped variables (group_var()) will be suffixed with "_gr"

• standardized variables (std()) will be suffixed with "_z"

• centered variables (center()) will be suffixed with "_c"

If suffix = "" and append = TRUE, existing variables that have been recoded/transformed
will be overwritten.

to.factor Logical, alias for as.num. If TRUE, return value will be a factor, not numeric.

predicate A predicate function to be applied to the columns. The variables for which
predicate returns TRUE are selected.

Details

The rec string has following syntax:

recode pairs each recode pair has to be separated by a ;, e.g. rec = "1=1; 2=4; 3=2; 4=3"

multiple values multiple old values that should be recoded into a new single value may be sepa-
rated with comma, e.g. "1,2=1; 3,4=2"

value range a value range is indicated by a colon, e.g. "1:4=1; 5:8=2" (recodes all values from 1
to 4 into 1, and from 5 to 8 into 2)

value range for doubles for double vectors (with fractional part), all values within the specified
range are recoded; e.g. 1:2.5=1;2.6:3=2 recodes 1 to 2.5 into 1 and 2.6 to 3 into 2, but 2.55
would not be recoded (since it’s not included in any of the specified ranges)

"min" and "max" minimum and maximum values are indicates by min (or lo) and max (or hi), e.g.
"min:4=1; 5:max=2" (recodes all values from minimum values of x to 4 into 1, and from 5 to
maximum values of x into 2)

"else" all other values, which have not been specified yet, are indicated by else, e.g. "3=1; 1=2;
else=3" (recodes 3 into 1, 1 into 2 and all other values into 3)

https://cran.r-project.org/package=sjlabelled/vignettes/intro_sjlabelled.html
https://cran.r-project.org/package=sjlabelled/vignettes/intro_sjlabelled.html

44 rec

"copy" the "else"-token can be combined with copy, indicating that all remaining, not yet recoded
values should stay the same (are copied from the original value), e.g. "3=1; 1=2; else=copy"
(recodes 3 into 1, 1 into 2 and all other values like 2, 4 or 5 etc. will not be recoded, but copied,
see ’Examples’)

NA’s NA values are allowed both as old and new value, e.g. "NA=1; 3:5=NA" (recodes all NA into
1, and all values from 3 to 5 into NA in the new variable)

"rev" "rev" is a special token that reverses the value order (see ’Examples’)

direct value labelling value labels for new values can be assigned inside the recode pattern by
writing the value label in square brackets after defining the new value in a recode pair, e.g.
"15:30=1 [young aged]; 31:55=2 [middle aged]; 56:max=3 [old aged]". See ’Examples’.

Value

x with recoded categories. If x is a data frame, for append = TRUE, x including the recoded variables
as new columns is returned; if append = FALSE, only the recoded variables will be returned. If
append = TRUE and suffix = "", recoded variables will replace (overwrite) existing variables.

Note

Please note following behaviours of the function:

• the "else"-token should always be the last argument in the rec-string.

• Non-matching values will be set to NA, unless captured by the "else"-token.

• Tagged NA values (see tagged_na) and their value labels will be preserved when copying NA
values to the recoded vector with "else=copy".

• Variable label attributes (see, for instance, get_label) are preserved (unless changed via
var.label-argument), however, value label attributes are removed (except for "rev", where
present value labels will be automatically reversed as well). Use val.labels-argument to add
labels for recoded values.

• If x is a data frame, all variables should have the same categories resp. value range (else, see
second bullet, NAs are produced).

See Also

set_na for setting NA values, replace_na to replace NA’s with specific value, recode_to for re-
shifting value ranges and ref_lvl to change the reference level of (numeric) factors.

Examples

data(efc)
table(efc$e42dep, useNA = "always")

replace NA with 5
table(rec(efc$e42dep, rec = "1=1;2=2;3=3;4=4;NA=5"), useNA = "always")

recode 1 to 2 into 1 and 3 to 4 into 2
table(rec(efc$e42dep, rec = "1,2=1; 3,4=2"), useNA = "always")

rec 45

keep value labels. variable label is automatically preserved
library(dplyr)
efc %>%

select(e42dep) %>%
rec(rec = "1,2=1; 3,4=2",

val.labels = c("low dependency", "high dependency")) %>%
frq()

works with mutate
efc %>%

select(e42dep, e17age) %>%
mutate(dependency_rev = rec(e42dep, rec = "rev")) %>%
head()

recode 1 to 3 into 1 and 4 into 2
table(rec(efc$e42dep, rec = "min:3=1; 4=2"), useNA = "always")

recode 2 to 1 and all others into 2
table(rec(efc$e42dep, rec = "2=1; else=2"), useNA = "always")

reverse value order
table(rec(efc$e42dep, rec = "rev"), useNA = "always")

recode only selected values, copy remaining
table(efc$e15relat)
table(rec(efc$e15relat, rec = "1,2,4=1; else=copy"))

recode variables with same category in a data frame
head(efc[, 6:9])
head(rec(efc[, 6:9], rec = "1=10;2=20;3=30;4=40"))

recode multiple variables and set value labels via recode-syntax
dummy <- rec(

efc, c160age, e17age,
rec = "15:30=1 [young]; 31:55=2 [middle]; 56:max=3 [old]",
append = FALSE

)
frq(dummy)

recode variables with same value-range
lapply(

rec(
efc, c82cop1, c83cop2, c84cop3,
rec = "1,2=1; NA=9; else=copy",
append = FALSE

),
table,
useNA = "always"

)

recode character vector
dummy <- c("M", "F", "F", "X")
rec(dummy, rec = "M=Male; F=Female; X=Refused")

46 recode_to

recode numeric to character
rec(efc$e42dep, rec = "1=first;2=2nd;3=third;else=hi") %>% head()

recode non-numeric factors
data(iris)
table(rec(iris, Species, rec = "setosa=huhu; else=copy", append = FALSE))

recode floating points
table(rec(

iris, Sepal.Length, rec = "lo:5=1;5.01:6.5=2;6.501:max=3", append = FALSE
))

preserve tagged NAs
if (require("haven")) {

x <- labelled(c(1:3, tagged_na("a", "c", "z"), 4:1),
c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"),

"Refused" = tagged_na("a"), "Not home" = tagged_na("z")))
get current value labels
x
recode 2 into 5; Values of tagged NAs are preserved
rec(x, rec = "2=5;else=copy")

}

use select-helpers from dplyr-package
out <- rec(

efc, contains("cop"), c161sex:c175empl,
rec = "0,1=0; else=1",
append = FALSE

)
head(out)

recode only variables that have a value range from 1-4
p <- function(x) min(x, na.rm = TRUE) > 0 && max(x, na.rm = TRUE) < 5
out <- rec_if(efc, predicate = p, rec = "1:3=1;4=2;else=copy")
head(out)

recode_to Recode variable categories into new values

Description

Recodes (or "renumbers") the categories of variables into new category values, beginning with
the lowest value specified by lowest. Useful when recoding dummy variables with 1/2 values
to 0/1 values, or recoding scales from 1-4 to 0-3 etc. recode_to_if() is a scoped variant of
recode_to(), where recoding will be applied only to those variables that match the logical condi-
tion of predicate.

recode_to 47

Usage

recode_to(x, ..., lowest = 0, highest = -1, append = TRUE, suffix = "_r0")

recode_to_if(
x,
predicate,
lowest = 0,
highest = -1,
append = TRUE,
suffix = "_r0"

)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

lowest Indicating the lowest category value for recoding. Default is 0, so the new vari-
able starts with value 0.

highest If specified and greater than lowest, all category values larger than highest
will be set to NA. Default is -1, i.e. this argument is ignored and no NA’s will be
produced.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

suffix Indicates which suffix will be added to each dummy variable. Use "numeric"
to number dummy variables, e.g. x_1, x_2, x_3 etc. Use "label" to add value
label, e.g. x_low, x_mid, x_high. May be abbreviated.

predicate A predicate function to be applied to the columns. The variables for which
predicate returns TRUE are selected.

Value

x with recoded category values, where lowest indicates the lowest value; If x is a data frame, for
append = TRUE, x including the recoded variables as new columns is returned; if append = FALSE,
only the recoded variables will be returned. If append = TRUE and suffix = "", recoded variables
will replace (overwrite) existing variables.

Note

Value and variable label attributes are preserved.

See Also

rec for general recoding of variables and set_na for setting NA values.

../doc/design_philosophy.html

48 rec_pattern

Examples

recode 1-4 to 0-3
dummy <- sample(1:4, 10, replace = TRUE)
recode_to(dummy)

recode 3-6 to 0-3
note that numeric type is returned
dummy <- as.factor(3:6)
recode_to(dummy)

lowest value starting with 1
dummy <- sample(11:15, 10, replace = TRUE)
recode_to(dummy, lowest = 1)

lowest value starting with 1, highest with 3
all others set to NA
dummy <- sample(11:15, 10, replace = TRUE)
recode_to(dummy, lowest = 1, highest = 3)

recode multiple variables at once
data(efc)
recode_to(efc, c82cop1, c83cop2, c84cop3, append = FALSE)

library(dplyr)
efc %>%

select(c82cop1, c83cop2, c84cop3) %>%
mutate(
c82new = recode_to(c83cop2, lowest = 5),
c83new = recode_to(c84cop3, lowest = 3)

) %>%
head()

rec_pattern Create recode pattern for ’rec’ function

Description

Convenient function to create a recode pattern for the rec function, which recodes (numeric) vectors
into smaller groups.

Usage

rec_pattern(from, to, width = 5, other = NULL)

Arguments

from Minimum value that should be recoded.

ref_lvl 49

to Maximum value that should be recoded.

width Numeric, indicating the range of each group.

other String token, indicating how to deal with all other values that have not been
captured by the recode pattern. See ’Details’ on the else-token in rec.

Value

A list with two values:

pattern string pattern that can be used as rec argument for the rec-function.

labels the associated values labels that can be used with set_labels.

See Also

group_var for recoding variables into smaller groups, and group_labels to create the asssociated
value labels.

Examples

rp <- rec_pattern(1, 100)
rp

sample data, inspect age of carers
data(efc)
table(efc$c160age, exclude = NULL)
table(rec(efc$c160age, rec = rp$pattern), exclude = NULL)

recode carers age into groups of width 5
x <- rec(

efc$c160age,
rec = rp$pattern,
val.labels = rp$labels

)
watch result
frq(x)

ref_lvl Change reference level of (numeric) factors

Description

Changes the reference level of (numeric) factor.

Usage

ref_lvl(x, ..., lvl = NULL)

50 ref_lvl

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

lvl Either numeric, indicating the new reference level, or a string, indicating the
value label from the new reference level. If x is a factor with non-numeric factor
levels, relevel(x,ref = lvl) is returned. See ’Examples’.

Details

Unlike relevel, this function behaves differently for factor with numeric factor levels or for la-
belled data, i.e. factors with value labels for the values. ref_lvl() changes the reference level by
recoding the factor’s values using the rec function. Hence, all values from lowest up to the refer-
ence level indicated by lvl are recoded, with lvl starting as lowest factor value. For factors with
non-numeric factor levels, the function simply returns relevel(x,ref = lvl). See ’Examples’.

Value

x with new reference level. If x is a data frame, the complete data frame x will be returned, where
variables specified in ... will be re-leveled; if ... is not specified, applies to all variables in the
data frame.

See Also

to_factor to convert numeric vectors into factors; rec to recode variables.

Examples

data(efc)
x <- to_factor(efc$e42dep)
str(x)
frq(x)

see column "val" in frq()-output, which indicates
how values/labels were recoded after using ref_lvl()
x <- ref_lvl(x, lvl = 3)
str(x)
frq(x)

library(dplyr)
dat <- efc %>%

select(c82cop1, c83cop2, c84cop3) %>%
to_factor()

frq(dat)
ref_lvl(dat, c82cop1, c83cop2, lvl = 2) %>% frq()

compare numeric and string value for "lvl"-argument

../doc/design_philosophy.html

remove_var 51

x <- to_factor(efc$e42dep)
frq(x)
ref_lvl(x, lvl = 2) %>% frq()
ref_lvl(x, lvl = "slightly dependent") %>% frq()

factors with non-numeric factor levels
data(iris)
levels(iris$Species)
levels(ref_lvl(iris$Species, lvl = 3))
levels(ref_lvl(iris$Species, lvl = "versicolor"))

remove_var Remove variables from a data frame

Description

This function removes variables from a data frame, and is intended to use within a pipe-workflow.
remove_cols() is an alias for remove_var().

Usage

remove_var(x, ...)

remove_cols(x, ...)

Arguments

x A vector or data frame.

... Character vector with variable names, or unquoted names of variables that should
be removed from the data frame. You may also use functions like : or tidyse-
lect’s select-helpers.

Value

x, with variables specified in ... removed.

Examples

mtcars %>% remove_var("disp", "cyl")
mtcars %>% remove_var(c("wt", "vs"))
mtcars %>% remove_var(drat:am)

52 replace_na

replace_na Replace NA with specific values

Description

This function replaces (tagged) NA’s of a variable, data frame or list of variables with value.

Usage

replace_na(x, ..., value, na.label = NULL, tagged.na = NULL)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

value Value that will replace the NA’s.

na.label Optional character vector, used to label the the former NA-value (i.e. adding a
labels attribute for value to x).

tagged.na Optional single character, specifies a tagged_na value that will be replaced by
value. Herewith it is possible to replace only specific NA values of x.

Details

While regular NA values can only be completely replaced with a single value, tagged_na allows to
differentiate between different qualitative values of NAs. Tagged NAs work exactly like regular R
missing values except that they store one additional byte of information: a tag, which is usually a
letter ("a" to "z") or character number ("0" to "9"). Therewith it is possible to replace only specific
NA values, while other NA values are preserved.

Value

x, where NA’s are replaced with value. If x is a data frame, the complete data frame x will be
returned, with replaced NA’s for variables specified in ...; if ... is not specified, applies to all
variables in the data frame.

Note

Value and variable label attributes are preserved.

See Also

set_na for setting NA values, rec for general recoding of variables and recode_to for re-shifting
value ranges.

../doc/design_philosophy.html

replace_na 53

Examples

library(sjlabelled)
data(efc)
table(efc$e42dep, useNA = "always")
table(replace_na(efc$e42dep, value = 99), useNA = "always")

the original labels
get_labels(replace_na(efc$e42dep, value = 99))
NA becomes "99", and is labelled as "former NA"
get_labels(

replace_na(efc$e42dep, value = 99, na.label = "former NA"),
values = "p"

)

dummy <- data.frame(
v1 = efc$c82cop1,
v2 = efc$c83cop2,
v3 = efc$c84cop3

)
show original distribution
lapply(dummy, table, useNA = "always")
show variables, NA's replaced with 99
lapply(replace_na(dummy, v2, v3, value = 99), table, useNA = "always")

if (require("haven")) {
x <- labelled(c(1:3, tagged_na("a", "c", "z"), 4:1),

c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"),
"Refused" = tagged_na("a"), "Not home" = tagged_na("z")))

get current NA values
x
get_na(x)

replace only the NA, which is tagged as NA(c)
replace_na(x, value = 2, tagged.na = "c")
get_na(replace_na(x, value = 2, tagged.na = "c"))

table(x)
table(replace_na(x, value = 2, tagged.na = "c"))

tagged NA also works for non-labelled class
init vector
x <- c(1, 2, 3, 4)
set values 2 and 3 as tagged NA
x <- set_na(x, na = c(2, 3), as.tag = TRUE)
see result
x
now replace only NA tagged with 2 with value 5
replace_na(x, value = 5, tagged.na = "2")

}

54 reshape_longer

reshape_longer Reshape data into long format

Description

reshape_longer() reshapes one or more columns from wide into long format.

Usage

reshape_longer(
x,
columns = colnames(x),
names.to = "key",
values.to = "value",
labels = NULL,
numeric.timevar = FALSE,
id = ".id"

)

Arguments

x A data frame.

columns Names of variables (as character vector), or column index of variables, that
should be reshaped. If multiple column groups should be reshaped, use a list
of vectors (see ’Examples’).

names.to Character vector with name(s) of key column(s) to create in output. Either one
name per column group that should be gathered, or a single string. In the latter
case, this name will be used as key column, and only one key column is created.

values.to Character vector with names of value columns (variable names) to create in
output. Must be of same length as number of column groups that should be
gathered. See ’Examples’.

labels Character vector of same length as values.to with variable labels for the new
variables created from gathered columns. See ’Examples’.

numeric.timevar

Logical, if TRUE, the values of the names.to column will be recoded to numeric
values, in sequential ascending order.

id Name of ID-variable.

Value

A reshaped data frame.

See Also

to_long

reshape_longer 55

Examples

Reshape one column group into long format
mydat <- data.frame(

age = c(20, 30, 40),
sex = c("Female", "Male", "Male"),
score_t1 = c(30, 35, 32),
score_t2 = c(33, 34, 37),
score_t3 = c(36, 35, 38)

)

reshape_longer(
mydat,
columns = c("score_t1", "score_t2", "score_t3"),
names.to = "time",
values.to = "score"

)

Reshape multiple column groups into long format
mydat <- data.frame(

age = c(20, 30, 40),
sex = c("Female", "Male", "Male"),
score_t1 = c(30, 35, 32),
score_t2 = c(33, 34, 37),
score_t3 = c(36, 35, 38),
speed_t1 = c(2, 3, 1),
speed_t2 = c(3, 4, 5),
speed_t3 = c(1, 8, 6)

)

reshape_longer(
mydat,
columns = list(
c("score_t1", "score_t2", "score_t3"),
c("speed_t1", "speed_t2", "speed_t3")

),
names.to = "time",
values.to = c("score", "speed")

)

or ...
reshape_longer(

mydat,
list(3:5, 6:8),
names.to = "time",
values.to = c("score", "speed")

)

gather multiple columns, label columns
x <- reshape_longer(

mydat,
list(3:5, 6:8),

56 rotate_df

names.to = "time",
values.to = c("score", "speed"),
labels = c("Test Score", "Time needed to finish")

)

library(sjlabelled)
str(x$score)
get_label(x$speed)

rotate_df Rotate a data frame

Description

This function rotates a data frame, i.e. columns become rows and vice versa.

Usage

rotate_df(x, rn = NULL, cn = FALSE)

Arguments

x A data frame.

rn Character vector (optional). If not NULL, the data frame’s rownames will be
added as (first) column to the output, with rn being the name of this column.

cn Logical (optional), if TRUE, the values of the first column in x will be used as
column names in the rotated data frame.

Value

A (rotated) data frame.

Examples

x <- mtcars[1:3, 1:4]
rotate_df(x)
rotate_df(x, rn = "property")

use values in 1. column as column name
rotate_df(x, cn = TRUE)
rotate_df(x, rn = "property", cn = TRUE)

also works on list-results
library(purrr)

dat <- mtcars[1:3, 1:4]
tmp <- purrr::map(dat, function(x) {

sdev <- stats::sd(x, na.rm = TRUE)
ulsdev <- mean(x, na.rm = TRUE) + c(-sdev, sdev)

round_num 57

names(ulsdev) <- c("lower_sd", "upper_sd")
ulsdev

})
tmp
as.data.frame(tmp)
rotate_df(tmp)

tmp <- purrr::map_df(dat, function(x) {
sdev <- stats::sd(x, na.rm = TRUE)
ulsdev <- mean(x, na.rm = TRUE) + c(-sdev, sdev)
names(ulsdev) <- c("lower_sd", "upper_sd")
ulsdev

})
tmp
rotate_df(tmp)

round_num Round numeric variables in a data frame

Description

round_num() rounds numeric variables in a data frame that also contains non-numeric variables.
Non-numeric variables are ignored.

Usage

round_num(x, digits = 0)

Arguments

x A vector or data frame.

digits Numeric, number of decimals to round to.

Value

x with all numeric variables rounded.

Examples

data(iris)
round_num(iris)

58 row_count

row_count Count row or column indices

Description

row_count() mimics base R’s rowSums(), with sums for a specific value indicated by count.
Hence, it is equivalent to rowSums(x == count,na.rm = TRUE). However, this function is designed
to work nicely within a pipe-workflow and allows select-helpers for selecting variables and the re-
turn value is always a data frame (with one variable).

col_count() does the same for columns. The return value is a data frame with one row (the
column counts) and the same number of columns as x.

Usage

row_count(x, ..., count, var = "rowcount", append = TRUE)

col_count(x, ..., count, var = "colcount", append = TRUE)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

count The value for which the row or column sum should be computed. May be a
numeric value, a character string (for factors or character vectors), NA, Inf or
NULL to count missing or infinite values, or null-values.

var Name of new the variable with the row or column counts.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

Value

For row_count(), a data frame with one variable: the sum of count appearing in each row of x; for
col_count(), a data frame with one row and the same number of variables as in x: each variable
holds the sum of count appearing in each variable of x. If append = TRUE, x including this variable
will be returned.

Examples

dat <- data.frame(
c1 = c(1, 2, 3, 1, 3, NA),
c2 = c(3, 2, 1, 2, NA, 3),
c3 = c(1, 1, 2, 1, 3, NA),
c4 = c(1, 1, 3, 2, 1, 2)

../doc/design_philosophy.html

row_sums 59

)

row_count(dat, count = 1, append = FALSE)
row_count(dat, count = NA, append = FALSE)
row_count(dat, c1:c3, count = 2, append = TRUE)

col_count(dat, count = 1, append = FALSE)
col_count(dat, count = NA, append = FALSE)
col_count(dat, c1:c3, count = 2, append = TRUE)

row_sums Row sums and means for data frames

Description

row_sums() and row_means() compute row sums or means for at least n valid values per row. The
functions are designed to work nicely within a pipe-workflow and allow select-helpers for selecting
variables.

Usage

row_sums(x, ...)

Default S3 method:
row_sums(x, ..., n, var = "rowsums", append = TRUE)

S3 method for class 'mids'
row_sums(x, ..., var = "rowsums", append = TRUE)

row_means(x, ...)

total_mean(x, ...)

Default S3 method:
row_means(x, ..., n, var = "rowmeans", append = TRUE)

S3 method for class 'mids'
row_means(x, ..., var = "rowmeans", append = TRUE)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

../doc/design_philosophy.html

60 row_sums

n May either be

• a numeric value that indicates the amount of valid values per row to calcu-
late the row mean or sum;

• a value between 0 and 1, indicating a proportion of valid values per row to
calculate the row mean or sum (see ’Details’).

• or Inf. If n = Inf, all values per row must be non-missing to compute row
mean or sum.

If a row’s sum of valid (i.e. non-NA) values is less than n, NA will be returned as
value for the row mean or sum.

var Name of new the variable with the row sums or means.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

Details

For n, must be a numeric value from 0 to ncol(x). If a row in x has at least n non-missing values,
the row mean or sum is returned. If n is a non-integer value from 0 to 1, n is considered to indicate
the proportion of necessary non-missing values per row. E.g., if n = .75, a row must have at least
ncol(x) * n non-missing values for the row mean or sum to be calculated. See ’Examples’.

Value

For row_sums(), a data frame with a new variable: the row sums from x; for row_means(), a
data frame with a new variable: the row means from x. If append = FALSE, only the new variable
with row sums resp. row means is returned. total_mean() returns the mean of all values from all
specified columns in a data frame.

Examples

data(efc)
efc %>% row_sums(c82cop1:c90cop9, n = 3, append = FALSE)

library(dplyr)
row_sums(efc, contains("cop"), n = 2, append = FALSE)

dat <- data.frame(
c1 = c(1,2,NA,4),
c2 = c(NA,2,NA,5),
c3 = c(NA,4,NA,NA),
c4 = c(2,3,7,8),
c5 = c(1,7,5,3)

)
dat

row_means(dat, n = 4)
row_sums(dat, n = 4)

row_means(dat, c1:c4, n = 4)
at least 40% non-missing

seq_col 61

row_means(dat, c1:c4, n = .4)
row_sums(dat, c1:c4, n = .4)

total mean of all values in the data frame
total_mean(dat)

create sum-score of COPE-Index, and append to data
efc %>%

select(c82cop1:c90cop9) %>%
row_sums(n = 1)

if data frame has only one column, this column is returned
row_sums(dat[, 1, drop = FALSE], n = 0)

seq_col Sequence generation for column or row counts of data frames

Description

seq_col(x) is a convenient wrapper for seq_len(ncol(x)), while seq_row(x) is a convenient
wrapper for seq_len(nrow(x)).

Usage

seq_col(x)

seq_row(x)

Arguments

x A data frame.

Value

A numeric sequence from 1 to number of columns or rows.

Examples

data(iris)
seq_col(iris)
seq_row(iris)

62 set_na_if

set_na_if Replace specific values in vector with NA

Description

set_na_if() is a scoped variant of set_na, where values will be replaced only with NA’s for those
variables that match the logical condition of predicate.

Usage

set_na_if(x, predicate, na, drop.levels = TRUE, as.tag = FALSE)

Arguments

x A vector or data frame.

predicate A predicate function to be applied to the columns. The variables for which
predicate returns TRUE are selected.

na Numeric vector with values that should be replaced with NA values, or a char-
acter vector if values of factors or character vectors should be replaced. For
labelled vectors, may also be the name of a value label. In this case, the associ-
ated values for the value labels in each vector will be replaced with NA. na can
also be a named vector. If as.tag = FALSE, values will be replaced only in those
variables that are indicated by the value names (see ’Examples’).

drop.levels Logical, if TRUE, factor levels of values that have been replaced with NA are
dropped. See ’Examples’.

as.tag Logical, if TRUE, values in x will be replaced by tagged_na, else by usual NA
values. Use a named vector to assign the value label to the tagged NA value (see
’Examples’).

Value

x, with all values in na being replaced by NA. If x is a data frame, the complete data frame x will be
returned, with NA’s set for variables specified in ...; if ... is not specified, applies to all variables
in the data frame.

See Also

replace_na to replace NA’s with specific values, rec for general recoding of variables and recode_to
for re-shifting value ranges. See get_na to get values of missing values in labelled vectors.

Examples

dummy <- data.frame(var1 = sample(1:8, 100, replace = TRUE),
var2 = sample(1:10, 100, replace = TRUE),
var3 = sample(1:6, 100, replace = TRUE))

p <- function(x) max(x, na.rm = TRUE) > 7

shorten_string 63

tmp <- set_na_if(dummy, predicate = p, na = 8:9)
head(tmp)

shorten_string Shorten character strings

Description

This function shortens strings that are longer than max.length chars, without cropping words.

Usage

shorten_string(s, max.length = NULL, abbr = "...")

Arguments

s A string.

max.length Maximum length of chars for the string.

abbr String that will be used as suffix, if s was shortened.

Details

If the string length defined in max.length happens to be inside a word, this word is removed from
the returned string (see ’Examples’), so the returned string has a maximum length of max.length,
but might be shorter.

Value

A shortened string.

Examples

s <- "This can be considered as very long string!"

string is shorter than max.length, so returned as is
shorten_string(s, 60)

string is shortened to as many words that result in
a string of maximum 20 chars
shorten_string(s, 20)

string including "considered" is exactly of length 22 chars
shorten_string(s, 22)

64 split_var

split_var Split numeric variables into smaller groups

Description

Recode numeric variables into equal sized groups, i.e. a variable is cut into a smaller number of
groups at specific cut points. split_var_if() is a scoped variant of split_var(), where trans-
formation will be applied only to those variables that match the logical condition of predicate.

Usage

split_var(
x,
...,
n,
as.num = FALSE,
val.labels = NULL,
var.label = NULL,
inclusive = FALSE,
append = TRUE,
suffix = "_g"

)

split_var_if(
x,
predicate,
n,
as.num = FALSE,
val.labels = NULL,
var.label = NULL,
inclusive = FALSE,
append = TRUE,
suffix = "_g"

)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

n The new number of groups that x should be split into.

as.num Logical, if TRUE, return value will be numeric, not a factor.

../doc/design_philosophy.html

split_var 65

val.labels Optional character vector, to set value label attributes of recoded variable (see
vignette Labelled Data and the sjlabelled-Package). If NULL (default), no value
labels will be set. Value labels can also be directly defined in the rec-syntax,
see ’Details’.

var.label Optional string, to set variable label attribute for the returned variable (see vi-
gnette Labelled Data and the sjlabelled-Package). If NULL (default), variable
label attribute of x will be used (if present). If empty, variable label attributes
will be removed.

inclusive Logical; if TRUE, cut point value are included in the preceding group. This may
be necessary if cutting a vector into groups does not define proper ("equal sized")
group sizes. See ’Note’ and ’Examples’.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

suffix Indicates which suffix will be added to each dummy variable. Use "numeric"
to number dummy variables, e.g. x_1, x_2, x_3 etc. Use "label" to add value
label, e.g. x_low, x_mid, x_high. May be abbreviated.

predicate A predicate function to be applied to the columns. The variables for which
predicate returns TRUE are selected.

Details

split_var() splits a variable into equal sized groups, where the amount of groups depends on the
n-argument. Thus, this functions cuts a variable into groups at the specified quantiles.

By contrast, group_var recodes a variable into groups, where groups have the same value range
(e.g., from 1-5, 6-10, 11-15 etc.).

split_var() also works on grouped data frames (see group_by). In this case, splitting is applied
to the subsets of variables in x. See ’Examples’.

Value

A grouped variable with equal sized groups. If x is a data frame, for append = TRUE, x including the
grouped variables as new columns is returned; if append = FALSE, only the grouped variables will
be returned. If append = TRUE and suffix = "", recoded variables will replace (overwrite) existing
variables.

Note

In case a vector has only few number of unique values, splitting into equal sized groups may fail.
In this case, use the inclusive-argument to shift a value at the cut point into the lower, preceeding
group to get equal sized groups. See ’Examples’.

See Also

group_var to group variables into equal ranged groups, or rec to recode variables.

https://cran.r-project.org/package=sjlabelled/vignettes/intro_sjlabelled.html
https://cran.r-project.org/package=sjlabelled/vignettes/intro_sjlabelled.html

66 spread_coef

Examples

data(efc)
non-grouped
table(efc$neg_c_7)

split into 3 groups
table(split_var(efc$neg_c_7, n = 3))

split multiple variables into 3 groups
split_var(efc, neg_c_7, pos_v_4, e17age, n = 3, append = FALSE)
frq(split_var(efc, neg_c_7, pos_v_4, e17age, n = 3, append = FALSE))

original
table(efc$e42dep)

two groups, non-inclusive cut-point
vector split leads to unequal group sizes
table(split_var(efc$e42dep, n = 2))

two groups, inclusive cut-point
group sizes are equal
table(split_var(efc$e42dep, n = 2, inclusive = TRUE))

Unlike dplyr's ntile(), split_var() never splits a value
into two different categories, i.e. you always get a clean
separation of original categories
library(dplyr)

x <- dplyr::ntile(efc$neg_c_7, n = 3)
table(efc$neg_c_7, x)

x <- split_var(efc$neg_c_7, n = 3)
table(efc$neg_c_7, x)

works also with gouped data frames
mtcars %>%

split_var(disp, n = 3, append = FALSE) %>%
table()

mtcars %>%
group_by(cyl) %>%
split_var(disp, n = 3, append = FALSE) %>%
table()

spread_coef Spread model coefficients of list-variables into columns

Description

This function extracts coefficients (and standard error and p-values) of fitted model objects from
(nested) data frames, which are saved in a list-variable, and spreads the coefficients into new

spread_coef 67

colummns.

Usage

spread_coef(data, model.column, model.term, se, p.val, append = TRUE)

Arguments

data A (nested) data frame with a list-variable that contains fitted model objects (see
’Details’).

model.column Name or index of the list-variable that contains the fitted model objects.

model.term Optional, name of a model term. If specified, only this model term (including
p-value) will be extracted from each model and added as new column.

se Logical, if TRUE, standard errors for estimates will also be extracted.

p.val Logical, if TRUE, p-values for estimates will also be extracted.

append Logical, if TRUE (default), this function returns data with new columns for the
model coefficients; else, a new data frame with model coefficients only are re-
turned.

Details

This function requires a (nested) data frame (e.g. created by the nest-function of the tidyr-
package), where several fitted models are saved in a list-variable (see ’Examples’). Since nested
data frames with fitted models stored as list-variable are typically fit with an identical formula, all
models have the same dependent and independent variables and only differ in their subsets of data.
The function then extracts all coefficients from each model and saves each estimate in a new col-
umn. The result is a data frame, where each row is a model with each model’s coefficients in an
own column.

Value

A data frame with columns for each coefficient of the models that are stored in the list-variable of
data; or, if model.term is given, a data frame with the term’s estimate. If se = TRUE or p.val =
TRUE, the returned data frame also contains columns for the coefficients’ standard error and p-value.
If append = TRUE, the columns are appended to data, i.e. data is also returned.

Examples

if (require("dplyr") && require("tidyr") && require("purrr")) {
data(efc)

create nested data frame, grouped by dependency (e42dep)
and fit linear model for each group. These models are
stored in the list variable "models".
model.data <- efc %>%
filter(!is.na(e42dep)) %>%
group_by(e42dep) %>%
nest() %>%
mutate(

68 std

models = map(data, ~lm(neg_c_7 ~ c12hour + c172code, data = .x))
)

spread coefficients, so we can easily access and compare the
coefficients over all models. arguments `se` and `p.val` default
to `FALSE`, when `model.term` is not specified
spread_coef(model.data, models)
spread_coef(model.data, models, se = TRUE)

select only specific model term. `se` and `p.val` default to `TRUE`
spread_coef(model.data, models, c12hour)

spread_coef can be used directly within a pipe-chain
efc %>%

filter(!is.na(e42dep)) %>%
group_by(e42dep) %>%
nest() %>%
mutate(

models = map(data, ~lm(neg_c_7 ~ c12hour + c172code, data = .x))
) %>%
spread_coef(models)

spread_coef() makes it easy to generate bootstrapped
confidence intervals, using the 'bootstrap()' and 'boot_ci()'
functions from the 'sjstats' package, which creates nested
data frames of bootstrap replicates
if (require("sjstats")) {

efc %>%
generate bootstrap replicates
bootstrap(100) %>%
apply lm to all bootstrapped data sets
mutate(

models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex + c172code, data = .x))
) %>%
spread model coefficient for all 100 models
spread_coef(models, se = FALSE, p.val = FALSE) %>%
compute the CI for all bootstrapped model coefficients
boot_ci(e42dep, c161sex, c172code)

}
}

std Standardize and center variables

Description

std() computes a z-transformation (standardized and centered) on the input. center() centers the
input. std_if() and center_if() are scoped variants of std() and center(), where transforma-
tion will be applied only to those variables that match the logical condition of predicate.

std 69

Usage

std(
x,
...,
robust = c("sd", "2sd", "gmd", "mad"),
include.fac = FALSE,
append = TRUE,
suffix = "_z"

)

std_if(
x,
predicate,
robust = c("sd", "2sd", "gmd", "mad"),
include.fac = FALSE,
append = TRUE,
suffix = "_z"

)

center(x, ..., include.fac = FALSE, append = TRUE, suffix = "_c")

center_if(x, predicate, include.fac = FALSE, append = TRUE, suffix = "_c")

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

robust Character vector, indicating the method applied when standardizing variables
with std(). By default, standardization is achieved by dividing the centered
variables by their standard deviation (robust = "sd"). However, for skewed
distributions, the median absolute deviation (MAD, robust = "mad") or Gini’s
mean difference (robust = "gmd") might be more robust measures of disper-
sion. For the latter option, sjstats needs to be installed. robust = "2sd" divides
the centered variables by two standard deviations, following a suggestion by
Gelman (2008), so the rescaled input is comparable to binary variables.

include.fac Logical, if TRUE, factors will be converted to numeric vectors and also standard-
ized or centered.

append Logical, if TRUE (the default) and x is a data frame, x including the new variables
as additional columns is returned; if FALSE, only the new variables are returned.

suffix Indicates which suffix will be added to each dummy variable. Use "numeric"
to number dummy variables, e.g. x_1, x_2, x_3 etc. Use "label" to add value
label, e.g. x_low, x_mid, x_high. May be abbreviated.

predicate A predicate function to be applied to the columns. The variables for which
predicate returns TRUE are selected.

../doc/design_philosophy.html
https://CRAN.R-project.org/package=sjstats

70 std

Details

std() and center() also work on grouped data frames (see group_by). In this case, standardiza-
tion or centering is applied to the subsets of variables in x. See ’Examples’.

For more complicated models with many predictors, Gelman and Hill (2007) suggest leaving binary
inputs as is and only standardize continuous predictors by dividing by two standard deviations. This
ensures a rough comparability in the coefficients.

Value

If x is a vector, returns a vector with standardized or centered variables. If x is a data frame,
for append = TRUE, x including the transformed variables as new columns is returned; if append =
FALSE, only the transformed variables will be returned. If append = TRUE and suffix = "", recoded
variables will replace (overwrite) existing variables.

Note

std() and center() only return a vector, if x is a vector. If x is a data frame and only one variable
is specified in the ...-ellipses argument, both functions do return a data frame (see ’Examples’).

References

Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Statistics in
Medicine 27: 2865-2873. http://www.stat.columbia.edu/~gelman/research/published/
standardizing7.pdf

Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambdridge, Cambdrige University Press: 55-57

Examples

data(efc)
std(efc$c160age) %>% head()
std(efc, e17age, c160age, append = FALSE) %>% head()

center(efc$c160age) %>% head()
center(efc, e17age, c160age, append = FALSE) %>% head()

NOTE!
std(efc$e17age) # returns a vector
std(efc, e17age) # returns a data frame

with quasi-quotation
x <- "e17age"
center(efc, !!x, append = FALSE) %>% head()

works with mutate()
library(dplyr)
efc %>%

select(e17age, neg_c_7) %>%

http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf
http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf

str_contains 71

mutate(age_std = std(e17age), burden = center(neg_c_7)) %>%
head()

works also with grouped data frames
mtcars %>% std(disp)

compare new column "disp_z" w/ output above
mtcars %>%

group_by(cyl) %>%
std(disp)

data(iris)
also standardize factors
std(iris, include.fac = TRUE, append = FALSE)
don't standardize factors
std(iris, include.fac = FALSE, append = FALSE)

standardize only variables with more than 10 unique values
p <- function(x) dplyr::n_distinct(x) > 10
std_if(efc, predicate = p, append = FALSE)

str_contains Check if string contains pattern

Description

This functions checks whether a string or character vector x contains the string pattern. By default,
this function is case sensitive.

Usage

str_contains(x, pattern, ignore.case = FALSE, logic = NULL, switch = FALSE)

Arguments

x Character string where matches are sought. May also be a character vector of
length > 1 (see ’Examples’).

pattern Character string to be matched in x. May also be a character vector of length >
1 (see ’Examples’).

ignore.case Logical, whether matching should be case sensitive or not.

logic Indicates whether a logical combination of multiple search pattern should be
made.

• Use "or", "OR" or "|" for a logical or-combination, i.e. at least one element
of pattern is in x.

• Use "and", "AND" or "&" for a logical AND-combination, i.e. all elements
of pattern are in x.

72 str_contains

• Use "not", "NOT" or "!" for a logical NOT-combination, i.e. no element
of pattern is in x.

• By default, logic = NULL, which means that TRUE or FALSE is returned for
each element of pattern separately.

switch Logical, if TRUE, x will be sought in each element of pattern. If switch =
TRUE, x needs to be of length 1.

Details

This function iterates all elements in pattern and looks for each of these elements if it is found in
any element of x, i.e. which elements of pattern are found in the vector x.

Technically, it iterates pattern and calls grep(x,pattern[i],fixed = TRUE) for each element
of pattern. If switch = TRUE, it iterates pattern and calls grep(pattern[i],x,fixed = TRUE)
for each element of pattern. Hence, in the latter case (if switch = TRUE), x must be of length 1.

Value

TRUE if x contains pattern.

Examples

str_contains("hello", "hel")
str_contains("hello", "hal")

str_contains("hello", "Hel")
str_contains("hello", "Hel", ignore.case = TRUE)

which patterns are in "abc"?
str_contains("abc", c("a", "b", "e"))

is pattern in any element of 'x'?
str_contains(c("def", "abc", "xyz"), "abc")
is "abcde" in any element of 'x'?
str_contains(c("def", "abc", "xyz"), "abcde") # no...
is "abc" in any of pattern?
str_contains("abc", c("defg", "abcde", "xyz12"), switch = TRUE)

str_contains(c("def", "abcde", "xyz"), c("abc", "123"))

any pattern in "abc"?
str_contains("abc", c("a", "b", "e"), logic = "or")

all patterns in "abc"?
str_contains("abc", c("a", "b", "e"), logic = "and")
str_contains("abc", c("a", "b"), logic = "and")

no patterns in "abc"?
str_contains("abc", c("a", "b", "e"), logic = "not")
str_contains("abc", c("d", "e", "f"), logic = "not")

str_find 73

str_find Find partial matching and close distance elements in strings

Description

This function finds the element indices of partial matching or similar strings in a character vector.
Can be used to find exact or slightly mistyped elements in a string vector.

Usage

str_find(string, pattern, precision = 2, partial = 0, verbose = FALSE)

Arguments

string Character vector with string elements.
pattern String that should be matched against the elements of string.
precision Maximum distance ("precision") between two string elements, which is allowed

to treat them as similar or equal. Smaller values mean less tolerance in matching.
partial Activates similar matching (close distance strings) for parts (substrings) of the

string. Following values are accepted:
• 0 for no partial distance matching
• 1 for one-step matching, which means, only substrings of same length as
pattern are extracted from string matching

• 2 for two-step matching, which means, substrings of same length as pattern
as well as strings with a slightly wider range are extracted from string
matching

Default value is 0. See ’Details’ for more information.
verbose Logical; if TRUE, the progress bar is displayed when computing the distance

matrix. Default in FALSE, hence the bar is hidden.

Details

Computation Details

Fuzzy string matching is based on regular expressions, in particular grep(pattern = "(<pattern>){~<precision>}",x
= string). This means, precision indicates the number of chars inside pattern that may differ
in string to cosinder it as "matching". The higher precision is, the more tolerant is the search
(i.e. yielding more possible matches). Furthermore, the higher the value for partial is, the more
matches may be found.

Partial Distance Matching

For partial = 1, a substring of length(pattern) is extracted from string, starting at position
0 in string until the end of string is reached. Each substring is matched against pattern, and
results with a maximum distance of precision are considered as "matching". If partial = 2, the
range of the extracted substring is increased by 2, i.e. the extracted substring is two chars longer
and so on.

74 str_start

Value

A numeric vector with index position of elements in string that partially match or are similar to
pattern. Returns -1 if no match was found.

Note

This function does not return the position of a matching string inside another string, but the ele-
ment’s index of the string vector, where a (partial) match with pattern was found. Thus, search-
ing for "abc" in a string "this is abc" will not return 9 (the start position of the substring), but 1 (the
element index, which is always 1 if string only has one element).

See Also

group_str

Examples

string <- c("Hello", "Helo", "Hole", "Apple", "Ape", "New", "Old", "System", "Systemic")
str_find(string, "hel") # partial match
str_find(string, "stem") # partial match
str_find(string, "R") # no match
str_find(string, "saste") # similarity to "System"

finds two indices, because partial matching now
also applies to "Systemic"
str_find(string,

"sytsme",
partial = 1)

finds partial matching of similarity
str_find("We are Sex Pistols!", "postils")

str_start Find start and end index of pattern in string

Description

str_start() finds the beginning position of pattern in each element of x, while str_end() finds
the stopping position of pattern in each element of x.

Usage

str_start(x, pattern, ignore.case = TRUE, regex = FALSE)

str_end(x, pattern, ignore.case = TRUE, regex = FALSE)

str_start 75

Arguments

x A character vector.

pattern Character string to be matched in x. pattern might also be a regular-expression
object, as returned by stringr::regex(). Alternatively, use regex = TRUE to
treat pattern as a regular expression rather than a fixed string.

ignore.case Logical, whether matching should be case sensitive or not. ignore.case is
ignored when pattern is no regular expression or regex = FALSE.

regex Logical, if TRUE, pattern is treated as a regular expression rather than a fixed
string.

Value

A numeric vector with index of start/end position(s) of pattern found in x, or -1, if pattern was
not found in x.

Examples

path <- "this/is/my/fileofinterest.csv"
str_start(path, "/")

path <- "this//is//my//fileofinterest.csv"
str_start(path, "//")
str_end(path, "//")

x <- c("my_friend_likes me", "your_friend likes_you")
str_start(x, "_")

pattern "likes" starts at position 11 in first, and
position 13 in second string
str_start(x, "likes")

pattern "likes" ends at position 15 in first, and
position 17 in second string
str_end(x, "likes")

x <- c("I like to move it, move it", "You like to move it")
str_start(x, "move")
str_end(x, "move")

x <- c("test1234testagain")
str_start(x, "\\d+4")
str_start(x, "\\d+4", regex = TRUE)
str_end(x, "\\d+4", regex = TRUE)

76 to_dummy

tidy_values Clean values of character vectors.

Description

This function "cleans" values of a character vector or levels of a factor by removing space and
punctuation characters.

Usage

tidy_values(x, ...)

clean_values(x, ...)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

Value

x, with "cleaned" values or levels.

Examples

f1 <- sprintf("Char %s", sample(LETTERS[1:5], size = 10, replace = TRUE))
f2 <- as.factor(sprintf("F / %s", sample(letters[1:5], size = 10, replace = TRUE)))
f3 <- sample(1:5, size = 10, replace = TRUE)

x <- data.frame(f1, f2, f3, stringsAsFactors = FALSE)

clean_values(f1)
clean_values(f2)
clean_values(x)

to_dummy Split (categorical) vectors into dummy variables

Description

This function splits categorical or numeric vectors with more than two categories into 0/1-coded
dummy variables.

../doc/design_philosophy.html

to_dummy 77

Usage

to_dummy(x, ..., var.name = "name", suffix = c("numeric", "label"))

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

var.name Indicates how the new dummy variables are named. Use "name" to use the
variable name or any other string that will be used as is. Only applies, if x is a
vector. See ’Examples’.

suffix Indicates which suffix will be added to each dummy variable. Use "numeric"
to number dummy variables, e.g. x_1, x_2, x_3 etc. Use "label" to add value
label, e.g. x_low, x_mid, x_high. May be abbreviated.

Value

A data frame with dummy variables for each category of x. The dummy coded variables are of type
atomic.

Note

NA values will be copied from x, so each dummy variable has the same amount of NA’s at the same
position as x.

Examples

data(efc)
head(to_dummy(efc$e42dep))

add value label as suffix to new variable name
head(to_dummy(efc$e42dep, suffix = "label"))

use "dummy" as new variable name
head(to_dummy(efc$e42dep, var.name = "dummy"))

create multiple dummies, append to data frame
to_dummy(efc, c172code, e42dep)

pipe-workflow
library(dplyr)
efc %>%
select(e42dep, e16sex, c172code) %>%
to_dummy()

../doc/design_philosophy.html

78 to_long

to_long Convert wide data to long format

Description

This function converts wide data into long format. It allows to transform multiple key-value pairs
to be transformed from wide to long format in one single step.

Usage

to_long(data, keys, values, ..., labels = NULL, recode.key = FALSE)

Arguments

data A data.frame that should be tansformed from wide to long format.

keys Character vector with name(s) of key column(s) to create in output. Either one
key value per column group that should be gathered, or a single string. In the
latter case, this name will be used as key column, and only one key column is
created. See ’Examples’.

values Character vector with names of value columns (variable names) to create in
output. Must be of same length as number of column groups that should be
gathered. See ’Examples’.

... Specification of columns that should be gathered. Must be one character vector
with variable names per column group, or a numeric vector with column indices
indicating those columns that should be gathered. See ’Examples’.

labels Character vector of same length as values with variable labels for the new vari-
ables created from gathered columns. See ’Examples’ and ’Details’.

recode.key Logical, if TRUE, the values of the key column will be recoded to numeric values,
in sequential ascending order.

Details

This function reshapes data from wide to long format, however, you can gather multiple column
groups at once. Value and variable labels for non-gathered variables are preserved. Attributes from
gathered variables, such as information about the variable labels, are lost during reshaping. Hence,
the new created variables from gathered columns don’t have any variable label attributes. In such
cases, use labels argument to set back variable label attributes.

See Also

reshape_longer

to_long 79

Examples

create sample
mydat <- data.frame(age = c(20, 30, 40),

sex = c("Female", "Male", "Male"),
score_t1 = c(30, 35, 32),
score_t2 = c(33, 34, 37),
score_t3 = c(36, 35, 38),
speed_t1 = c(2, 3, 1),
speed_t2 = c(3, 4, 5),
speed_t3 = c(1, 8, 6))

gather multiple columns. both time and speed are gathered.
to_long(

data = mydat,
keys = "time",
values = c("score", "speed"),
c("score_t1", "score_t2", "score_t3"),
c("speed_t1", "speed_t2", "speed_t3")

)

alternative syntax, using "reshape_longer()"
reshape_longer(

mydat,
columns = list(
c("score_t1", "score_t2", "score_t3"),
c("speed_t1", "speed_t2", "speed_t3")

),
names.to = "time",
values.to = c("score", "speed")

)

or ...
reshape_longer(

mydat,
list(3:5, 6:8),
names.to = "time",
values.to = c("score", "speed")

)

gather multiple columns, use numeric key-value
to_long(

data = mydat,
keys = "time",
values = c("score", "speed"),
c("score_t1", "score_t2", "score_t3"),
c("speed_t1", "speed_t2", "speed_t3"),
recode.key = TRUE

)

gather multiple columns by colum names and colum indices
to_long(

data = mydat,

80 to_value

keys = "time",
values = c("score", "speed"),
c("score_t1", "score_t2", "score_t3"),
6:8,
recode.key = TRUE

)

gather multiple columns, use separate key-columns
for each value-vector
to_long(

data = mydat,
keys = c("time_score", "time_speed"),
values = c("score", "speed"),
c("score_t1", "score_t2", "score_t3"),
c("speed_t1", "speed_t2", "speed_t3")

)

gather multiple columns, label columns
mydat <- to_long(

data = mydat,
keys = "time",
values = c("score", "speed"),
c("score_t1", "score_t2", "score_t3"),
c("speed_t1", "speed_t2", "speed_t3"),
labels = c("Test Score", "Time needed to finish")

)

library(sjlabelled)
str(mydat$score)
get_label(mydat$speed)

to_value Convert factors to numeric variables

Description

This function converts (replaces) factor levels with the related factor level index number, thus the
factor is converted to a numeric variable. to_value() and to_numeric() are aliases.

Usage

to_value(x, ..., start.at = NULL, keep.labels = TRUE, use.labels = FALSE)

Arguments

x A vector or data frame.

trim 81

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

start.at Starting index, i.e. the lowest numeric value of the variable’s value range. By
default, this argument is NULL, hence the lowest value of the returned numeric
variable corresponds to the lowest factor level (if factor levels are numeric) or to
1 (if factor levels are not numeric).

keep.labels Logical, if TRUE, former factor levels will be added as value labels. For nu-
meric factor levels, values labels will be used, if present. See ’Examples’ and
set_labels for more details.

use.labels Logical, if TRUE and x has numeric value labels, these value labels will be set as
numeric values.

Value

A numeric variable with values ranging either from start.at to start.at + length of factor levels,
or to the corresponding factor levels (if these were numeric). If x is a data frame, the complete data
frame x will be returned, where variables specified in ... are coerced to numeric; if ... is not
specified, applies to all variables in the data frame.

Note

This function is kept for backwards-compatibility. It is preferred to use as_numeric.

Examples

library(sjlabelled)
data(efc)
test <- as_label(efc$e42dep)
table(test)
table(to_value(test))

Find more examples at '?sjlabelled::as_numeric'

trim Trim leading and trailing whitespaces from strings

Description

Trims leading and trailing whitespaces from strings or character vectors.

Usage

trim(x)

../doc/design_philosophy.html

82 typical_value

Arguments

x Character vector or string, or a list or data frame with such vectors. Function is
vectorized, i.e. vector may have a length greater than 1. See ’Examples’.

Value

Trimmed x, i.e. with leading and trailing spaces removed.

Examples

trim("white space at end ")
trim(" white space at start and end ")
trim(c(" string1 ", " string2", "string 3 "))

tmp <- data.frame(a = c(" string1 ", " string2", "string 3 "),
b = c(" strong one ", " string two", " third string "),
c = c(" str1 ", " str2", "str3 "))

tmp
trim(tmp)

typical_value Return the typical value of a vector

Description

This function returns the "typical" value of a variable.

Usage

typical_value(x, fun = "mean", weights = NULL, ...)

Arguments

x A variable.

fun Character vector, naming the function to be applied to x. Currently, "mean",
"weighted.mean", "median" and "mode" are supported, which call the corre-
sponding R functions (except "mode", which calls an internal function to com-
pute the most common value). "zero" simply returns 0. Note: By default, if
x is a factor, only fun = "mode" is applicable; for all other functions (including
the default, "mean") the reference level of x is returned. For character vectors,
only the mode is returned. You can use a named vector to apply other different
functions to integer, numeric and categorical x, where factors are first converted
to numeric vectors, e.g. fun = c(numeric = "median",factor = "mean"). See
’Examples’.

weights Name of variable in x that indicated the vector of weights that will be applied to
weight all observations. Default is NULL, so no weights are used.

... Further arguments, passed down to fun.

var_rename 83

Details

By default, for numeric variables, typical_value() returns the mean value of x (unless changed
with the fun-argument).

For factors, the reference level is returned or the most common value (if fun = "mode"), unless
fun is a named vector. If fun is a named vector, specify the function for integer, numeric and cate-
gorical variables as element names, e.g. fun = c(integer = "median",factor = "mean"). In this
case, factors are converted to numeric values (using to_value) and the related function is applied.
You may abbreviate the names fun = c(i = "median",f = "mean"). See also ’Examples’.

For character vectors the most common value (mode) is returned.

Value

The "typical" value of x.

Examples

data(iris)
typical_value(iris$Sepal.Length)

library(purrr)
map(iris, ~ typical_value(.x))

example from ?stats::weighted.mean
wt <- c(5, 5, 4, 1) / 15
x <- c(3.7, 3.3, 3.5, 2.8)

typical_value(x, fun = "weighted.mean")
typical_value(x, fun = "weighted.mean", weights = wt)

for factors, return either reference level or mode value
set.seed(123)
x <- sample(iris$Species, size = 30, replace = TRUE)
typical_value(x)
typical_value(x, fun = "mode")

for factors, use a named vector to apply other functions than "mode"
map(iris, ~ typical_value(.x, fun = c(n = "median", f = "mean")))

var_rename Rename variables

Description

This function renames variables in a data frame, i.e. it renames the columns of the data frame.

84 var_type

Usage

var_rename(x, ..., verbose = TRUE)

rename_variables(x, ..., verbose = TRUE)

rename_columns(x, ..., verbose = TRUE)

Arguments

x A data frame.

... A named vector, or pairs of named vectors, where the name (lhs) equals the
column name that should be renamed, and the value (rhs) is the new column
name.

verbose Logical, if TRUE, a warning is displayed when variable names do not exist in x.

Value

x, with new column names for those variables specified in

Examples

dummy <- data.frame(
a = sample(1:4, 10, replace = TRUE),
b = sample(1:4, 10, replace = TRUE),
c = sample(1:4, 10, replace = TRUE)

)

rename_variables(dummy, a = "first.col", c = "3rd.col")

using quasi-quotation
library(rlang)
v1 <- "first.col"
v2 <- "3rd.col"
rename_variables(dummy, a = !!v1, c = !!v2)

x1 <- "a"
x2 <- "b"
rename_variables(dummy, !!x1 := !!v1, !!x2 := !!v2)

using a named vector
new_names <- c(a = "first.col", c = "3rd.col")
rename_variables(dummy, new_names)

var_type Determine variable type

word_wrap 85

Description

This function returns the type of a variable as character. It is similar to pillar::type_sum(),
however, the return value is not truncated, and var_type() works on data frames and within pipe-
chains.

Usage

var_type(x, ..., abbr = FALSE)

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

abbr Logical, if TRUE, returns a shortened, abbreviated value for the variable type (as
returned by pillar::type_sum()). If FALSE (default), a longer "description" is
returned.

Value

The variable type of x, as character.

Examples

data(efc)

var_type(1)
var_type(1L)
var_type("a")

var_type(efc$e42dep)
var_type(to_factor(efc$e42dep))

library(dplyr)
var_type(efc, contains("cop"))

word_wrap Insert line breaks in long labels

Description

Insert line breaks in long character strings. Useful if you want to wordwrap labels / titles for plots
or tables.

../doc/design_philosophy.html

86 zap_inf

Usage

word_wrap(labels, wrap, linesep = NULL)

Arguments

labels Label(s) as character string, where a line break should be inserted. Several
strings may be passed as vector (see ’Examples’).

wrap Maximum amount of chars per line (i.e. line length). If wrap = Inf or wrap = 0,
no word wrap will be performed (i.e. labels will be returned as is).

linesep By default, this argument is NULL and a regular new line string ("\n") is used.
For HTML-purposes, for instance, linesep could be "
".

Value

New label(s) with line breaks inserted at every wrap’s position.

Examples

word_wrap(c("A very long string", "And another even longer string!"), 10)

message(word_wrap("Much too long string for just one line!", 15))

zap_inf Convert infiite or NaN values into regular NA

Description

Replaces all infinite (Inf and -Inf) or NaN values with regular NA.

Usage

zap_inf(x, ...)

Arguments

x A vector or a data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select-helpers. See ’Examples’ or package-vignette.

Value

x, where all Inf, -Inf and NaN are converted to NA.

../doc/design_philosophy.html

%nin% 87

Examples

x <- c(1, 2, NA, 3, NaN, 4, NA, 5, Inf, -Inf, 6, 7)
zap_inf(x)

data(efc)
produce some NA and NaN values
efc$e42dep[1] <- NaN
efc$e42dep[2] <- NA
efc$c12hour[1] <- NaN
efc$c12hour[2] <- NA
efc$e17age[2] <- NaN
efc$e17age[1] <- NA

only zap NaN for c12hour
zap_inf(efc$c12hour)

only zap NaN for c12hour and e17age, not for e42dep,
but return complete data framee
zap_inf(efc, c12hour, e17age)

zap NaN for complete data frame
zap_inf(efc)

%nin% Value matching

Description

%nin% is the complement to %in%. It looks which values in x do not match (hence, are not in)
values in y.

Usage

x %nin% y

Arguments

x Vector with values to be matched.

y Vector with values to be matched against.

Details

See ’Details’ in match.

Value

A logical vector, indicating if a match was not located for each element of x, thus the values are
TRUE or FALSE and never NA.

88 %nin%

Examples

c("a", "B", "c") %in% letters
c("a", "B", "c") %nin% letters

c(1, 2, 3, 4) %in% c(3, 4, 5, 6)
c(1, 2, 3, 4) %nin% c(3, 4, 5, 6)

Index

∗ data
efc, 17

%nin%, 87

add_case (add_variables), 7
add_columns, 4
add_id (add_columns), 4
add_rows, 6
add_variables, 7
all_na, 9
as_numeric, 81
atomic, 77

big_mark, 9

cbind, 4
center (std), 68
center_if (std), 68
clean_values (tidy_values), 76
col_count (row_count), 58
complete, 39
complete_cases (has_na), 31
complete_vars (has_na), 31
count_na, 10
cut, 65

de_mean, 13
descr, 11
dicho, 14
dicho_if (dicho), 14
dplyr::bind_cols(), 4, 5
dplyr::bind_rows(), 7

efc, 17
empty_cols, 18
empty_rows (empty_cols), 18

factor, 33
find_in_data (find_var), 19
find_var, 19
flat_table, 21, 24

frq, 22, 22
ftable, 21

get_label, 19, 20, 44
get_na, 62
group_by, 12, 16, 22, 24, 29, 65, 70
group_labels, 49
group_labels (group_var), 28
group_labels_if (group_var), 28
group_str, 23, 26, 30, 74
group_var, 23, 28, 49, 65
group_var_if (group_var), 28

has_na, 31

incomplete_cases (has_na), 31
incomplete_vars (has_na), 31
is_cross_classified (is_crossed), 32
is_crossed, 32
is_empty, 34
is_even, 35
is_float, 36
is_nested (is_crossed), 32
is_num_chr (is_num_fac), 37
is_num_fac, 37
is_odd (is_even), 35
is_whole (is_float), 36

match, 87
merge_df (add_rows), 6
merge_imputations, 38
mice, 38
mice::mids(), 38
move_columns, 39

NA, 44, 47, 52, 62
nest, 67
numeric_to_factor, 41

pool, 39
prcn (big_mark), 9

89

90 INDEX

prettyNum, 10

quantile, 65

read_spss, 17
rec, 30, 42, 47–50, 52, 62, 65
rec_if (rec), 42
rec_pattern, 30, 42, 48
recode_to, 44, 46, 52, 62
recode_to_if (recode_to), 46
ref_lvl, 44, 49
relevel, 50
remove_cols (remove_var), 51
remove_empty_cols (empty_cols), 18
remove_empty_rows (empty_cols), 18
remove_var, 51
rename_columns (var_rename), 83
rename_variables (var_rename), 83
replace_columns (add_columns), 4
replace_na, 44, 52, 62
reshape_longer, 54, 78
rotate_df, 56
round_num, 57
row_count, 58
row_means (row_sums), 59
row_sums, 59

seq_col, 61
seq_row (seq_col), 61
set_label, 30
set_labels, 15, 49, 81
set_na, 44, 47, 52, 62
set_na_if, 62
shorten_string, 63
sjmisc (sjmisc-package), 3
sjmisc-package, 3
split_var, 29, 30, 64
split_var_if (split_var), 64
spread_coef, 66
std, 68
std_if (std), 68
str_contains, 71
str_end (str_start), 74
str_find, 23, 27, 73
str_start, 74

tagged_na, 10, 44, 52
tidy_values, 76
to_dummy, 76

to_factor, 50
to_long, 54, 78
to_value, 80, 83
total_mean (row_sums), 59
trim, 81
typical_value, 82

var_rename, 83
var_type, 84

word_wrap, 85

zap_inf, 86

	sjmisc-package
	add_columns
	add_rows
	add_variables
	all_na
	big_mark
	count_na
	descr
	de_mean
	dicho
	efc
	empty_cols
	find_var
	flat_table
	frq
	group_str
	group_var
	has_na
	is_crossed
	is_empty
	is_even
	is_float
	is_num_fac
	merge_imputations
	move_columns
	numeric_to_factor
	rec
	recode_to
	rec_pattern
	ref_lvl
	remove_var
	replace_na
	reshape_longer
	rotate_df
	round_num
	row_count
	row_sums
	seq_col
	set_na_if
	shorten_string
	split_var
	spread_coef
	std
	str_contains
	str_find
	str_start
	tidy_values
	to_dummy
	to_long
	to_value
	trim
	typical_value
	var_rename
	var_type
	word_wrap
	zap_inf
	%nin%
	Index

