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sommer-package Solving Mixed Model Equations in R
Description

Sommer is a structural multivariate-univariate linear mixed model solver for multiple random effects
allowing the specification and/or estimation of variance covariance structures. REML estimates can
be obtained using the Direct-Inversion Newton-Raphson, Average Information and Efficient Mixed
Model Association algorithms coded in C++ using the Armadillo library to optimize dense matrix
operations common in genomic selection models. Sommer was designed for genomic prediction
and genome wide association studies (GWAS) to include i.e. additive, dominance and epistatic
relationship structures or other covariance structures, but also functional as a regular mixed model
program.
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The sommer package has been developed to provide R users with open-source code to understand
how most popular likelihood algorithms in mixed model analysis work, but at the same time allow-
ing to perform their real analysis in diploid and polyploid organisms with small and medium-size
data sets (< 10,000 observations for average computers given the computational burden carried by
the direct-inversion algorithms). The package is focused in the p > n problem and dense covari-
ance structures when the direct-inversion algorithm becomes faster than MME-based algorithms.
The core of the package is the mmer (formula-based) function that fits the multivariate linear
mixed models and the predict.mmer function to obtain adjusted means. This package returns
variance-covariance components, BLUPs, BLUEs, residuals, fitted values, variances-covariances
for fixed and random effects, etc.

Functions for genetic analysis

The package provides kernels to estimate additive (A.mat), dominance (D.mat), epistatic (E.mat),
(H.mat) relationship matrices for diploid and polyploid organisms. It also provides flexibility to fit
other genetic models such as full and half diallel models and random regression models.

A good converter from letter code to numeric format is implemented in the function atcg1234,
which supports higher ploidy levels than diploid. Additional functions for genetic analysis have
been included such as heritability (h2. fun), build a genotypic hybrid marker matrix (build.HMM),
plot of genetic maps (map.plot), creation of manhattan plots (manhattan). If you need to use
pedigree you need to convert your pedigree into a relationship matrix (use the ‘getA* function from
the pedigreemm package).

Functions for statistical analysis and S3 methods

The vpredict function can be used to estimate standard errors for linear combinations of variance
components (i.e. ratios like h2). S3 methods are available for some parameter extraction such as
fitted.mmer, residuals.mmer, summary.mmer, randef, coef.mmer, anova.mmer, plot.mmer.

Functions for trial analysis

Recently, spatial modeling has been added added to sommer using the two-dimensional spline
(spl2Da and spl2Db) functions.

Keeping sommer updated

The sommer package is updated on CRAN every 3-months due to CRAN policies but you can find
the latest source at https://github.com/covaruber/sommer . This can be easily installed typing the
following in the R console:

library(devtools)
install_github("covaruber/sommer")

This is recommended since bugs fixes will be immediately available in the GitHub source but not
in CRAN until the next update.
Tutorials

For tutorials on how to perform different analysis with sommer please look at the vignettes by
typing in the terminal:
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vignette(''vl.sommer.quick.start'")
vignette(''v2.sommer.changes.and.faqs')
vignette(''v3.sommer.qg'")
vignette(''vd.sommer.gxe'')

or visit https://covaruber.github.io

Getting started

The package has been equiped with several datasets to learn how to use the sommer package:

* DT_halfdiallel, DT_fulldiallel and DT_mohring datasets have examples to fit half and full
diallel designs.

* DT_h2 to calculate heritability
*DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses

* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive
effects.

* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from
2 highly heterozygous parents including additive, dominance and epistatic effects.

* DT_polyploid to fit genomic prediction and GWAS analysis in polyploids.

* DT_gryphon data contains an example of an animal model including pedigree information.
* DT_btdata dataset contains an animal (birds) model.

* DT_legendre simulated dataset for random regression model.

* DT_sleepstudy dataset to know how to translate Ime4 models to sommer models.

Differences of sommer >= 3.7 with previous versions

Since version 3.7 I have completly redefined the specification of the variance-covariance structures
to provide more flexibility to the user. This has particularly helped the residual covariance structures
and the easier combination of custom random effects and overlay models. I think that although this
will bring some uncomfortable situations at the beggining, in the long term this will help users to
fit better models. In esence, I have abandoned the asreml formulation (not the structures available)
given it’s limitations to combine some of the sommer structures but all covariance structures can
now be fitted using the ‘vs‘ functions.

Differences of sommer >= 3.0 with previous versions

Since version 3.0 I have decided to focus in developing the multivariate solver and for doing this I
have decided to remove the M argument (for GWAS analysis) from the mmer function and move it
to it’s own function GWAS.

Before the mmer solver had implemented the us(trait), diag(trait), at(trait) asreml formulation for
multivariate models that allow to specify the structure of the trait in multivariate models. Therefore
the MVM argument was no longer needed. After version 3.7 now the multi-trait structures can be
specified in the Gt and Gtc arguments of the vs function.

The Average Information algorithm had been removed in the past from the package because of
its instability to deal with very complex models without good initial values. Now after 3.7 I have



6 sommer-package

brought it back after I noticed that starting with NR the first three iterations gives enough flexibility
to the Al algorithm.

Keep in mind that sommer uses direct inversion (DI) algorithm which can be very slow for datasets
with many observations (big 'n’). The package is focused in problems of the type p > n (more ran-
dom effect(s) levels than observations) and models with dense covariance structures. For example,
for experiment with dense covariance structures with low-replication (i.e. 2000 records from 1000
individuals replicated twice with a covariance structure of 1000x1000) sommer will be faster than
MME-based software. Also for genomic problems with large number of random effect levels, i.e.
300 individuals (n) with 100,000 genetic markers (p). On the other hand, for highly replicated trials
with small covariance structures or n > p (i.e. 2000 records from 200 individuals replicated 10 times
with covariance structure of 200x200) asreml or other MME-based algorithms will be much faster
and I recommend you to use that software.

Models Enabled

The core of the package is the mmer (formula-based) function which solve the mixed model equa-
tions. The functions are an interface to call the ‘NR* Direct-Inversion Newton-Raphson, ‘Al‘ Direct-
Inversion Average Information (Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2016). Since
version 2.0 sommer can handle multivariate models. Following Maier et al. (2015), the multivariate
(and by extension the univariate) mixed model implemented has the form:

where y_i is a vector of trait phenotypes, 5; is a vector of fixed effects, u_i is a vector of random
effects for individuals and e_i are residuals for trait i (i = 1,..., t). The random effects (u_1 ... u_i
and e_i) are assumed to be normally distributed with mean zero. X and Z are incidence matrices
for fixed and random effects respectively. The distribution of the multivariate response and the
phenotypic variance covariance (V) are:

where K is the relationship or covariance matrix for the kth random effect (u=1,...,k), and R=I is an
identity matrix for the residual term. The terms 02 and 02 denote the genetic (or any of the kth
random terms) and residual variance of trait i, respectlvely and 9g,, and e, the genetic (or any
of the kth random terms) and residual covariance between traits i and j j (=1 t and j=1,...,t). The
algorithm implemented optimizes the log likelihood:

where |l is the determinant of a matrix. And the REML estimates are updated using a Newton
optimization algorithm of the form:

Where, 6 is the vector of variance components for random effects and covariance components
among traits, H*-1 is the inverse of the Hessian matrix of second derivatives for the kth cycle,
dL/do? is the vector of first derivatives of the likelihood with respect to the variance-covariance
components. The Eigen decomposition of the relationship matrix proposed by Lee and Van Der
Werf (2016) was included in the Newton-Raphson algorithm to improve time efficiency. Addition-
ally, the popular vpredict function to estimate standard errors for linear combinations of variance
components (i.e. heritabilities and genetic correlations) was added to the package as well.

GWAS Models

The GWAS models in the sommer package are enabled by using the M argument in the functions
GWAS, which is expected to be a numeric marker matrix. Markers are treated as fixed effects ac-
cording to the model proposed by Yu et al. (2006) for diploids, and Rosyara et al. (2016) (for
polyploids). The matrices X and M are both fixed effects, but they are separated by 2 different
arguments to distinguish factors such as environmental and design factors for the argument "X" and
markers with "M".
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The genome-wide association analysis is based on the mixed model:

y=XB+Zg+ Mt +e

where [ is a vector of fixed effects that can model both environmental factors and population
structure. The variable g models the genetic background of each line as a random effect with
Varlg] = Ko?. The variable 7 models the additive SNP effect as a fixed effect. The residual
variance is Var[e] = Io2

When principal components are included (P+K model), the loadings are determined from an eigen-
value decomposition of the K matrix and are used in the fixed effect part.

The argument "P3D" introduced by Zhang et al. (2010) can be used with the P3D argument. When
P3D=FALSE, this function is equivalent to AI/NR with REML where the variance components are
estimated for each SNP or marker tested (Kang et al. 2008). When P3D=TRUE, it is equivalent to
NR (Kang et al. 2010) where the assumption is that variance components for all SNP/markers are
the same and therefore the variance components are estimated only once (and markers are tested
in a WLS framework being the the weight matrix (M) the inverse of the phenotypic variance ma-
trix (V)). Therefore, P3D=TRUE option is faster but can underestimate significance compared to
P3D=FALSE.

Multivariate GWAS are based in Covarrubias-Pazaran et al. (2018, In preparation), which adjusts
betas for all response variables and then does the regular GWAS with such adjusted betas or marker
effects.

For extra details about the methods please read the canonical papers listed in the References section.

Bug report and contact

If you have any questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com

I’ll be glad to help or answer any question. I have spent a valuable amount of time developing this
package. Please cite this package in your publication. Type ’citation("sommer")’ to know how to
cite it.

Author(s)

Giovanny Covarrubias-Pazaran

References
Covarrubias-Pazaran G. 2016. Genome assisted prediction of quantitative traits using the R package

sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate
mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390
pp-

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter
estimation in linear mixed models. Biometrics 51(4):1440-1450.

Henderson C.R. 1975. Best Linear Unbiased Estimation and Prediction under a Selection Model.
Biometrics vol. 31(2):423-447.
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Kang et al. 2008. Efficient control of population structure in model organism association mapping.
Genetics 178:1709-1723.

Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based
on genomic information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

Maier et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for
schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum Genet; 96(2):283-294.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance
components. Paper invited for the 1993 American Statistical Association Meeting, San Francisco.
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Examples

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples

HHHH-
HHHH
HH

#### EXAMPLES
#### Different models with sommer

data(DT_example)
DT <- DT_example
head(DT)

HiH T
HHH=========================================##H##

#### Univariate homogeneous variance models #it#i#

HHHH
HHHH

## Compound simmetry (CS) model
ans1 <- mmer(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)

summary (ans1)

HHHH HHHH
HHHT HHHH

#### Univariate heterogeneous variance models ####

## Compound simmetry (CS) + Diagonal (DIAG) model
ans2 <- mmer(Yield~Env,
random= ~Name + vs(ds(Env),Name),
rcov= ~ vs(ds(Env),units),



A.mat

data=DT)

summary (ans2)

#### Univariate unstructured variance models ####

ans3 <- mmer(Yield~Env,

random=~ vs(us(Env),Name),
rcov=~vs(us(Env),units),
data=DT)

summary (ans3)

e E E E E R E E E E E E E E E E E E R E T E E E E R E T

FTRTRTNT STRTRTETS
HHHH I HH

#### Multivariate homogeneous variance models #i###

HHH
HHH#
HHH HHHH

## Multivariate Compound simmetry (CS) model
DT$EnvName <- paste(DT$Env,DT$Name)
ans4 <- mmer(cbind(Yield, Weight) ~ Env,

random= ~ vs(Name, Gtc = unsm(2)) + vs(EnvName,Gtc =
rcov= ~ vs(units, Gtc = unsm(2)),
data=DT)

summary (ans4)

#### Multivariate heterogeneous variance models #i#i#

## Multivariate Compound simmetry (CS) + Diagonal (DIAG) model

ans5 <- mmer(cbind(Yield, Weight) ~ Env,
random= ~ vs(Name, Gtc = unsm(2)) + vs(ds(Env),Name, Gtc
rcov= ~ vs(ds(Env),units, Gtc = unsm(2)),
data=DT)

summary (ans5)

4 HHH
HHHH HHHH

#### Multivariate unstructured variance models #i###

Ty
HH1
HH4

3
3
3
£
£
3

ans6 <- mmer(cbind(Yield, Weight) ~ Env,

random= ~ vs(us(Env),Name, Gtc = unsm(2)),
rcov= ~ vs(ds(Env),units, Gtc = unsm(2)),
data=DT)

summary (ans6)

unsm(2)),

unsm(2)),

A.mat Additive relationship matrix
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Description

Calculates the realized additive relationship matrix. Currently is the C++ implementation of Endel-
man and Jannink (2012) and van Raden (2008).

Usage
A.mat (X, endelman=TRUE,min.MAF=0,return. imputed=FALSE)

Arguments
X Matrix (n x m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.
endelman Set endelman=TRUE to use the method from Endelman and Jannink (2012)
(without the shrinkage, for that method look at the rrBLUP package). If FALSE,
regular vanRaden is used.
min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles,

so by default only monomorphic markers are removed.

return.imputed When TRUE, the imputed marker matrix is returned.

Details

For endelman method: At high marker density, the relationship matrix is estimated as A = WW' /¢,
where W, = X, + 1 — 2p; and py is the frequency of the 1 allele at marker k. By using
a normalization constant of ¢ = 23", pi(1 — pg), the mean of the diagonal elements is 1 4 f
(Endelman and Jannink 2012).

For vanraden method: the marker matrix is centered by subtracting column means M = X — ms
where ms is the coumn means. Then A = MM'/c, where ¢ = ), d;,/k, the mean value of the
diagonal values of the M M’ portion.

Value
If return.imputed = FALSE, the n x n additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

$A the A matrix

$X the imputed marker matrix

References

Endelman, J.B., and J.-L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix.
G3:Genes, Genomes, Genetics. 2:1405-1413. doi: 10.1534/g3.112.004259

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

mmer — the core function of the package
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Examples

HHHH HHHH

#### random population of 200 lines with 1000 markers

HHHH- FTRTRTRTE
HHH## HHH#H
HHHH HHHH

X <- matrix(rep(0,200x1000),200,1000)
for (i in 1:200) {

X[i,] <- ifelse(runif(1000)<0.5,-1,1)
3

A <= A.mat(X)

#i### take a look at the Genomic relationship matrix
###H# (just a small part)

# colfunc <- colorRampPalette(c("steelblue4”,"springgreen”,"yellow"))
# hv <- heatmap(A[1:15,1:15], col = colfunc(100),Colv = "Rowv")
# str(hv)

add.diallel.vars add.diallel.vars

Description

‘add.diallel.vars* adds 4 columns to the provided diallel dataset. Specifically, the user provides a
dataset with indicator variables for who is the male and female parent and the function returns the
same dataset with 4 new dummy variables to allow the model fit of diallel models.

Usage

add.diallel.vars(df, pari="Parl", par2="Par2",sep.cross="-")

Arguments
df a dataset with the two indicator variables for who is the male and female parent.
parl the name of the column indicating who is the first parent (e.g. male).
par2 the name of the column indicating who is the second parent (e.g. female).
sep.cross the character that should be used when creating the column for cross.id. A
simple paste of the columns parl and par2.
Value

A new data set with the following 4 new dummy variables to allow the fit of complex diallel
models:

returns a 0 if is a self and a 1 for a cross.
is.ciwsslf returns a O if is a cross and a 1 is is a self.
cross.type returns a -1 for a direct cross, a 0 for a self and a 1 for a reciprocal cross.

cross.id returns a column psting the parl and par2 columns.
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Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer, the overlay function and the DT_mohring example.

Examples

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples

HHHH HHHH
HHHH

data(DT_mohring)

DT <- DT_mohring

head(DT)

DT2 <- add.diallel.vars(DT,parl1="Parl1", par2="Par2")

head(DT2)

## see ?DT_mohring for an example on how to use the data to fit diallel models.

adiagl Binds arrays corner-to-corner

Description

Array generalization of blockdiag()

Usage
adiagl(... , pad=as.integer(@), do.dimnames=TRUE)
Arguments
Arrays to be binded together
pad Value to pad array with; note default keeps integer status of arrays
do.dimnames Boolean, with default TRUE meaning to return dimnames if possible. Set to

FALSE if performance is an issue
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Details

Binds any number of arrays together, corner-to-corner. Because the function is associative provided
pad is of length 1, this page discusses the two array case.

If x=adiagl(a,b) anddim(a)=c(a_1,...,a_d),dim(b)=c(b_1,...,b_d);thenall(dim(x)==dim(a)+dim(b))
and x[1:a_1,...,1:a_dJ=aand x[(a_1+1):(a_1+b_1), ..., (a_d+1): (a_d+b_d) ]1=b.

Dimnames are preserved, if both arrays have non-null dimnames, and do.dimnames is TRUE.

Argument pad is usually a length-one vector, but any vector is acceptable; standard recycling is
used. Be aware that the output array (of dimension dim(a)+dim(b)) is filled with (copies of) pad
before a and b are copied. This can be confusing.

Value

Returns an array of dimensions dim(a)+dim(b) as described above.

Note

Inadiagl(a,b), if ais alength-one vector, it is coerced to an array of dimensions rep(1,length(dim(b)));
likewise b. If both a and b are length-one vectors, return diag(c(a,b)).

If a and b are arrays, function adiag1() requires length(dim(a))==1length(dim(b)) (the func-
tion does not guess which dimensions have been dropped; see examples section). In particular, note
that vectors are not coerced except if of length one.

adiag1() is used when padding magic hypercubes in the context of evaluating subarray sums.

Author(s)

Peter Wolf with some additions by Robin Hankin

See Also

mmer — the core function of the package

Examples

a <- array( 1,c(2,2))
b <- array(-1,c(2,2))
adiagi(a,b)

## dropped dimensions can count:
b2 <- b1 <- b

dim(a) <- ¢(2,1,2)

dim(b1) <- ¢(2,2,1)

dim(b2) <- ¢(1,2,2)

dim(adiagl(a,bl))
dim(adiagl(a,b2))

## dimnames are preserved if not null:
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a <- matrix(1,2,2,dimnames=list(col=c("red","blue”),size=c("big","small")))
b <- 8

dim(b) <- c(1,1)

dimnames(b) <- list(col=c("green"),size=c("tiny"))

adiagl(a,b) #dimnames preserved

adiagl(a,8) #dimnames lost because second argument has none.

## non scalar values for pad can be confusing:
g <- matrix(e,3,3)
adiagl1(q,q,pad=1:4)

## following example should make the pattern clear:
adiagl(q,q,pad=1:36)

# Now, a use for arrays with dimensions of zero extent:
z <- array(dim=c(9,3))
colnames(z) <- c("foo”,"bar","baz")

adiagli(a,z) # Observe how this has
# added no (ie zero) rows to "a" but

# three extra columns filled with the pad value

adiagl(a,t(z))

adiagl(z,t(z)) # just the pad value
anova.mmer anova form a GLMM fitted with mmer
Description

anova method for class "mmer”.

Usage
## S3 method for class 'mmer'’
anova(object, object2=NULL, type=1, ...)
Arguments
object an object of class "mmer"”
object?2 an object of class "mmer”, if NULL the program will provide regular sum of

squares results.
type anova type, [ or II

Further arguments to be passed
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Value

vector of anova

Author(s)

Giovanny Covarrubias

See Also

anova, mmer

AR1 Autocorrelation matrix of order 1.

Description

Creates an autocorrelation matrix of order one with parameters specified.

Usage
AR1(x,rho=0.25)

Arguments
X vector of the variable to define the factor levels for the AR1 covariance structure.
rho rho value for the matrix.

Details

Specially useful for constructing covariance structures for rows and ranges to capture better the
spatial variation trends in the field. The rho value is assumed fixed and values of the variance
component will be optimized through REML.

Value

If everything is defined correctly the function returns:

$nn the correlation matrix

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core function of the package mmer
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Examples

x <- 1:4
R1 <- AR1(x,rho=.25)
image(R1)

ARMA Autocorrelation Moving average.

Description

Creates an ARMA matrix of order one with parameters specified.

Usage
ARMA(x, rho=0.25, lambda=0.25)

Arguments
X vector of the variable to define the factor levels for the ARMA covariance struc-
ture.
rho rho value for the matrix.
lambda dimensions of the square matrix.
Details

Specially useful for constructing covariance structures for rows and ranges to capture better the
spatial variation trends in the field. The rho value is assumed fixed and values of the variance
component will be optimized through REML.

Value

If everything is defined correctly the function returns:

$nn the correlation matrix

References
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core function of the package mmer

Examples

x <- 1:4
R1 <- ARMA(x,rho=.25,1lambda=0.2)
image (R1)
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at at covariance structure

Description

at creates a diagonal covariance structure for specific levels of the random effect.

Usage
at(x, levs)
Arguments
X vector of observations for the random effect.
levs levels of the random effect to use for building the incidence matrices.
Value

$res a list with the provided vector and the variance covariance structure expected.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use at in the mmer solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
at(x)
at(x, c("1","2"))
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atcgl1234

atcgl1234

Letter to number converter

Description

This function was designed to help users to transform their data in letter format to numeric format.
Details in the format are not complex, just a dataframe with markers in columns and individuals
in rows. Only markers, NO extra columns of plant names etc (names of plants can be stored as
rownames). The function expects a matrix of only polymorphic markers, please make sure you
clean your data before using this function. The apply function can help you identify and separate
monomorphic from polymorphic markers.

Usage

atcgl234(data, ploidy=2, format="ATCG", maf=0, multi=TRUE,

Arguments

data

ploidy

format

maf

multi

silent

silent=FALSE, by.allele=FALSE, imp=TRUE, ref.alleles=NULL)

a dataframe with markers in columns and individuals in rows. Preferable the
rownames are the ID of the plants so you don’t lose track of what is what.

a numeric value indicating the ploidy level of the specie. The default is 2 which
means diploid.

one of the two possible values allowed by the program "ATCG", which means
your calls are in base-pair-letter code, i.e. "AT" in a diploid call, "AATT"
tetraploid etc (just example). Therefore possible codes can be "A", "T", "C",
"G", "-" (deletion), "+" (insertion). Alternatively "AB" format can be used as
well. Commonly this depends from the genotyping technologies used, such as
GBS or microarrays. In addition, we have enabled also the use of single-letter
code used by Cornell, i.e. A=AA, C=CC, T=TT, G=GG, R=AG, Y=CT, S=CG,
W=AT, K=GT, M=AC. In the case of GBS code please make sure that you set the
N codes to regular NAs handled by R. The "ATCG" format also works for the bi-
allelic marker codes from join map such as "Im", "11","nn", "np","hh","hk","kk"

minor allele frequency used to filter the SNP markers, the default is zero which
means all markers are returned in numeric format.

a TRUE/FALSE statement indicating if the function should get rid of the mark-
ers with more than 2 alleles. If FALSE, which indicates that if markers with
multiple alleles are found, the alternate and reference alleles will be the first 2
alleles found. This could be risky since some alleles will be masked, i.e. AA
AG AT would take only A and G as reference and alternate alleles, converting
to numeric format 2 1 1, giving the same effect to AG and AT which could be a
wrong assumption. The default is TRUE, removes markers with more than two
alleles.

a TRUE/FALSE value indicating if a progress bar should be drawn for each
step of the conversion. The default is silent=FALSE, which means that we want
progress bar to be drawn.
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by.allele

imp

ref.alleles

Value

19

a TRUE/FALSE value indicating if the program should transform the data in
a zero/one matrix of presence/absense per allele. For example, a marker with
3 alleles A,T,C in a diploid organism will yield 6 possible configurations; AA,
AT, AC, TT, TC, CC. Therefore, the program would create 3 columns for this
marker indicating the presence/absence of each allele for each genotype.

a TRUE/FALSE value indicating if the function should impute the missing data
using the median for each marker. If FALSE, then the program will not impute.

a matrix with reference alleles to be used for the conversion. The matrix should
have as many columns as markers with reference alleles and with 2 rows, being
the first row the alternate allele (Alt) and the second row the reference allele
(Ref). Rownames should be "Alt" and "Ref" respectively. If not provided the
program will decide the reference allele.

$data a new dataframe of markers in numeric format with markers in columns and individuals in

TOWS.

Author(s)

Giovanny Covarrubias-Pazaran

See Also

The core function of the package mmer

Examples

data(DT_polyploid)
genotypes <- GT_polyploid
genotypes[1:5,1:5] # look the original format

HHHH

#### convert markers to numeric format polyploid potatoes

HHHH-

HHH##
HHHH

# numo <- atcgl234(data=genotypes, ploidy=4)

# numo$M[1:5,1:5]

HHHH
HHHT

#i### convert markers to numeric format diploid rice lines
#i### single letter code for inbred lines from GBS pipeline
##H A=AA, T=TT, C=CC, G=GG

# data(DT_rice)

# X <= GT_rice; X[1:5,1:5]; dim(X)
# numo2 <- atcgl234(data=X, ploidy=2)
# numo2$M[1:5,1:5]
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bathy.colors Generate a sequence of colors for plotting bathymetric data.

Description

bathy.colors(n) generates a sequence of n colors along a linear scale from light grey to pure
blue.

Usage
bathy.colors(n, alpha = 1)
Arguments
n The number of colors to return.
alpha Alpha values to be passed to rgh ().
Value

A vector of blue scale colors.

Examples

{
# Plot a colorbar using bathy.colors
image(matrix(seq(100), 100), col=bathy.colors(100))

}

bbasis Function for creating B-spline basis functions (Eilers & Marx, 2010)

Description
Construct a B-spline basis of degree deg with ndx-1 equally-spaced internal knots (ndx segments)
on range [x1,xr]. Code copied from Eilers & Marx 2010, WIR: Comp Stat 2, 637-653.

Usage

bbasis(x, x1, xr, ndx, deg)

Arguments
X A vector. Data values for spline.
x1 A numeric value. Lower bound for data (lower external knot).
Xr A numeric value. Upper bound for data (upper external knot).
ndx A numeric value. Number of divisions for x range (equal to number of segments

= number of internal knots + 1)
deg A numeric value. Degree of the polynomial spline.
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Details

Not yet amended to coerce values that should be zero to zero!

Value

A matrix with columns holding the P-spline for each value of x. Matrix has ndx+deg columns and
length(x) rows.

bivariateRun bivariateRun functionality

Description

Sometimes multi-trait models can present many singularities making the model hard to estimate
with many traits. One of the most effective strategies is to estimate all possible variance and co-
variances splitting in multiple bivariate models. This function takes a model that has t traits and
splits the model in as many bivariate models as needed to estimate all the variance and covariances
to provide the initial values for the model with all traits.

Usage

bivariateRun(model, n.core)

Arguments
model a model fitted with the mmer function with argument return.param=TRUE.
n.core number of cores to use in the mclapply function to parallelize the models to
be run to avoid increase in computational time. Please keep in mind that this
is only available in Linux and macOS systems. Please check the details in the
mclapply documentation of the parallel package.
Value

$sigmas the list with the variance covariance parameters for all traits together.
$sigmascor the list with the correlation for the variance components for all traits together.

$model the results from the bivariate models.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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See Also
The core function of the package mmer
Examples
#
# HHHH
# ##H# EXAMPLE 1
# #i#t## simple example with univariate models
# 4 d
# 4 t
# data("DT_cpdata”)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# #### create the variance-covariance matrix
# A <- A.mat(GT)
# #### look at the data and fit the model
# head(DT)
# ans.m <- mmer(cbind(Yield,color,FruitAver, Firmness)~1,
# random=~ vs(id, Gu=A, Gtc=unsm(4))
# + vs(Rowf,Gtc=diag(4))
# + vs(Colf,Gtc=diag(4)), na.method.Y="include",
# rcov=~ vs(units,Gtc=unsm(4)), return.param = TRUE,
# data=DT)
#
# # define the number of cores (number of bivariate models) as (ntx(nt-1))/2
# nt=4
# (ntx(nt-1))/2
# res <- bivariateRun(ans.m,n.core = 6)
# # now use the variance componets to fit a join model
# mm <- transformConstraints(ans.m[[8]],3)
#
# ans.m.final <- mmer(cbind(Yield,color,FruitAver, Firmness)~1,
# random=~ vs(id, Gu=A, Gtc=unsm(4))
# + vs(Rowf,Gtc=diag(4))
# + vs(Colf,Gtc=diag(4)), na.method.Y="include",
# rcov=~ vs(units,Gtc=unsm(4)),
# init = res$sigmas_scaled, constraints = mm,
# data=DT, iters=1)
#
# summary(ans.m.final)
build.HMM Build a hybrid marker matrix using parental genotypes from inbred

individuals
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Description

Uses the 2 marker matrices from both sets of inbred or partially inbred parents and creates all possi-
ble combinations unless the user specifies which hybrid genotypes to build (custom.hyb argument).
It returns the additive and dominance marker matrices (-1,0,1; homo,het,homo in additive and 0,1,0;
homo,het,homo for dominance).

Usage

build.HMM(M1,M2, custom.hyb=NULL, return.combos.only=FALSE)

Arguments

M1 Matrix (n x m) of unphased genotypes for n inbreds and m biallelic mark-
ers, coded as {-1,0,1}. Fractional (imputed) and missing values (NA) are not
allowed.

M2 Matrix (n x m) of unphased genotypes for n inbreds and m biallelic mark-
ers, coded as {-1,0,1}. Fractional (imputed) and missing values (NA) are not
allowed.

custom. hyb A data frame with columns *Varl’ *Var2’, "hybrid’ which specifies which hy-

brids should be built using the M1 and M2 matrices provided.

return.combos.only
A TRUE/FALSE statement inicating if the function should skip building the
geotype matrix for hybrids and only return the data frame with all possible com-
binations to be build. In case the user wants to subset the hybrids before building
the marker matrix.

Details

It returns the marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo) and dominance
(0,1,0; homo,het,homo). This function is deviced for building marker matrices for hybrids coming
from inbreds. If the parents are close to inbred >F5 you can try deleting the heterozygote calls (0’s)
and imputing those cells with the most common genotype (1 or -1). The expectation is that for
mostly inbred individuals this may not change drastically the result but will make the results more
interpretable. For non-inbred parents (F1 to F3) the cross of an F1 x F1 has many possibilities and
is not the intention of this function to build genotypes for heterzygote x heterozygote crosses.

Value
It returns the marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo) and dominance

(0,1,0; homo,het,homo).

$HMM.add marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo)
$HMM.dom marker matrix for hybrids coded as dominance (0,1,0; homo,het,homo)

$data.used the data frame used to build the hybrid genotypes
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References

coef.mmer

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package

sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for

Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-
Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nu-
cleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293

See Also

mmer— the core function of the package

Examples

ITRTRToN
HHHH
HHHH

#i### use Technow data as example
data(DT_technow)

DT <- DT_technow

Md <- (Md_technow * 2) - 1

Mf <- (Mf_technow *x 2) - 1

## first get all possible hybrids

resl <- build.HMM(Md, Mf,
return.combos.only = TRUE)

head(res1$data.used)

## build the marker matrix for the first 50 hybrids
res2 <- build.HMM(Md, Mf,
custom.hyb = resl1$data.used[1:50,]
)
res2$HMM.add[1:5,1:5]
res2$HMM.dom[1:5,1:5]

## now you can use the A.mat(), D.mat() and E.mat() functions

# M <- res2$HMM.add
# A <- A.mat(M)
# D <- D.mat(M)

coef.mmer

coef form a GLMM fitted with mmer

Description

coef method for class "mmer".
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Usage
## S3 method for class 'mmer'
coef(object, ...)

Arguments
object an object of class "mmer”

Further arguments to be passed

Value

vector of coef

Author(s)

Giovanny Covarrubias <covarrubiasp@wisc.edu>

See Also

coef, mmer

CS Compound symmetry matrix

Description

Creates a compound symmetry matrix with parameters specified.

Usage
CS(x, rho=0.25)

Arguments
X vector of the variable to define the factor levels for the ARMA covariance struc-
ture.
rho rho value for the matrix.
Details

Specially useful for constructing covariance structures for rows and ranges to capture better the
spatial variation trends in the field. The rho value is assumed fixed and values of the variance
component will be optimized through REML.

Value

If everything is defined correctly the function returns:

$nn the correlation matrix
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References
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core function of the package mmer

Examples

x <- 1:4
R1 <- CS(x,rho=.25)
image (R1)

cs customized covariance structure

Description

cs creates a customized covariance structure for specific levels of the random effect.

Usage
cs(x, mm)
Arguments
X vector of observations for the random effect.
mm customized variance-covariance structure for the levels of the random effect.
Value

$res a list with the provided vector and the variance covariance structure expected for the levels of
the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use cs in the mmer solver.
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Examples

x <- as.factor(c(1:5,1:5,1:5));x
cs(x,matrix(1,5,5))

D.mat Dominance relationship matrix

Description

C++ implementation of the dominance matrix. Calculates the realized dominance relationship ma-
trix. Can help to increase the prediction accuracy when 2 conditions are met; 1) The trait has

intermediate to high heritability, 2) The population contains a big number of individuals that are
half or full sibs (HS & FS).

Usage

D.mat(X,nishio=TRUE,min.MAF=0,return. imputed=FALSE)

Arguments
X Matrix (n x m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.
nishio If TRUE Nishio ans Satoh. (2014), otherwise Su et al. (2012). See references.
min.MAF Minimum minor allele frequency. The D matrix is not sensitive to rare alleles,

so by default only monomorphic markers are removed.

return.imputed When TRUE, the imputed marker matrix is returned.

Details

The additive marker coefficients will be used to compute dominance coefficients as: Xd = 1-abs(X)
for diploids.

For nishio method: the marker matrix is centered by subtracting column means M = Xd — ms
where ms is the column means. Then A = MM’ /c, where ¢ = 2%, pr(1 — pi).

For su method: the marker matrix is normalized by subtracting row means M = Xd — 2pq where
2pq is the product of allele frequencies times 2. Then A = MM’ /c, where c = 2, 2pqy (1 — 2pqy).
Value

If return.imputed = FALSE, the n x n additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

$D the D matrix

$imputed the imputed marker matrix
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for
Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-
Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nu-
cleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293

See Also

The core functions of the package mmer

Examples

#### EXAMPLE 1

HiHH
HHHH

#i##Htrandom population of 200 lines with 1000 markers
X <- matrix(rep(@,200%1000),200,1000)
for (i in 1:200) {
X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
3

D <- D.mat(X)

dfToMatrix data frame to matrix

Description

This function takes a matrix that is in data frame format and transforms it into a matrix. Other pack-
ages that allows you to obtain an additive relationship matrix from a pedigree is the ‘pedigreemm°
package.

Usage

dfToMatrix(x, row="Row",column="Column",
value="Ainverse"”, returnInverse=FALSE,
bend=1e-6)
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Arguments

X
row

column

value

returnlnverse

bend

Value

K

Kinv

Author(s)

29

ginv element, output from the Ainverse function.
name of the column in x that indicates the row in the original relationship matrix.

name of the column in x that indicates the column in the original relationship
matrix.

name of the column in x that indicates the value for a given row and column in
the original relationship matrix.

a TRUE/FALSE value indicating if the inverse of the x matrix should be com-
puted once the data frame x is converted into a matrix.

a numeric value to add to the diagonal matrix in case matrix is singular for
inversion.

pedigree transformed in a relationship matrix.

inverse of the pedigree transformed in a relationship matrix.

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

library(Matrix)

m <- matrix(1:9,3,3)
m <- tcrossprod(m)

mdf <- as.data.frame(as.table(m))

mdf

dfToMatrix(mdf, row = "Var1”, column = "Var2",

value

= "Freq",returnInverse=FALSE )
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ds diagonal covariance structure

Description

ds creates a diagonal covariance structure for the levels of the random effect.

Usage

ds(x)

Arguments

X vector of observations for the random effect.

Value

$res a list with the provided vector and the variance covariance structure expected for the levels of
the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use ds in the mmer solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
ds(x)
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DT_augment DT _augment design example.

Description

This dataset contains phenotpic data for one trait evaluated in the experimental design known as
augmented design. This model allows to obtain BLUPs for genotypes that are unreplicated by
dividing the field in blocks and replicating "check genotypes’ in the blocks and unreplicated geno-
types randomly within the blocks. The presence of check genotypes (usually cultivars) allows the
adjustment of unreplicated genotypes.

Usage

data(”"DT_augment™)

Format

The format is: chr "DT_augment"

Source

This data was generated by a potato study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#### AUGMENTED DESIGN EXAMPLE

data(DT_augment)

summary (mix1)
blup <- mix1$U$ Genotype:Check*$TSW
blup

#

# DT <- DT_augment

# head(DT)

# HHH tHHHE
# ##H## fit the mixed model and check summary

# HHHH

# mix1 <- mmer(TSW ~ Check.Gen,

# random = ~ Block + Genotype:Check,
# data=DT)

#

#

#



32 DT btdata

DT_btdata Blue Tit Data for a Quantitative Genetic Experiment

Description

a data frame with 828 rows and 7 columns, with variables tarsus length (tarsus) and colour (back)
measured on 828 individuals (animal). The mother of each is also recorded (dam) together with the
foster nest (fosternest) in which the chicks were reared. The date on which the first egg in each nest
hatched (hatchdate) is recorded together with the sex (sex) of the individuals.

Usage

data("DT_btdata")

Format

The format is: chr "DT_btdata"

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples

HHHH-
HHHH
HHHH

#### EXAMPLE 1
#i### simple example

#

data(DT_btdata)

DT <- DT_btdata

head(DT)

mix4 <- mmer(tarsus ~ sex,

random = ~ dam + fosternest,
rcov=~units,

data = DT)

T E E E E T
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summary (mix4)

#### EXAMPLE 2
#### more complex multivariate model

FTSTRTNT

data(DT_btdata)
DT <- DT_btdata
mix3 <- mmer(cbind(tarsus, back) ~ sex,

random = ~ vs(dam) + vs(fosternest),
rcov= ~ vs(units, Gtc=diag(2)),
data = DT)

summary (mix3)

#### calculate the genetic correlation
cov2cor(mix3$sigma$*u:dam*)
cov2cor(mix3$sigma$ u:fosternest®)

N E E E E E E E R E E E EE

DT_cornhybrids Corn crosses and markers

Description

This dataset contains phenotpic data for plant height and grain yield for 100 out of 400 possible
hybrids originated from 40 inbred lines belonging to 2 heterotic groups, 20 lines in each, 1600 rows
exist for the 400 possible hybrids evaluated in 4 locations but only 100 crosses have phenotypic
information. The purpose of this data is to show how to predict the other 300 crosses.

The data contains 3 elements. The first is the phenotypic data and the parent information for each
cross evaluated in the 4 locations. 1200 rows should have missing data but the 100 crosses per-
formed were chosen to be able to estimate the GCA and SCA effects of everything.

The second element of the data set is the phenotypic data and other relevant information for the 40.

The third element is the genomic relationship matrix for the 40 inbred lines originated from 511
SNP markers and calculated using the A.mat function.

Usage
data("DT_cornhybrids")

Format

The format is: chr "DT_cornhybrids"

Source

This data was generated by a corn study.
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

ITRTHTETE ITRTRTETS
i HHHH#

#i### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

data(DT_cornhybrids)

DT <- DT_cornhybrids

DTi <- DTi_cornhybrids

GT <- GT_cornhybrids

hybrid2 <- DT # extract cross data

A <- GT

K1 <- A[levels(hybrid2$GCA1), levels(hybrid2$GCA1)]; dim(K1)
K2 <- Allevels(hybrid2$GCA2), levels(hybrid2$GCA2)]; dim(K2)
S <- kronecker(K1, K2) ; dim(S)

rownames(S) <- colnames(S) <- levels(hybrid2$SCA)

ans <- mmer(Yield ~ Location,
random = ~ vs(GCA1,Gu=K1) + vs(GCA2,Gu=K2) + vs(SCA,Gu=S),
rcov=~units,
data=hybrid2)

#i### Example of multivariate model

FTRTRTNTY
H

data(DT_cornhybrids)

hybrid2 <- DT_cornhybrids # extract cross data
DTi <- DTi_cornhybrids

GT <- GT_cornhybrids

hybrid2 <- hybrid2[which(!is.na(hybrid2$Yield)),]
names (hybrid2)[5:6] <- c("TY","PH")

head(hybrid2)

A <- GT
K1 <- A[levels(hybrid2$GCA1), levels(hybrid2$GCA1)]; dim(K1)
K2 <- A[levels(hybrid2$GCA2), levels(hybrid2$GCA2)]; dim(K2)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
ki
#
#
1
#
#
ki
#
# S <- kronecker(K1, K2) ; dim(S)
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# rownames(S) <- colnames(S) <- levels(hybrid2$SCA)

#
# ans <- mmer(cbind(TY,PH) ~ Location,
# random = ~ vs(GCA2,Gu=K2) + vs(SCA,Gu=S),
# rcov = ~ vs(units,Gtc=diag(2)),
# data=hybrid2)
DT_cpdata Genotypic and Phenotypic data for a CP population
Description

A CP population or F1 cross is the designation for a cross between 2 highly heterozygote individu-
als; i.e. humans, fruit crops, bredding populations in recurrent selection.

This dataset contains phenotpic data for 363 siblings for an F1 cross. These are averages over 2
environments evaluated for 4 traits; color, yield, fruit average weight, and firmness. The columns
in the CPgeno file are the markers whereas the rows are the individuals. The CPpheno data frame
contains the measurements for the 363 siblings, and as mentioned before are averages over 2 envi-
ronments.

Usage

data("DT_cpdata”)

Format

The format is: chr "DT_cpdata"

Source

This data was simulated for fruit breeding applications.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer
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Examples

#i### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

HHHH
HHHH

#

TRTRT
HHH 1
tHH+

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
#### create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
#### look at the data and fit the model
head(DT)
mix1 <- mmer(Yield~1,

random=~vs(id,Gu=A)

+ Rowf + Colf,

rcov=~units,

data=DT)
summary(mix1)$varcomp

FTRTRTNTS HHHH
HHHH HHHH

DT$idd <- DT$id;
A <- A.mat(GT) # additive relationship matrix
D <- D.mat(GT) # dominance relationship matrix
mm <- matrix(3,1,1);mm ## matrix to fix the var comp
mix2 <- mmer(Yield~1,
random=~vs(id, Gu=A, Gti=mix1$sigma_scaled$‘u:id*, Gtc=mm)
+ vs(Rowf,Gti=mix1$sigma_scaled$Rowf, Gtc=mm)
+ vs(Colf,Gti=mix1$sigma_scaled$Colf, Gtc=mm)
+ vs(idd, Gu=D, Gtc=unsm(1)),
rcov=~vs(units,Gti=mix1$sigma_scaled$units, Gtc=mm),
data=DT)
summary (mix2)$varcomp

#### adding dominance and forcing the other VC's
#### to customized values you may want to

DT$idd <- DT$id;
A <- A.mat(GT) # additive relationship matrix
D <- D.mat(GT) # dominance relationship matrix
mm <- matrix(3,1,1);mm ## matrix to fix the var comp
varY <- var(DT[,"Yield"], na.rm = TRUE)
mix3 <- mmer(Yield~1,
random=~vs(id, Gu=A, Gti=matrix(40@/varY), Gtc=mm)

e E E E E E E E E E E E E E E E E R E E E R T R E E R E E E E R E E E R E T E E R E TS
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# + vs(Rowf,Gti=matrix(500/varY), Gtc=mm)

# + vs(Colf,Gti=mix1$sigma_scaled$Colf, Gtc=mm)

# + vs(idd, Gu=D, Gtc=unsm(1)),

# rcov=~vs(units,Gti=mix1$sigma_scaled$units, Gtc=mm),

# data=DT)

# summary(mix3)$varcomp

#

# #H‘#‘H ———————————————————— ##H‘#

# #### multivariate model ####

# 2 traits fizizizid

# #H‘#‘H ———————————————————— ##H‘#

# #H## be patient take some time

# ans.m <- mmer(cbind(Yield,color)~1,

# random=~ vs(id, Gu=A)

# + vs(Rowf,Gtc=diag(2))

# + vs(Colf,Gtc=diag(2)),

# rcov=~ vs(units),

# data=DT)

# cov2cor(ans.m$sigma$tu:id*)

#

DT_example Broad sense heritability calculation

Description

This dataset contains phenotpic data for 41 potato lines evaluated in 3 environments in an RCBD
design. The phenotypic trait is tuber quality and we show how to obtain an estimate of DT_example
for the trait.

Usage
data("DT_example")

Format

The format is: chr "DT_example"

Source

This data was generated by a potato study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer
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Examples

For CRAN time limitations most lines in
examples are silenced with one '#' mark,
remove them and run the examples

EXAMPLES
#i### Different models with sommer

HHHH

HHHH

data(DT_example)
DT <- DT_example
A <- A_example
head(DT)

HHHH
HHHH

#### Univariate homogeneous variance models

HHH#HH

## Compound simmetry (CS) model
ans1 <- mmer(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)

summary(ans1)

#### Univariate heterogeneous variance models

HHHH-

H#iHH

HHHH

## Compound simmetry (CS) + Diagonal (DIAG) model

ans2 <- mmer(Yield~Env,

random= ~Name + vs(ds(Env),Name),

rcov= ~ vs(ds(Env),units),
data=DT)
summary (ans2)

#### Univariate unstructured variance models

ans3 <- mmer(Yield~Env,
random=~ vs(us(Env),Name),
rcov=~vs(us(Env),units),
data=DT)

summary (ans3)

e

"

+H

gy
HH#
HH

+H

FTRTRTNT

#### Multivariate homogeneous variance models #it#

STRTRTRTY

HHHH

N

I HH

DT _example
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## Multivariate Compound simmetry (CS) model
DT$EnvName <- paste(DT$Env,DT$Name)
ans4 <- mmer(cbind(Yield, Weight) ~ Env,

random= ~ vs(Name) + vs(EnvName),
rcov= ~ vs(units),
data=DT)

summary (ans4)

#### Multivariate heterogeneous variance models #i#t##

HHH HHHH
HHHH HHHH

## Multivariate Compound simmetry (CS) + Diagonal (DIAG) model
ans5 <- mmer(cbind(Yield, Weight) ~ Env,

random= ~ vs(Name) + vs(ds(Env),Name),
rcov= ~ vs(ds(Env),units),
data=DT)

summary (ans5)

H#HHH4 HHHH
HHHH HHHH

ans6 <- mmer(cbind(Yield, Weight) ~ Env,

B T R R E E E E E R E

random= ~ vs(us(Env),Name),
rcov= ~ vs(ds(Env),units),
data=DT)
summary (ans6)
DT_expdesigns Data for different experimental designs

Description
The following data is a list containing data frames for different type of experimental designs relevant
in plant breeding:
1) Augmented designs (2 examples)
2) Incomplete block designs (1 example)
3) Split plot design (2 examples)
4) Latin square designs (1 example)
5) North Carolina designs LII and III

How to fit each is shown at the Examples section. This may help you get introduced to experimental
designs relevant to plant breeding. Good luck.

Format

Different based on the design.
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Source

Datasets and more detail about them can be found in the agricolae package. Here we just show the
datasets and how to analyze them using the sommer package.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

e E E E E E E E E E E E E E E E E E E E E E R E E R E E T E R T E

HHH HHH

#i### ===== Augmented Block Design 1 ==== #i#i#

Fizizizd Fizizizd

data(DT_expdesigns)

DT <- DT_expdesigns

names (DT)

datal <- DT$aul

head(datal)

## response variable: "yield”

## check indicator: "entryc” ('nc' for all unreplicated, but personal.name for checks)

## blocking factor: "block”

## treatments, personal names for replicated and non-replicated: "trt"

## check no check indicator: "new

mix1 <- mmer(yield~entryc,
random=~block+trt,
rcov=~units,
data=datal)

summary (mix1)

n

fizizizis fizizizis
#### ==== North Carolina Design III ==== ####
HHH# HitH#

data.car3 <- DT$car3

data.car3$setrep <- paste(data.car3$set,data.car3$rep,sep=":")

head(data.car3)

## response variable: "yield”

## male indicator: "male”

## female indicator: "female”

## replication: "rep

## set of males: "set”

mix.car3 <- mmer(yield ~ set,
random=~ male

+ female ,

rcov=~units,
data=data.car3)

(suma <- summary(mix.car3))

n
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DT_fulldiallel Full diallel data for corn hybrids

Description
This dataset contains phenotpic data for 36 winter bean hybrids, coming from a full diallel design
and evaluated for 9 traits. The column male and female origin columns are included as well.
Usage
data("DT_fulldiallel™)

Format

The format is: chr "DT_fulldiallel"

Source

This data was generated by a winter bean study and originally included in the agridat package.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

HHHH HHH
- tH 4

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,

#### remove them and run the examples
data(DT_fulldiallel)

DT <- DT_fulldiallel

head(DT)

mix <- mmer(stems~1, random=~female+male, data=DT)
summary (mix)

HH
H#

HHHH-
# H#
#

HHHH

#### Multivariate model example

H-
#
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data(DT_fulldiallel)
DT <- DT_fulldiallel
head(DT)

mix <- mmer(cbind(stems,pods,seeds)~1,
random=~vs(female) + vs(male),
rcov=~vs(units),
data=DT)

summary (mix)

#### genetic variance covariance

cov2cor(mix$sigma$ u: female®)

cov2cor(mix$sigma$tu:male*)
cov2cor(mix$sigma$ u:units®)

DT_gryphon Gryphon data from the Journal of Animal Ecology

Description

This is a dataset that was included in the Journal of animal ecology by Wilson et al. (2010; see
references) to help users understand how to use mixed models with animal datasets with pedigree
data.

The dataset contains 3 elements:

gryphon; variables indicating the animal, the mother of the animal, sex of the animal, and two
quantitative traits named 'BWT’ and "TARSUS’.

pedi; dataset with 2 columns indicating the sire and the dam of the animals contained in the gryphon
dataset.

A; additive relationship matrix formed using the *getA()’ function used over the pedi dataframe.

Usage

data("DT_gryphon™)

Format

The format is: chr "DT_gryphon"

Source

This data comes from the Journal of Animal Ecology. Please, if using this data cite Wilson et al.
publication. If using our mixed model solver please cite Covarrubias’ publication.

References

Wilson AJ, et al. (2010) An ecologist’s guide to the animal model. Journal of Animal Ecology
79(1): 13-26.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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See Also

The core functions of the package mmer

Examples

FTRTRTRTS
HHHH
HHHH

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#i### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

e E EEE R

S R R

data(DT_gryphon)
DT <- DT_gryphon
A <- A_gryphon
P <- P_gryphon

#### look at the data
head(DT)
#i### fit the model with no fixed effects (intercept only)
mix1 <- mmer (BWT~1,
random=~vs (ANIMAL,Gu=A),
rcov=~units,
data=DT)
summary (mix1)

#### fit the multivariate model with no fixed effects (intercept only)
mix2 <- mmer(cbind(BWT,TARSUS)~1,

random=~vs (ANIMAL,Gu=A),

rcov=~vs(units),

na.method.Y = "include2”,

data=DT)
summary (mix2)

cov2cor(mix2$sigma$u: ANIMAL")
cov2cor(mix2$sigma$ u:units®)

DT_

h2 Broad sense heritability calculation.

Description

This dataset contains phenotpic data for 41 potato lines evaluated in 5 locations across 3 years in
an RCBD design. The phenotypic trait is tuber quality and we show how to obtain an estimate of
DT _h2 for the trait.

Usage

data("DT_h2")
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Format

The format is: chr "DT_h2"

Source

This data was generated by a potato study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

HHHH HHHH

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples

data(DT_h2)
DT <- DT_h2
head(DT)

# #### fit the mixed model (very heavy model)

# HHH

# ans1 <- mmer(y~Env,

# random=~vs(ds(Env),Name) + vs(ds(Env),Block),
# rcov=~vs(ds(Env),units),

# data=DT)

# summary(ans1)

DT_halfdiallel half diallel data for corn hybrids

Description

This dataset contains phenotpic data for 21 corn hybrids, with 2 technical repetitions, coming from
a half diallel design and evaluated for sugar content. The column geno indicates the hybrid and
male and female origin columns are included as well.

Usage
data("DT_halfdiallel™)
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Format

The format is: chr "DT_halfdiallel"

Source

This data was generated by a corn study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples

data(DT_halfdiallel)
DT <- DT_halfdiallel
head(DT)

HHH
HHH#

.

H#
t

#:

DT$femalef <- as.factor(DT$female)

DT$malef <- as.factor(DT$male)

DT$genof <- as.factor(DT$geno)

#### model using overlay

modh <- mmer(sugar~1,
random=~vs(overlay(femalef,malef)) + genof,
rcov=~units,
data=DT)

summary (modh)

#### model using overlay and covariance structures

A <- diag(7); A[1,2] <- 0.5; A[2,1] <- 0.5 # fake covariance structure
colnames(A) <- as.character(1:7); rownames(A) <- colnames(A);A

modh2 <- mmer(sugar~1,
random=~ vs(overlay(female,male),Gu=A) + geno,
data=DT)

summary (modh2)
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DT_ige

Data to fit indirect genetic effects.

Description

This dataset contains phenotpic data for 98 individuals where they are measured with the purpose

of identifying the effect of the neighbour in a focal individual.

Usage

data("DT_ige")

Format

The format is: chr "DT_ige"

Source

This data was masked from a shared study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package

sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples

H#
HHHH

#i#H## EXAMPLES
#i### Different models with sommer

nnnnn

data(DT_ige)

DT <- DT_ige

Af <- A_ige

An <- A_ige

### Direct genetic effects model
# modDGE <- mmer(trait ~ block,

# random = ~ focal,
# rcov = ~ units,
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# data = DT)
# summary (modDGE) $varcomp
#

### Indirect genetic effects model without covariance between DGE and IGE
# modDGE <- mmer(trait ~ block,

# random = ~focal + neighbour,
# rcov = ~ units,

# data = DT)

# summary (modDGE) $varcomp

#

### Indirect genetic effects model with covariance between DGE and IGE
# modIGE <- mmer(trait ~ block,

# random = ~ gvs(focal, neighbour),
# rcov = ~ units, iters=4,

# data = DT)

# summary (modIGE)$varcomp

#

### Indirect genetic effects model with covariance between DGE and IGE using relationship matrices
# modIGEb <- mmer(trait ~ block,

# random = ~ gvs(focal, neighbour, Gu=list(Af,An)),
# rcov = ~ units,
# data = DT)

# summary(modIGEb) $varcomp

DT_legendre Simulated data for random regression

Description
A data frame with 4 columns; SUBJECT, X, Xfand Y to show how to use the Legendre polynomials
in the mmer function using a numeric variable X and a response variable Y.

Usage

data("DT_legendre")

Format

The format is: chr "DT_legendre"

Source

This data was simulated for fruit breeding applications.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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See Also

The core functions of the package mmer

Examples

HHHH HHHH
- HHHH

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

you need to install the orthopolynom library to do random regression models
library(orthopolynom)
data(DT_legendre)
DT <- DT_legendre
mRR2<-mmer (Y~ 1 + Xf
, random=~ vs(us(leg(X,1)),SUBJECT)
, rcov=~vs(units)
, data=DT)
summary (mRR2) $varcomp

N I T R

DT_mohring Full diallel data for corn hybrids

Description
This dataset contains phenotpic data for 36 winter bean hybrids, coming from a full diallel design
and evaluated for 9 traits. The column male and female origin columns are included as well.
Usage

data("DT_mohring")

Format

The format is: chr "DT_mohring"

Source

This data was generated by a winter bean study and originally included in the agridat package.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer
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Examples

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples

data(DT_mohring)

DT <- DT_mohring

head(DT)

DT2 <- add.diallel.vars(DT,pari1="Parl1"”, par2="Par2")
head(DT2)

# GRIFFING MODEL 2 with reciprocal effects #iH##tH#H A

mod1h <- mmer(Ftime ~ 1, data=DT2,
random = ~ Block

GCA male & female overlayed

overlay(Par1, Par2)

SCA effects (includes cross and selfs)

cross.id

SCAR reciprocal effects (if zero there's no reciprocal effects)
+ cross.id:cross.type)

summary (mod1h) $varcomp

# o+ H o+

## VarComp VarCompSE  Zratio
## Block.Ftime-Ftime 0.00000 9.32181 0.000000
## overlay(Parl1, Par2).Ftime-Ftime 1276.73089 750.17269 1.701916
## cross.id.Ftime-Ftime 1110.99090 330.16921 3.364914
## cross.id:cross.type.Ftime-Ftime 66.02295 49.26876 1.340057
## units.Ftime-Ftime 418.47949 74.56442 5.612321
#H#

# GRIFFING MODEL 2, no reciprocal effects ##t#t#HH##HHH#HHHHHHHHHHEHEHAHEHE
modlh <- mmer(Ftime ~ Block + is.cross, data=DT2,

random = ~

# GCA for all (female and male)

overlay(Par1, Par2)

# GCA (only for hybrids)

+ overlay(Par1, Par2):is.cross

# SCA (hybrids only)

+ cross.id:is.cross)
summary (mod1h) $varcomp

#it VarComp VarCompSE  Zratio
## overlay(Parl, Par2).Ftime-Ftime 2304.1781 1261.63193 1.826347
## overlay(Parl1, Par2):is.cross.Ftime-Ftime 613.6040 402.74347 1.523560
## cross.id:is.cross.Ftime-Ftime 340.7030 148.56225 2.293335
## units.Ftime-Ftime 501.6275 74.36075 6.745864
#H#

# GRIFFING MODEL 3, no reciprocal effects #it#Ht#HHHHHHHHHHHHHHEHHEHHHHEHE
mod1h <- mmer(Ftime ~ Block + is.cross, data=DT2,

random = ~

# GCAC (only for hybrids)

overlay(Parl, Par2):is.cross

# male GCA (only for inbreds)



50

+ Paril:is.self
# SCA (for hybrids only)
+ cross.id:is.cross)

summary (mod1h) $varcomp

#it

VarComp VarCompSE Zratio

## overlay(Parl1, Par2):is.cross.Ftime-Ftime 927.7895 537.91218 1.724797

## Parl:is.self.Ftime-Ftime 9960.9247 5456.58188 1.825488
## cross.id:is.cross.Ftime-Ftime 341.4567 148.53667 2.298804
## units.Ftime-Ftime 498.5974  73.92066 6.745035
##

# GRIFFING MODEL 2, with reciprocal effects #iHHH#H#HHHHHHHHHHHHEHHHHEHHHE
# In Mohring: mixed model 3 reduced
mod1h <- mmer(Ftime ~ Block + is.cross, data=DT2,

random = ~

# GCAC (for hybrids only)
overlay(Par1, Par2):is.cross
male GCA (for selfs only)
Par1:is.self

SCA (for hybrids only)
cross.id:is.cross

SCAR reciprocal effects

+ cross.id:cross.type)

#H o4+ o+

summary (mod1h) $varcomp

#it
#it
##
#it
#it
##
#it

VarComp VarCompSE  Zratio
overlay(Par1, Par2):is.cross.Ftime-Ftime  927.78742 537.89981 1.724833
Parl:is.self.Ftime-Ftime 10001.78854 5456.47578 1.833013

cross.id:is.cross.Ftime-Ftime 361.89712 148.54264 2.436318
cross.id:cross.type.Ftime-Ftime 66.43695  49.24492 1.349113
units.Ftime-Ftime 416.82960 74.27202 5.612203

# GRIFFING MODEL 3, with RGCA + RSCA #iHttHttHHHHHHHHHHHEHHHE A
# In Mohring: mixed model 3
modlh <- mmer(Ftime ~ Block + is.cross, data=DT2,

random = ~

# GCAC (for hybrids only)

overlay(Par1,Par2):is.cross

RGCA: exclude selfs (to identify reciprocal effects)
overlay(Par1,Par2):cross.type

male GCA (for selfs only)

Parl:is.self

SCA (for hybrids only)

cross.id:is.cross

SCAR: exclude selfs (if zero there's no reciprocal effects)
+ cross.id:cross.type)

# o+ O+ H O+ H

summary (mod1h) $varcomp

#it
#i#
#it
#it
#i#
#it
#it

VarComp VarCompSE Zratio
overlay(Par1, Par2):is.cross.Ftime-Ftime  927.7843 537.88164 1.7248857
Parl:is.self.Ftime-Ftime 10001.7570 5456.30125 1.8330654

cross.id:is.cross.Ftime-Ftime 361.8958 148.53670 2.4364068
overlay(Par1, Par2):cross.type.Ftime-Ftime 17.9799 19.92428 0.9024114
cross.id:cross.type.Ftime-Ftime 30.9519  46.43908 0.6665054
units.Ftime-Ftime

DT_mohring
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DT_polyploid Genotypic and Phenotypic data for a potato polyploid population

Description

This dataset contains phenotpic data for 18 traits measured in 187 individuals from a potato diversity
panel. In addition contains genotypic data for 221 individuals genotyped with 3522 SNP markers.
Please if using this data for your own research make sure you cite Rosyara’s (2015) publication (see
References).

Usage
data("DT_polyploid”)

Format

The format is: chr "DT_polyploid"

Source

This data was extracted from Rosyara (2016).

References

If using this data for your own research please cite:

Rosyara Umesh R., Walter S. De Jong, David S. Douches, Jeffrey B. Endelman. Software for
genome-wide association studies in autopolyploids and its application to potato. The Plant Genome
2015.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#i#t## remove them and run the examples using

#### command + shift + C |OR| control + shift + C

HHH=—————————————————————————————————————————f# f# #
B e e e e it 2 12 12

data(DT_polyploid)
# DT <- DT_polyploid
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GT <- GT_polyploid
MP <- MP_polyploid

o
HH#
HH

£
+H+
=+
++

E.

#i##HHH#E convert markers to numeric format

4 HHHH
HHHH HHHH

numo <- atcgl234(data=GT, ploidy=4);
numo$M[1:5,1:51;
numo$ref.allele[,1:5]

### get the markers and phenotypes for such inds

H#HH4 HHHH
HHH HHHH

marks <- numo$M[common,]; marks[1:5,1:5]
DT2 <- DT[match(common,DT$Name),];

DT2 <- as.data.frame(DT2)

DT2[1:5,]

HHH
HHH

#i#t#HH# Additive relationship matrix,

HH
HH

idy

- A.mat(marks, ploidy=4)
- D.mat(marks, ploidy=4)

### run as mixed model

ans <- mmer (tuber_shape~1,
random=~vs(Name, Gu=A),
data=DT2)

summary (ans)

### run it as GWAS model

ans2 <- GWAS(tuber_shape~1,
random=~vs(Name, Gu=A),
rcov=~units,
gTerm = "Name",
M=marks, data=DT2)
summary(ans2)
plot(ans2$scores[1,]1)
plot(ans2$r2m[1,1)

e E E E EE E E E E E E E E E E E E E E R E E R E E R E E E E R T E E E T E T E R TS

DT_rice Rice lines dataset
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Description

Information from a collection of 413 rice lines. The DT_rice data set is from Rice Diversity Org.
Program. The lines are genotyped with 36,901 SNP markers and phenotyped for more than 30
traits. This data set was included in the package to play with it. If using it for your research make
sure you cite the original publication from Zhao et al.(2011).

Usage
data(DT_rice)

Format

RicePheno contains the phenotypes RiceGeno contains genotypes letter code RiceGenoN contains
the genotypes in numerical code using atcg1234 converter function

Source

Rice Diversity Organization http://www.ricediversity.org/data/index.cfm.

References

Keyan Zhao, Chih-Wei Tung, Georgia C. Eizenga, Mark H. Wright, M. Liakat Ali, Adam H. Price,
Gareth J. Norton, M. Rafiqul Islam, Andy Reynolds, Jason Mezey, Anna M. McClung, Carlos D.
Bustamante & Susan R. McCouch (2011). Genome-wide association mapping reveals a rich ge-
netic architecture of complex traits in Oryza sativa. Nat Comm 2:467 DOI: 10.1038/ncomms 1467,
Published Online 13 Sep 2011.

See Also

The core functions of the package mmer

Examples

HHHH HHH
- tH 4

#### For CRAN time limitations most lines in the
#it## examples are silenced with one '#' mark,
#### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

HHHH-
HHHH
HHHH

data(DT_rice)

DT <- DT_rice

GT <- GT_rice

GTn <- GTn_rice

head(DT)

M <- atcgl234(GT)

A <- A.mat(M$M)

mix <- mmer(Protein.content~1,
random = ~vs(geno, Gu=A) + geno,
rcov=~units,

#
#
#
#
#
#
#
#
#
# data=DT)
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DT_sleepstudy Reaction times in a sleep deprivation study

Description

The average reaction time per day for subjects in a sleep deprivation study. On day O the subjects
had their normal amount of sleep. Starting that night they were restricted to 3 hours of sleep per
night. The observations represent the average reaction time on a series of tests given each day to
each subject. Data from sleepstudy to see how Ime4 models can be translated in sommer.

Usage

data("DT_sleepstudy")

Format

The format is: chr "DT_sleepstudy”

Source
These data are from the study described in Belenky et al. (2003), for the sleep deprived group and
for the first 10 days of the study, up to the recovery period.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Gregory Belenky et al. (2003) Patterns of performance degradation and restoration during sleep
restrictions and subsequent recovery: a sleep dose-response study. Journal of Sleep Research 12,
1-12.

See Also

The core functions of the package mmer

Examples

#i### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples

HHHH- m
HHH## 1
HHHH #

# library(lme4)
data(DT_sleepstudy)

DT <- DT_sleepstudy

head(DT)
HHHHHHHEEE A
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## 1me4
# fml <- lmer(Reaction ~ Days + (1 | Subject), data=DT)
# vc <- VarCorr(fml); print(vc,comp=c("Variance"))
## sommer
fm2 <- mmer(Reaction ~ Days,

random= ~ Subject,

data=DT, tolparinv = le-6, verbose = FALSE)
summary (fm2) $varcomp

SRR
## 1me4
# fml <- lmer(Reaction ~ Days + (Days || Subject), data=DT)
# vc <- VarCorr(fm1); print(vc,comp=c("Variance"))
## sommer
fm2 <- mmer(Reaction ~ Days,
random= ~ Subject + vs(Days, Subject),
data=DT, tolparinv = le-6, verbose = FALSE)
summary (fm2) $varcomp

HHH A A

## lmed

# fml <- lmer(Reaction ~ Days + (Days | Subject), data=DT)
# vc <- VarCorr(fml1); print(vc,comp=c("Variance"))

## sommer
## no equivalence in sommer to find the correlation between the 2 vc
## this is the most similar which is equivalent to (intercept || slope)

fm2 <- mmer(Reaction ~ Days,
random= ~ Subject + vs(Days, Subject),
data=DT, tolparinv = le-6, verbose = FALSE)
summary (fm2) $varcomp

A
## lme4
# fml <- lmer(Reaction ~ Days + (@ + Days | Subject), data=DT)
# vc <- VarCorr(fml); print(vc,comp=c("Variance"))
## sommer
fm2 <- mmer(Reaction ~ Days,
random= ~ vs(Days, Subject),
data=DT, tolparinv = 1e-6, verbose = FALSE)

summary (fm2) $varcomp
DT_technow Genotypic and Phenotypic data from single cross hybrids (Technow et
al.,2014)
Description

This dataset contains phenotpic data for 2 traits measured in 1254 single cross hybrids coming
from the cross of Flint x Dent heterotic groups. In addition contains the genotipic data (35,478
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markers) for each of the 123 Dent lines and 86 Flint lines. The purpose of this data is to demosntrate
the prediction of unrealized crosses (9324 unrealized crosses, 1254 evaluated, total 10578 single
crosses). We have added the additive relationship matrix (A) but can be easily obtained using the
A.mat function on the marker data. Please if using this data for your own research cite Technow et
al. (2014) publication (see References).

Usage

data("DT_technow")

Format

The format is: chr "DT_technow"

Source

This data was extracted from Technow et al. (2014).

References

If using this data for your own research please cite:

Technow et al. 2014. Genome properties and prospects of genomic predictions of hybrid perfor-
mance in a Breeding program of maize. Genetics 197:1343-1355.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

HHHH HHHH

data(DT_technow)
DT <- DT_technow
Md <- Md_technow
Mf <- Mf_technow
# Md <- (Md*2) - 1
# Mf <- (Mf%2) - 1
# Ad <- A.mat(Md)
# Af <- A.mat(Mf)

3+

ans2 <- mmer(GY~1,
random=~vs(dent,Gu=Ad) + vs(flint,Gu=Af),
# rcov=~units,

ES
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# data=DT)
# summary(ans2)

M <- rbind(Md,Mf)

A <- A.mat(M)

ans3 <- mmer(cbind(GY,GM)~1,
random=~vs(overlay(dent,flint),Gu=A),
rcov=~vs(units,Gtc=diag(2)),
data=DT)

summary(ans2)

cov2cor(ans3$sigmal[11])

#### Hybrid GWAS

HHH HHHH

#
#

#

#

#

#

#

#

#

#

#
# M <- (rbind(Md,Mf) %2 )-1
#

#

#

#

#

#

#

#

#

#

#

inds <- colnames(overlay(DT$dent,DT$flint)[[1]1])
Minds <- M[inds, ]

A <- A.mat(Minds)

A[1:4,1:4]

ans3 <- GWAS(GM~1, iters = 20,
random=~vs(overlay(dent,flint),Gu=A),
rcov=~vs(units),na.method.Y = "include”,
M=Minds, gTerm="dent",
data=DT)

plot(ans3$scores[1,])

DT_wheat wheat lines dataset

Description

Information from a collection of 599 historical CIMMYT wheat lines. The wheat data set is from
CIMMYT’s Global Wheat Program. Historically, this program has conducted numerous interna-
tional trials across a wide variety of wheat-producing environments. The environments represented
in these trials were grouped into four basic target sets of environments comprising four main agro-
climatic regions previously defined and widely used by CIMMYT’s Global Wheat Breeding Pro-
gram. The phenotypic trait considered here was the average grain yield (GY) of the 599 wheat lines
evaluated in each of these four mega-environments.

A pedigree tracing back many generations was available, and the Browse application of the Interna-
tional Crop Information System (ICIS), as described in (McLaren et al. 2000, 2005) was used for
deriving the relationship matrix A among the 599 lines; it accounts for selection and inbreeding.

Wheat lines were recently genotyped using 1447 Diversity Array Technology (DArT) generated
by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT markers
may take on two values, denoted by their presence or absence. Markers with a minor allele fre-
quency lower than 0.05 were removed, and missing genotypes were imputed with samples from
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the marginal distribution of marker genotypes, that is, z;; = Bernoulli(p;), where p; is the es-
timated allele frequency computed from the non-missing genotypes. The number of DArT MMs
after edition was 1279.

Usage
data(DT_wheat)

Format

Matrix Y contains the average grain yield, column 1: Grain yield for environment 1 and so on.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

McLaren, C. G., L. Ramos, C. Lopez, and W. Eusebio. 2000. “Applications of the geneaology
manegment system.” In International Crop Information System. Technical Development Manual,
version VI, edited by McLaren, C. G., J.W. White and P.N. Fox. pp. 5.8-5.13. CIMMyT, Mexico:
CIMMyT and IRRI.

McLaren, C. G., R. Bruskiewich, A.M. Portugal, and A.B. Cosico. 2005. The International Rice
Information System. A platform for meta-analysis of rice crop data. Plant Physiology 139: 637-
642.

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

HHHH HHHH
HHHH HHHH

# data(DT_wheat)

# DT <- DT_wheat

# GT <- GT_wheat

# DT <- as.data.frame(DT);colnames(DT) <- paste@(”"x",1:4);DT$line <- rownames(DT);
# rownames(GT) <- DT$line

# K <- A.mat(GT) # additive relationship matrix

# K[1:4,1:4]

FTRTNTI

STRTRTNTY
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#### using formula based 'mmer2’

# head(DT)
# #### univariate
# mix@ <- mmer(x1~1,

# random = ~vs(line,Gu=K),
# rcov=~vs(units),
# data=DT)
DT_yatesoats Yield of oats in a split-block experiment
Description

The yield of oats from a split-plot field trial using three varieties and four levels of manurial treat-
ment. The experiment was laid out in 6 blocks of 3 main plots, each split into 4 sub-plots. The
varieties were applied to the main plots and the manurial (nitrogen) treatments to the sub-plots.

Format
block block factor with 6 levels
nitro nitrogen treatment in hundredweight per acre
Variety genotype factor, 3 levels
yield yield in 1/4 1bs per sub-plot, each 1/80 acre.
row row location

column column location

Source
Yates, Frank (1935) Complex experiments, Journal of the Royal Statistical Society Suppl. 2, 181—
247.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples
H#it# H#it#
H### H#H##

data(DT_yatesoats)

DT <- DT_yatesoats

head (DT)

# m3 <- mmer(fixed=Y ~ V + N + V:N,
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# random = ~ B + B:MP,
# rcov=~units,
# data = DT)

# summary(m3)

E.mat Epistatic relationship matrix

Description

Calculates the realized epistatic relationship matrix of second order (additive x additive, additive x
dominance, or dominance x dominance) using hadamard products with the C++ Armadillo library.

Usage

E.mat(X,endelman=TRUE,nishio=TRUE, type="A#A" ,min.MAF=0.02)

Arguments
X Matrix (n x m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.
endelman Set endelman=TRUE to use the estimation procedure for the A matrix (see De-
tails in the A.mat help page).
nishio If TRUE Nishio ans Satoh. (2014), otherwise Su et al. (2012) (see Details in the
D.mat help page).
type An argument specifying the type of epistatic relationship matrix desired. The
default is the second order epistasis (additive x additive) type="A#A". Other op-
tions are additive x dominant (type="A#D"), or dominant by dominant (type="D#D").
min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles,
so by default only monomorphic markers are removed.
Details

it is computed as the Hadamard product of the epistatic relationship matrix; E=A#A, E=A#D,
E=D#D.

Value

The epistatic relationship matrix is returned.
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Endelman, J.B., and J.-L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix.
G3:Genes, Genomes, Genetics. 2:1405-1413. doi: 10.1534/g3.112.004259

Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for
Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-

Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nu-

cleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293
See Also

The core functions of the package mmer

Examples

HHHH- STRTRTRTS
HiHH HHHH

###Htrandom population of 200 lines with 1000 markers

X <- matrix(rep(@,200%1000),200,1000)
for (i in 1:200) {

X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
3

E <- E.mat(X, type="A#A")
# if heterozygote markers are present can be used "A#D" or "D#D"

EM Expectation Maximization Algorithm

Description

Univariate version of the expectation maximization (EM) algorithm.

Usage

EM(y, X=NULL,ZETA=NULL,R=NULL,iters=30,draw=TRUE,silent=FALSE,
constraint=TRUE, init=NULL, forced=NULL, tolpar = 1e-04,
tolparinv = 1e-06)

Arguments

y a numeric vector for the response variable

an incidence matrix for fixed effects.
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ZETA an incidence matrix for random effects. This can be for one or more random
effects. This NEEDS TO BE PROVIDED AS A LIST STRUCTURE. For ex-
ample Z=list(list(Z=7Z1, K=K1), list(Z=72, K=K?2), list(Z=23, K=K3)) makes a
2 level list for 3 random effects. The general idea is that each random effect with
or without its variance-covariance structure is a list, i.e. list(Z=7Z1, K=K1) where
Z is the incidence matrix and K the var-cov matrix. When moving to more than
one random effect we need to make several lists that need to be inside another
list. What we call a 2-level list, i.e. list(Z=Z1, K=K1) and list(Z=72, K=K?2)
would need to be put in the form; list(list(Z=Z1, K=K1),list(Z=Z1, K=K1)),
which as can be seen, is a list of lists (2-level list).

R a list of matrices for residuals, i.e. for longitudinal data. if not passed is assumed
an identity matrix.

draw a TRUE/FALSE value indicating if a plot of updated values for the variance
components and the likelihood should be drawn or not. The default is TRUE.
COMPUTATION TIME IS SMALLER IF YOU DON’T PLOT SETTING draw=FALSE

silent a TRUE/FALSE value indicating if the function should draw the progress bar or
iterations performed while working or should not be displayed.

iters a scalar value indicating how many iterations have to be performed if the EM is
performed. There is no rule of tumb for the number of iterations. The default
value is 100 iterations or EM steps.

constraint a TRUE/FALSE value indicating if the program should use the boundary con-
straint when one or more variance component is close to the zero boundary.
The default is TRUE but needs to be used carefully. It works ideally when few
variance components are close to the boundary but when there are too many
variance components close to zero we highly recommend setting this parameter
to FALSE since is more likely to get the right value of the variance components
in this way.

init vector of initial values for the variance components. By default this is NULL
and variance components are estimated by the method selected, but in case the
user want to provide initial values this argument is functional.

forced a vector of numeric values for variance components including error if the user
wants to force the values of the variance components. On the meantime only
works for forcing all of them and not a subset of them. The default is NULL,
meaning that variance components will be estimated by REML/ML.

tolpar tolerance parameter for convergence in the models.
tolparinv tolerance parameter for matrix inversion in the models.
Details

This algorithm is based on Searle (1993) and Bernanrdo (2010). This handles models of the form:
y=Xb+Zu+e

b ~ N[b.hat, 0] ............ zero variance because is a fixed term

u ~ N[0, K*sigma(u)] ....... where: K*sigma(u) = G

e ~ N[0, I*sigma(e)] ....... where: [*sigma(e) = R
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y ~ N[Xb, var(Zu+e)] ...... where;

var(y) = var(Zu+e) = ZGZ+R = V which is the phenotypic variance

The function allows the user to specify the incidence matrices with their respective variance-covariance
matrix in a 2 level list structure. For example imagine a mixed model with the following design:

fixed = only intercept.........cceceeeevererreenennen. b ~ N[b.hat, 0]

random = GCA1 + GCA2 + SCA................. u ~ N[0, G]

where G is:

IK*sigma(gcal)....ccceruerunne Oueeeeeereeeee 0......... |

Lo (LSO S*sigma(gea).....coeeevenenne. 0.cveee [=Gleenene 0o Oueeeireeieienee Wsigma(sca)..|

The function is based on useing initial values for variance components, i.e.:

var(e) <- 100 var(ul) <- 100 with incidence matrix Z1 var(u2) <- 100 with incidence matrix Z2
var(u3) <- 100 with incidence matrix Z3

and estimates the lambda(vx) values in the mixed model equations (MME) developed by Henderson
(1975), i.e. consider the 3 random effects stated above, the MME are:

Lo X*R*X o, X *¥R*¥Z 1o XHFR¥Z 2o X*¥R*¥Z3 o, [..X’Ry...|
Lo, Z1’*R*X......... Z1*R*¥Z1+K1*v1....Z1"*R*Z2.................. Z1'*R*Z3............. | I..Z1’Ry...|
Lo, Z2*R*X............. Z2*R*Z1............. 72 *R¥Z2+K2%*v2..... Z2 *R*Z3............. [..Z2’Ry...|
Lo Z3 *R*X...oveee Z3 *R*¥Z1..cccn. 73 *R*¥Z2D.cccn. 73 *R*Z3+K3*v3......| I..Z3’Ry...|
.............................................................. CllVeeeiiiicieiee et ceieeeeeeeieeeesseseneee . RHS

where "*"" is a matrix product, R is the inverse of the var-cov matrix for the errors, Z1, Z2, Z3 are
incidence matrices for random effects, X is the incidence matrix for fixed effects, K1,K2, K3 are
the var-cov matrices for random effects and v1,v2,v3 are the estimates of variance components. .
The algorithm can be summarized in the next steps: . 1) provide initial values for the variance com-
ponents 2) estimate the coefficient matrix from MME known as "C" 3) solve the mixed equations as
theta = RHS * C.inv 4) obtain new estimates of fixed (b’s) and random effects (u’s) called theta 5)
update values for variance components according to formulas 6) steps are repeated for a number of
iterations specified by the user, ideally is enough when no more variations in the estimates is found,
in several problems that could take thousands of iterations, whereas in other 10 iterations could be
enough.
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Value

If all parameters are correctly indicated the program will return a list with the following information:

$var.com a vector with the values of the variance components estimated

$V.inv a matrix with the inverse of the phenotypic variance V = ZGZ+R, VA-1

$u.hat a vector with BLUPs for random effects

$Var.u.hat a vector with variances for BLUPs

$PEV.u.hat a vector with predicted error variance for BLUPs

$beta.hat a vector for BLUES of fixed effects

$Var.beta.hat a vector with variances for BLUEs

$X incidence matrix for fixed effects

$Z. incidence matrix for random effects, if not passed is assumed to be a diagonal matrix

$K the var-cov matrix for the random effect fitted in Z

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390
pp. Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance
components. Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples

HHHH-
HHHH
HHHH

## Import phenotypic data on inbred performance

## Full data

data("DT_cornhybrids™")

hybrid2 <- DT_cornhybrids # extract cross data

A <- GT_cornhybrids # extract the var-cov K
SRR
HHHHHEHE AR

## breeding values with 3 variance components
B
HHHHEEEE AR

y <- hybrid2$Yield

X1 <- model.matrix(~ Location, data = hybrid2);dim(X1)
Z1 <- model.matrix(~ GCA1 -1, data = hybrid2);dim(Z1)

N E E E E
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# 72 <- model.matrix(~ GCA2 -1, data = hybrid2);dim(Z2)

# 73 <- model.matrix(~ SCA -1, data = hybrid2);dim(Z3)

#

# K1 <- A[levels(hybrid2$GCA1), levels(hybrid2$GCA1)]; dim(K1)

# ## Realized IBS relationships for set of parents 1

# K2 <- A[levels(hybrid2$GCA2), levels(hybrid2$GCA2)]1; dim(K2)

# ## Realized IBS relationships for set of parents 2

# S <- kronecker(K1, K2) ; dim(S)

# ## Realized IBS relationships for cross (as the Kronecker product of K1 and K2)

# rownames(S) <- colnames(S) <- levels(hybrid2$SCA)

#

# ETA <- list(list(Z=21, K=K1), list(Z=Z2, K=K2))#, list(Z=Z3, K=S))

# ans <- EM(y=y, ZETA=ETA, iters=50)

# ans$var.comp

#

# # compare with NR method

# mix1 <- mmer(Yield~1, random=~vs(GCA1,Gu=K1)+vs(GCA2,Gu=K2), data=hybrid2)

# summary(mix1)$varcomp

#

fcm fixed effect constraint indication matrix

Description

fcm creates a matrix with the correct number of columns to specify a constraint in the fixed effects
using the Gtc argument of the vs function.

Usage

fem(x, reps=NULL)

Arguments
X vector of 1’s and 0’s corresponding to the traits for which this fixed effect should
be fitted. For example, for a trivariate model if the fixed effect "x" wants to be fit-
ted only for trait 1 and 2 but not for the 3rd trait then you would use fcm(c(1,1,0))
in the Gtc argument of the vs() function.
reps integer specifying the number of times the matrix should be repeated in a list
format to provide easily the constraints in complex models that use the ds(), us()
or cs() structures.
Value

$res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the vs
function.
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Author(s)

Giovanny Covarrubias-Pazaran

References
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use fcm in the mmer solver.

Examples

fem(c(1,1,0))
fem(c(0,1,1))
fem(c(1,1,1))

fem(c(1,1,1),2)

# ## model with Env estimated for both traits

# data(DT_example)

# DT <- DT_example

# A <- A_example

# ans4 <- mmer(cbind(Yield, Weight) ~ Env,

# random= ~ vs(Name) + vs(Env:Name),

# rcov= ~ vs(units),

# data=DT)

# summary(ans4)$betas

# ## model with Env only estimated for Yield

# ans4b <- mmer(cbind(Yield, Weight) ~ vs(Env, Gtc=fcm(c(1,0))),

# random= ~ vs(Name) + vs(Env:Name),

# rcov= ~ vs(units),

# data=DT)

# summary(ans4b)$betas

fitted.mmer fitted form a LMM fitted with mmer

Description

fitted method for class "mmer”.

Usage

## S3 method for class 'mmer'
fitted(object, ...)
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Arguments
object an object of class "mmer”
Further arguments to be passed to the mmer function
Value

vector of fitted values of the form y.hat = Xb + Zu including all terms of the model.

Author(s)

Giovanny Covarrubias

See Also

fitted, mmer

Examples
# data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# #### create the variance-covariance matrix
# A <- A.mat(GT) # additive relationship matrix
# #### look at the data and fit the model
# head(DT)
# mix1 <- mmer(Yield~1,
# random=~vs(id,Gu=A)
# + Rowf + Colf + vs(spl2D(Row,Col)),
# rcov=~units,
# data=DT)
#
# ff=fitted(mix1)
#
# colfunc <- colorRampPalette(c("steelblue4”,"springgreen”,"yellow"))
# lattice::wireframe(‘u:Row.fitted ~RowxCol, data=ff$dataWithFitted,
# aspect=c(61/87,0.4), drape=TRUE,# col.regions = colfunc,
# light.source=c(10,0,10))
# lattice::levelplot(tu:Row.fitted ~Row*Col, data=ff$dataWithFitted, col.regions = colfunc)

fixm fixed indication matrix

Description

fixm creates a square matrix with 3’s in the diagnals and off-diagonals to quickly specify a fixed
constraint in the Gtc argument of the vs function.
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Usage

fixm(x, reps=NULL)

Arguments
X integer specifying the number of traits to be fitted for a given random effect.
reps integer specifying the number of times the matrix should be repeated in a list
format to provide easily the constraints in complex models that use the ds(), us()
or cs() structures.
Value

$res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the vs
function.

Author(s)

Giovanny Covarrubias-Pazaran

References
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use fixm in the mmer solver.

Examples

fixm(4)
fixm(4,2)

gvs general variance structure specification

Description
gvs function to build general variance-covariance structures for combination of random effects to
be fitted in the mmer solver.

Usage

gvs(..., Gu=NULL, Guc=NULL, Gti=NULL, Gtc=NULL, form=NULL)
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Arguments

names of the random effects (variables in the dataset) to be used to create a
general variance structure. For example, for 2 random effects (variables); mom
and progeny, a model specified as:

gvs(mom,progeny)

will create a variance structure of the form:

| sigma2.m sigma.pm |

| sigma.pmsigma2.p |

where not only variance components for each random effect will be estimated
but also the covariance component between the 2 random effects is estimated.
The user can also provide a numeric vector or matrix to be considered the design
matrix for the ith random effect. More than two random effects can be provided.

Gu list of matrices with the known variance-covariance values for the levels of the
different random effects provided in the "..." argument (i.e. relationship matrix
among individuals or any other known covariance matrix). If NULL, then an
identity matrix is assumed. For example, a model with 2 random effects with
covariance structure should be provided as:
gvs(mom, progeny,Gu=1ist(Am,Ap))
where Am and Ap are the relationship matrices for the random effects for mom
and progeny respectively.

Guc matrix with the constraints for the u random effects. This is used to specify
which variance and covariance parameters between the 1 to 1 combinations of
random effects should be estimated. For example, for 2 random effects the ex-
pected variance-covariance matrix expected to be estimated (when the default
Guc=NULL) is and unstructured model:
| sigma2.msigma.pm |
| sigma.pmsigma2.p |
but the user can constrain which parameters should be estimated. Providing:
Guc=diag(2) would fit:
| sigma2.m...0... |
| ...0...sigma2.p |

Gti matrix with dimensions t X t (t equal to number of traits) with initial values of
the variance-covariance components for the random effect specified in the ....
argument. If the value is NULL the program will provide the initial values.

Gtc matrix with dimensions t x t (t equal to number of traits) of constraints for the
variance-covariance components for the random effect specified in the ... argu-
ment according to the following rules:

0: not to be estimated

1: estimated and constrained to be positive (i.e. variance component)

2: estimated and unconstrained (can be negative or positive,i.e. covariance
component)

3: not to be estimated but fixed (value has to be provided in the Gti argument)
In the multi-response scenario if the user doesn’t specify this argument the de-

fault is to build an unstructured matrix (using the unsm() function). This argu-

ment needs to be used wisely since some covariance among responses may not
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make sense. Useful functions to specify constraints are; diag(), unsm(), uncm(),
fixm().

form an additional structure to specify a kronecker product on top of the general co-
variance structure defined in the ... argument.

Value

$res a list with all neccesary elements (incidence matrices, known var-cov structures, unknown
covariance structures to be estimated and constraints) to be used in the mmer solver.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Covarrubias-Pazaran G (2018) Software update: Moving the R package sommer to multivariate
mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also

The core function of the package: mmer

Examples

data(DT_ige)

DT <- DT_ige

Af <- A_ige

An <- A_ige

### Direct genetic effects model
# modDGE <- mmer(trait ~ block,

# random = ~ focal,
# rcov = ~ units,
# data = DT)

# summary (modDGE) $varcomp

#

### Indirect genetic effects model without covariance between DGE and IGE
# modDGE <- mmer(trait ~ block,

# random = ~focal + neighbour,
# rcov = ~ units,

# data = DT)

# summary (modDGE) $varcomp

#

### Indirect genetic effects model with covariance between DGE and IGE
# modIGE <- mmer(trait ~ block,

# random = ~ gvs(focal, neighbour),

# rcov = ~ units, iters=4,

# data = DT)
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# summary (modIGE)$varcomp

#

### Indirect genetic effects model with covariance between DGE and IGE using relatioship matrices
# modIGEb <- mmer(trait ~ block,

# random = ~ gvs(focal, neighbour, Gu=list(Af,An)),
# rcov = ~ units,
# data = DT)

# summary(modIGEb)$varcomp

GWAS Genome wide association study analysis

Description

Fits a multivariate/univariate linear mixed model GWAS by likelihood methods (REML), see the
Details section below. It uses the mmer function and its core coded in C++ using the Armadillo
library to opmitime dense matrix operations common in the derect-inversion algorithms. After the
model fit extracts the inverse of the phenotypic variance matrix to perform the association test for the

p" markers. Please check the Details section (Model enabled) if you have any issue with making
the function run.

The package also provides functions to estimate additive (A.mat), dominance (D.mat), epistatic
(E.mat) and single step (H.mat) relationship matrices to model known covariances among geno-
types typical in plant and animal breeding problems. Other functions to build known covariance
structures among levels of random effects are autoregresive (AR1), compound symmetry (CS) and
autoregressive moving average (ARMA) where the user needs to fix the correlation value for such
models (this is different to estimating unknown covariance structures). Additionally, overlayed
models can be implemented as well (overlay function). Spatial modeling can be done through
the two dimensional splines (spl2Da and spl2Db). Random regression models can also be fitted
through the (1eg) function (orthopolynom package installation is needed for using the leg function).

The sommer package is updated on CRAN every 3-months due to CRAN policies but you can find
the latest source at https://github.com/covaruber/sommer . This can be easily installed typing the
following in the R console:

library(devtools)
install_github("covaruber/sommer")

This is recommended since bugs fixes will be immediately available in the GitHub source. For
tutorials on how to perform different analysis with sommer please look at the vignettes by typing
in the terminal:

vignette(''vl.sommer.quick.start'")
vignette(''v2.sommer.changes.and.faqs'")
vignette(''v3.sommer.qg'')
vignette(''vd.sommer.gxe'')

or visit https://covaruber.github.io
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Usage

GWAS

GWAS(fixed, random, rcov, data, weights,
iters=20, tolpar = 1e-03, tolparinv = 1e-06,
init=NULL, constraints=NULL,method="NR",
getPEV=TRUE, na.method.X="exclude",
na.method.Y="exclude",return.param=FALSE,
date.warning=TRUE, verbose=FALSE,
stepweight=NULL, emupdate=NULL,

M=NULL, gTerm=NULL, n.PC = @, min.MAF = 0.05,

P3D = TRUE)

Arguments

fixed

random

rcov

data

weights

A formula specifying the response variable(s) and fixed effects, i.e:

response ~ covariate for univariate models

cbind(response.i,response.j) ~ covariate for multivariate models

The fcm() function can be used to constrain fixed effects in multi-response mod-
els.

a formula specifying the name of the random effects, i.e. random= ~ genotype
+ year.

Useful functions can be used to fit heterogeneous variances and other special
models (see ’Special Functions’ in the Details section for more information):
vs(...,Gu,Gt,Gtc) is the main function to specify variance models and special
structures for random effects. On the ... argument you provide the unknown
variance-covariance structures (i.e. us,ds,at,cs) and the random effect where
such covariance structure will be used (the random effect of interest). Gu is used
to provide known covariance matrices among the levels of the random effect,
Gt initial values and Gtc for constraints. Auxiliar functions for building the
variance models are:

** ds(x), us(x), cs(x) and at(x, levs) can be used to specify unknown diag-
onal, unstructured and customized unstructured and diagonal covariance struc-
tures to be estimated by REML.

** unsm(x), uncm(x), fixm(x) and diag(x) can be used to build easily matri-
ces to specify constraints in the Gtc argument of the vs() function.

** overlay(), spl2Da(), spl2Db(), and leg() functions can be used to spec-
ify overlayed of design matrices of random effects, two dimensional spline and
random regression models within the vs () function.

a formula specifying the name of the error term, i.e. rcov= ~ units.

The functions that can be used to fit heterogeneous residual variances are the
same used on the random term but the random effect is always "units", i.e.
rcov=~vs(ds(Location),units)

a data frame containing the variables specified in the formulas for response,
fixed, and random effects.

name of the covariate for weights. To be used for the product R = Wsi*R*Wsi,
where * is the matrix product, Wsi is the square root of the inverse of W and R
is the residual matrix.
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iters
tolpar
tolparinv

init

constraints

method

getPEV

na.method.X

na.method.Y

return.param

date.warning

verbose

stepweight
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Maximum number of iterations allowed. Default value is 15.
Convergence criteria.
tolerance parameter for matrix inverse used when singularities are encountered.

initial values for the variance components. By default this is NULL and variance
components are estimated by the method selected, but in case the user want to
provide initial values for ALL var-cov components this argument is functional.
It has to be provided as a list or an array, where each list element is one variance
component and if multitrait model is pursued each element of the list is a matrix
of variance covariance components among traits. Initial values can also be pro-
vided in the Gt argument of the vs function.Is highly encouraged to use the Gt
and Gtc arguments of the vs function instead of this argument

when initial values are provided these have to be accompanied by their con-
straints. See the vs function for more details on the constraints. Is highly en-
couraged to use the Gt and Gtc arguments of the vs function instead of this
argument.

this refers to the method or algorithm to be used for estimating variance com-
ponents. Direct-inversion Newton-Raphson NR and Average Information Al
(Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015), and EMMA efficient
mixed model association (Kang et al. 2008).

a TRUE/FALSE value indicating if the program should return the predicted error
variance and variance for random effects. This option is provided since this can
take a long time for certain models where p > n by a big extent.

one of the two possible values; "include" or "exclude". If "include" is selected
then the function will impute the X matrices for fixed effects with the median
value. If "exclude" is selected it will get rid of all rows with missing values for
the X (fixed) covariates. The default is "exclude". The "include" option should
be used carefully.

non

one of the three possible values; "include", "include2" or "exclude". If "include"
is selected then the function will impute the response variables with the median
value. The difference between "include" and "include2" is only available in
the multitrait models when the imputation can happen for the entire matrix of
responses or only for complete cases ("include2"). If "exclude" is selected it will
get rid of rows in responses where missing values are present for the estimation
of variance components. The default is "exclude".

a TRUE/FALSE value to indicate if the program should return the parameters
used for modeling without fitting the model.

a TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.

a TRUE/FALSE value to indicate if the program should return the progress of
the iterative algorithm.

A vector of values (of length equal to the number of iterations) indicating the
weight used to multiply the update (delta) for variance components at each iter-
ation. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and
the rest by 0.9. This argument can help to avoid that variance components go
outside the parameter space in the initial iterations which doesn’t happen very
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often with the NR method but it can be detected by looking at the behavior of
the likelihood. In that case you may want to give a smaller weight to the initial
8-10 iterations.

emupdate A vector of values (of length equal to the number of iterations) indicating with
1’s the iterations where the algorithm should calculate an EM update instead of
an update based on first and second derivatives indicated with zeros (i.e. NR or
Al methods).

M The marker matrix containing the marker scores for each level of the random
effect selected in the gTerm argument, coded as -1,0,1 = aa,Aa,AA, levels (i.e.
individuals) in rows and markers in columns. No additional columns should be
provided, is a purely numerical matrix.

gTerm a character vector indicating the random effect linked to the marker matrix M
(i.e. the genetic term) in the model. The random effect selected should have
the same number of levels than the number of rows of M. When fitting only one
random effect you will need to add the letters 'u:’ to the name of the random
effect given the behavior of the naming rules of the solver when having a single
random effect.

n.pC Number of principal components to include as fixed effects. Default is 0 (equals
K model).

min.MAF Specifies the minimum minor allele frequency (MAF). If a marker has a MAF
less than min.MAF, it is assigned a zero score.

P3D When P3D=TRUE, variance components are estimated by REML only once,
without any markers in the model. When P3D=FALSE, variance components
are estimated by REML for each marker separately.

Details

Citation
Type citation("sommer") to know how to cite the sommer package in your publications.
Models Enabled

For details about the models enabled and more information about the covariance structures please
check the help page of the package (sommer). In general the GWAS model implemented in sommer
to obtain marker effect is a generalized linear model of the form:

b= (XV-X)X"V-y
with X = ZMi

where: b is the marker effect (dimensions 1 x mt) y is the response variable (univariate or multi-
variate) (dimensions 1 x nt) V- is the inverse of the phenotypic variance matrix (dimensions nt X nt)
Z is the incidence matrix for the random effect selected (gTerm argument) to perform the GWAS
(dimensions nt x ut) Mi is the ith column of the marker matrix (M argument) (dimensions u X m)

for t traits, n observations, m markers and u levels of the random effect. Depending if P3D is
TRUE or FALSE the V- matrix will be calculated once and used for all marker tests (P3D=TRUE)
or estimated through REML for each marker (P3D=FALSE).

Special Functions

vs(at(x,levels),y)
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can be used to specify heterogeneous variance for the "y"" factor covariate at specific levels of the

nyn

factor covariate "x", i.e. random=~vs(at(Location,c("A","B")),ID) fits a variance component for ID
at levels A and B of the factor covariate Location.

vs(ds(x),y)

can be used to specify a diagonal covariance structure for the "y"" covariate for all levels of the
factor covariate "x", i.e. random=~vs(ds(Location,ID) fits a variance component for ID at all levels
of the factor covariate Location.

vs(us(x),y)

can be used to specify an unstructured covariance structure for the "y"" covariate for all levels of the
factor covariate "Xx", i.e. random=~vs(us(Location),ID) fits variance and covariance components for
ID at all levels of the factor covariate Location.

vs(overlay(...,rlist=NULL,prefix=NULL))

can be used to specify overlay of design matrices between consecutive random effects specified, i.e.
random=~overlay(male,female) overlays (overlaps) the incidence matrices for the male and female
random effects to obtain a single variance component for both effects. The ‘rlist* argument is a list
with each element being a numeric value that multiplies the incidence matrix to be overlayed. See
overlay for details.Can be combined with vs().

spl2Da(x.coord,y.coord,at.var,at.levels))

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y.coord (in numeric class) assuming a single variance component. The 2D spline can be fitted at
specific levels using the at and at . levels arguments. For example random=~spl2Da(x.coord=Row,y.coord=Range,at.var=

spl2Db(x.coord,y.coord,at.var,at.levels))

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y.coord (in numeric class) assuming multiple variance components. The 2D spline can be fitted at
specific levels using the at and at . levels arguments. For example random=~spl2Db(x.coord=Row,y.coord=Range,at.var=.

For a short tutorial on how to use this special functions you can look at the vignettes by typing in
the terminal:

vignette(’sommer.start’)
Bug report and contact

If you have any technical questions or suggestions please post it in https://stackoverflow.com or
https://stats.stackexchange.com.

If you have any bug report please go to https://github.com/covaruber/sommer or send me an email
to address it asap.

Example Datasets

The package has been equiped with several datasets to learn how to use the sommer package:
*DT_halfdiallel and DT_fulldiallel datasets have examples to fit half and full diallel designs.
* DT_h2 to calculate heritability

*DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses

* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive
effects.

* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from
2 highly heterozygous parents including additive, dominance and epistatic effects.
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*DT_polyploid to fit genomic prediction and GWAS analysis in polyploids.

* DT_gryphon data contains an example of an animal model including pedigree information.

* DT_btdata dataset contains an animal (birds) model.

Additional Functions

Other functions such as summary, fitted, randef (notice here is randef not ranef), anova, variogram,

residuals, coef and plot applicable to typical linear models can also be applied to models fitted
using the GWAS-type of functions.

Additional functions for genetic analysis have been included such as heritability (h2. fun), build a
genotypic hybrid marker matrix (build.HMM), plot of genetic maps (map.plot), creation of man-
hattan plots (manhattan). If you need to use pedigree you need to convert your pedigree into a
relationship matrix (i.e. use the getA function from the pedigreemm package).

Useful functions for analyzing field trials are included such as the spl2Da and spl12Db.

Value

If all parameters are correctly indicated the program will return a list with the following information:

Vi

sigma

sigma_scaled

sigmaSE

Beta
VarBeta
U

Varu

PevU

fitted
residuals
AIC

BIC
convergence

monitor

scores

the inverse of the phenotypic variance matrix VA- = (ZGZ+R)"-1

a list with the values of the variance-covariance components with one list ele-
ment for each random effect.

a list with the values of the scaled variance-covariance components with one list
element for each random effect.

Hessian matrix containing the variance-covariance for the variance components.
SE’s can be obtained taking the square root of the diagonal values of the Hessian.

a data frame for trait BLUEs (fixed effects).
a variance-covariance matrix for trait BLUESs
a list (one element for each random effect) with a data frame for trait BLUPs.

a list (one element for each random effect) with the variance-covariance matrix
for trait BLUPs.

a list (one element for each random effect) with the predicted error variance
matrix for trait BLUPs.

Fitted values y.hat=XB

Residual valuese =Y - XB

Akaike information criterion

Bayesian information criterion

a TRUE/FALSE statement indicating if the model converged.

The values of log-likelihood and variance-covariance components across itera-
tions during the REML estimation.

A dataframe with as many columns as markers analyzed and 5 rows containing
the following:

beta: marker effects.

score: marker scores (-log_10p) for the traits.
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Fstat: F-statistic associated to the test.
R2: R2 value for each marker.

R2s: R2 value for each marker scaled.

method The method for extimation of variance components specified by the user.
constraints contraints used in the mixed models for the random effects.
Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G. Genome assisted prediction of quantitative traits using the R package som-
mer. PLoS ONE 2016, 11(6): doi:10.1371/journal.pone.0156744
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Examples

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#i### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

ITRTRTTS
1 HHHH
+H# HHHH

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
#### create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix
#### look at the data and fit the model
head(DT)
mix1 <- GWAS(color~1,
random=~vs(id,Gu=A)
+ Rowf + Colf,
rcov=~units,
data=DT,
M=GT, gTerm = "u:id")
ms <- as.data.frame(mix1$scores)
ms$Locus <- rownames(ms)
MP2 <- merge(MP,ms,by="Locus",all.x =
manhattan(MP2, pch=20,cex=1.5, PVCN =

HHH

##### potato example

N E E E E E E e E E E E E E R Y

data(DT_polyploid)
DT <- DT_polyploid
GT <- GT_polyploid
MP <- MP_polyploid

FTRTRTNT HHHH
HHHH HHHH

#i#t#HHH## convert markers to numeric format

numo$M[1:5,1:5];
numo$ref.allele[,1:5]

o
H#
H#

s ITRTT
HHH
HHH

"

+H
+H
+

###H#HH plants with both genotypes and phenotypes

TR 4
HHH HHHH

common <- intersect(DT$Name, rownames(numo$M))

H#H## HHHH

### get the markers and phenotypes for such inds

H
=

-
H#
HH

marks <- numo$M[common,]; marks[1:5,1:5]
DT2 <- DT[match(common,DT$Name), 1;

t HHHH

GWAS
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DT2 <- as.data.frame(DT2)
DT2[1:5,]

HHH HH
HHH HH

###### Additive relationship matrix, specify ploidy

A <- A.mat(marks, ploidy=4)

### run it as GWAS model

ans2 <- GWAS(tuber_shape~1,
random=~vs(Name, Gu=A),
rcov=~units,
gTerm = "u:Name",
M=marks, data=DT2)

plot(ans2$scores[1,])

plot(ans2$r2m[1,])

Y E E E E E E E R

GWAS2 Genome wide association study

Description

This function is deprecated. Use GWAS instead. Now the GWAS function can run both types of
models; formula-based and matrix-based models. Type ?7GWAS.

For tutorials on how to perform different analysis with sommer please look at the vignettes by
typing in the terminal:

vignette(''sommer.start'')

vignette(''sommer"'")

Usage

GWAS2(fixed, random, rcov, data, weights,
iters=20, tolpar = 1e-03, tolparinv = 1e-06,
init=NULL, constraints=NULL,method="NR",
getPEV=TRUE, na.method.X="exclude",
na.method.Y="exclude",return.param=FALSE,
date.warning=TRUE, verbose=TRUE,

M=NULL, gTerm=NULL, n.PC = @, min.MAF = 0.05,
n.core = 1, P3D = TRUE)

Arguments

fixed a formula specifying the response variable(s) and fixed effects, i.e:
Yield ~ Location for univariate models
cbind(Yield,color) ~ Location for multivariate models.
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random

rcov

data

weights

iters
tolpar
tolparinv

init

constraints

method

GWAS2

a formula specifying the name of the random effects, i.e. random= ~ genotype
+ year.

Useful functions can be used to fit heterogeneous variances and other special
models (see ’Special Functions’ in the Details section for more information):
vs(...,Gu,Gt,Gtc) is the main function to specify special variance-covariance
structures for random effects. On the ... argument you provide the unknown
variance-covariance structures (i.e. us,ds,at,cs) and the random effect where
such covariance structure will be used (the random effect of interest).
at(x,levs) can be used to specify heterogeneous variance for specific levels of
a random effect

ds(x), us(x), cs(x) can be used to specify unknown diagonal, unstructured
and customized covariance structures respectively among levels of a random
effect to be estimated by REML.

overlay(...,rlist,prefix) can be used to specify overlay of design matri-
ces of random effects

spl2Da(...) and spl2Db(...) can be used to fit a 2-dimensional spline (i.e.
spatial modeling; see Special functions section below).

a formula specifying the name of the error term, i.e. rcov= ~ units.

The functions that can be used to fit heterogeneous residual variances are the
same used on the random term but the random effect is always "units", i.e.
rcov=~vs(ds(Location),units)

a data frame containing the variables specified in the formulas for response,
fixed, and random effects.

name of the covariate for weights. To be used for the product R = Wsi*R*Wsi,
where * is the matrix product, Wsi is the square root of the inverse of W and R
is the residual matrix.

Maximum number of iterations allowed. Default value is 15.
Convergence criteria.
tolerance parameter for matrix inverse used when singularities are encountered.

initial values for the variance components. By default this is NULL and variance
components are estimated by the method selected, but in case the user want to
provide initial values for ALL var-cov components this argument is functional.
It has to be provided as a list or an array, where each list element is one variance
component and if multitrait model is pursued each element of the list is a matrix
of variance covariance components among traits. Initial values can also be pro-
vided in the Gt argument of the vs function.Is highly encouraged to use the Gt
and Gtc arguments of the vs function instead of this argument

when initial values are provided these have to be accompanied by their con-
straints. See the vs function for more details on the constraints. Is highly en-
couraged to use the Gt and Gtc arguments of the vs function instead of this
argument.

this refers to the method or algorithm to be used for estimating variance com-
ponents. Direct-inversion Newton-Raphson NR and Average Information Al
(Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015), and EMMA efficient
mixed model association (Kang et al. 2008).



GWAS2

getPEV

na.method.X

na.method.Y

return.param

date.warning

verbose

gTerm

n.PC

min.MAF

n.core

P3D

Details

Special Functions
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a TRUE/FALSE value indicating if the program should return the predicted error
variance and variance for random effects. This option is provided since this can
take a long time for certain models where p > n by a big extent.

one of the two possible values; "include" or "exclude". If "include" is selected
then the function will impute the X matrices for fixed effects with the median
value. If "exclude" is selected it will get rid of all rows with missing values for
the X (fixed) covariates. The default is "exclude". The "include" option should
be used carefully.

non

one of the three possible values; "include", "include2" or "exclude". If "include"
is selected then the function will impute the response variables with the median
value. The difference between "include" and "include2" is only available in
the multitrait models when the imputation can happen for the entire matrix of
responses or only for complete cases ("include2"). If "exclude" is selected it will
get rid of rows in responses where missing values are present for the estimation
of variance components. The default is "exclude".

a TRUE/FALSE value to indicate if the program should return the parameters
used for modeling without fitting the model.

a TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.

a TRUE/FALSE value to indicate if the program should return the progress of
the iterative algorithm.

The marker matrix containing the marker scores for each line, coded as -1,0,1 =
aa,Aa,AA, individuals in rows and markers in columns. No additional columns
should be provided, is a purely numerical matrix.

a character vector indicating the genetic term in the model.

Number of principal components to include as fixed effects. Default is O (equals
K model).

Specifies the minimum minor allele frequency (MAF). If a marker has a MAF
less than min.MAF, it is assigned a zero score.

Setting n.core > 1 will enable parallel execution on a machine with multiple
cores (use only at UNIX command line).

When P3D=TRUE, variance components are estimated by REML only once,
without any markers in the model. When P3D=FALSE, variance components
are estimated by REML for each marker separately.

vs(at(x,levels),y)

can be used to specify heterogeneous variance for the "y"" factor covariate at specific levels of the
factor covariate "x", i.e. random=~vs(at(Location,c("A","B")),ID) fits a variance component for ID
at levels A and B of the factor covariate Location.

vs(ds(x),y)
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can be used to specify a diagonal covariance structure for the "y"" covariate for all levels of the

nyn

factor covariate "x", i.e. random=~vs(ds(Location,ID) fits a variance component for ID at all levels
of the factor covariate Location.

vs(us(x),y)

can be used to specify an unstructured covariance structure for the "y"" covariate for all levels of the

nyn

factor covariate "x", i.e. random=~vs(us(Location),ID) fits variance and covariance components for
ID at all levels of the factor covariate Location.

vs(overlay(...,rlist=NULL,prefix=NULL))

can be used to specify overlay of design matrices between consecutive random effects specified, i.e.
random=~overlay(male,female) overlays (overlaps) the incidence matrices for the male and female
random effects to obtain a single variance component for both effects. The ‘rlist* argument is a list
with each element being a numeric value that multiplies the incidence matrix to be overlayed. See
overlay for details.Can be combined with vs().

spl2Da(x.coord,y.coord,at.var,at.levels))

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y.coord (in numeric class) assuming a single variance component. The 2D spline can be fitted at
specific levels using the at and at . levels arguments. For example random=~spl2Da(x.coord=Row,y.coord=Range,at.var=

spl2Db(x.coord,y.coord,at.var,at.levels))

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y.coord (in numeric class) assuming multiple variance components. The 2D spline can be fitted at
specific levels using the at and at. levels arguments. For example random=~spl2Db(x.coord=Row,y.coord=Range,at.var=,

For a short tutorial on how to use this special functions you can look at the vignettes by typing in
the terminal:

vignette(’sommer.start’)

Bug report and contact

If you have any questions or suggestions please post it in https://stackoverflow.com

Example Datasets

The package has been equiped with several datasets to learn how to use the sommer package:
*DT_halfdiallel and DT_fulldiallel datasets have examples to fit half and full diallel designs.
* DT_h2 to calculate heritability

*DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses

* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive
effects.

* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from
2 highly heterozygous parents including additive, dominance and epistatic effects.

*DT_polyploid to fit genomic prediction and GWAS?2 analysis in polyploids.
* DT_gryphon data contains an example of an animal model including pedigree information.
* DT_btdata dataset contains an animal (birds) model.

Additional Functions
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Other functions such as summary, fitted, randef (notice here is randef not ranef), anova, variogram,

83

residuals, coef and plot applicable to typical linear models can also be applied to models fitted
using the GWAS2-type of functions.

Additional functions for genetic analysis have been included such as heritability (h2. fun), build a
genotypic hybrid marker matrix (build.HMM), plot of genetic maps (map.plot), creation of man-
hattan plots (manhattan). If you need to use pedigree you need to convert your pedigree into a
relationship matrix (i.e. use the getA function from the pedigreemm package).

Useful functions for analyzing field trials are included such as the sp12Da and sp12Db.

Models Enabled

For details about the models enabled and more information about the covariance structures please
check the help page of the package (sommer).

Value

If all parameters are correctly indicated the program will return a list with the following information:

Vi

sigma

sigma_scaled

sigmaSE
Beta
VarBeta
U

Varu

PevU

fitted
residuals
AIC

BIC
convergence

monitor

method
call

scores
betasm
Fstatm

r2m

the inverse of the phenotypic variance matrix VA- = (ZGZ+R)"-1

a list with the values of the variance-covariance components with one list ele-
ment for each random effect.

a list with the values of the scaled variance-covariance components with one list
element for each random effect.

standard errors for the variance covariance components.

a data frame for trait BLUEs (fixed effects).

a variance-covariance matrix for trait BLUEs

a list (one element for each random effect) with a data frame for trait BLUPs.

a list (one element for each random effect) with the variance-covariance matrix
for trait BLUPs.

a list (one element for each random effect) with the predicted error variance
matrix for trait BLUPs.

Fitted values y.hat=XB

Residual valuese =Y - XB

Akaike information criterion

Bayesian information criterion

a TRUE/FALSE statement indicating if the model converged.

The values of log-likelihood and variance-covariance components across itera-
tions during the REML estimation.

The method for extimation of variance components specified by the user.
Formula for fixed, random and rcov used.

marker scores (-log_10p) for the traits.

marker effects.

F statistic associate to the test.

R2 value for each marker.
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Author(s)

Giovanny Covarrubias-Pazaran
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H.mat Combined relationship matrix H

Description

Given a matrix A and a matrix G returns a H matrix with the C++ Armadillo library.

Usage

H.mat(A, G, tau = 1, omega = 1, tolparinv=1e-6)
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Arguments
A Additive relationship matrix based on pedigree.
G Additive relationship matrix based on marker data.
tau As described by Martini et al. (2018).
omega As described by Martini et al. (2018).
tolparinv Tolerance parameter for matrix inverse used when singularities are encountered
in the estimation procedure.
Details

See references

Value
H Matrix with the relationship between the individuals based on pedigree and corrected by molec-
ular information

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Martini, J. W., Schrauf, M. F., Garcia-Baccino, C. A., Pimentel, E. C., Munilla, S., Rogberg-Munoz,
A., ... & Simianer, H. (2018). The effect of the H-1 scaling factors tau and omega on the structure
of H in the single-step procedure. Genetics Selection Evolution, 50(1), 16.

See Also

The core functions of the package mmer

Examples

#i##t#random population of 200 lines with 1000 markers
M <- matrix(rep(@,200%1000),200,1000)
for (i in 1:200) {

M[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
3
rownames(M) <- 1:nrow(M)
v <- sample(1:nrow(M),100)
M2 <- M[v,]

HH

A <- A.mat(M) # assume this is a pedigree-based matrix for the sake of example
G <- A.mat(M2)

H <- H.mat(A,G)
# colfunc <- colorRampPalette(c("steelblue4”,”springgreen”,"yellow"))
# hv <- heatmap(H[1:15,1:15], col = colfunc(100),Colv = "Rowv")
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h2.fun

h2.fun Obtain heritabilities with three different methods

Description

Obtain heritabilities based on three different methods; Cullis et al. (2006), Oakey at al. (2006), and
line-mean h2 (Falconer, 1995).

Cullis at al. (2006): h2=1 - (PEM.mu/2*Vg)

Oakey at al. (2006): h2=1 - (tr((0.5*G"-1) * Czz)/m)

Falconer (1995): h2 = Vg / (Vg+(Ve/r*e))

where "PEV.mu" is the average prediction error variance for the genetic term, "Vg" and "Ve" are

the genetic and residual variance respectively estimated by REML, "G”-1" is the inverse of A*Vg
where "A" is the additive relationship matrix, "Czz" is the prediction error variance for the genetic

n_n

term, "m" is the number of test lines, "r" is the replicates per environment and "e" the number of
environments.

Usage

h2.fun(object, data, gTerm=NULL, eTerm=NULL, md=NULL)

Arguments

object a model fitted with the mmer or mmer2 functions.

data the dataset used to fit the model provided in the object argument.

gTerm a character vector specifying the genetic terms fitted in the model.

eTerm a character vector specifying the environment term fitted in the model.

md a numeric value to multiply the genetic variance in the heritability formulas (see
details below). If NULL it will use the mean value of the diagonal from the
genomic or relationship matrix.

Details

Please see the description or go to the canonical papers where methods are explained with more
detail.

For each level from the eTerm (environment) the heritability is calculated as:

h2.stdr= Vg/(Vg+Ve/(ne*nr)) h2.cullis= 1 - (PEV/(md*Vg)) h2.oakey= 1 - tr[ ( C22 (Gi*1/md) / m
)1

where "Vg" refers to the genotype variance "Ve" the error variance, "ne" number of environments,
"nr" number of replicates, "PEV" is the predicted error variance for the genotype (gTerm), "md" is

the mean value from the diagonal of the relationship (pedigree or genomic) matrix "G"" and "m" is
the number of lines, "Gi" is the inverse of the relationship matrix.
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References

Oakey, Helena, et al. "Joint modeling of additive and non-additive genetic line effects in single field
trials." Theoretical and Applied Genetics 113.5 (2006): 809-819.

Cullis, Brian R., Alison B. Smith, and Neil E. Coombes. "On the design of early generation variety
trials with correlated data." Journal of Agricultural, Biological, and Environmental Statistics 11.4
(2006): 381-393.

Falconer, Douglas S., Trudy FC Mackay, and Richard Frankham. "Introduction to quantitative
genetics (4th edn)." Trends in Genetics 12.7 (1996): 280.

See Also

sommer

Examples

data(DT_example)
DT <- DT_example
A <- A_example

head (DT)

# HHHH

# #### fit the mixed model (very heavy model)

# HH## HHHH

# ans1 <- mmer(Yield~Env,

# random=~vs(ds(Env),Name) + vs(ds(Env),Block),
# rcov=~vs(ds(Env),units),

# data=DT)

# summary(ans1)

# h2.fun(ans1, data=DT, gTerm = "Name"”, eTerm = "Env")

imputev Imputing a numeric or character vector

Description
This function is a very simple function to impute a numeric or character vector with the mean or
median value of the vector.

Usage

imputev(x, method="median")

Arguments

X a numeric or character vector.

method the method to choose between mean or median.
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Value

$x a numeric or character vector imputed with the method selected.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core function of the package mmer

Examples

#i### generate your mickey mouse -logl@(p-values)
set.seed(1253)

X <= rnorm(100)

x[sample(1:100,10)] <- NA

imputev(x)

jet.colors Generate a sequence of colors alog the jet colormap.

Description
jet.colors(n) generates a sequence of n colors from dark blue to cyan to yellow to dark red. It is
similar to the default color schemes in Python’s matplotlib or MATLAB.

Usage

jet.colors(n, alpha = 1)

Arguments

n The number of colors to return.

alpha The transparency value of the colors. See ?rgb for details.
Value

A vector of colors along the jet colorramp.
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See Also

The core function of the package mmer

Examples

{

# Plot a colorbar with jet.colors
image(matrix(seq(100), 100), col=jet.colors(100))
3

LD.decay Calculation of linkage disequilibrium decay

Description
This function calculates the LD decay based on a marker matrix and a map with distances between
markers in cM or base pairs.

Usage

LD.decay(markers,map,silent=FALSE,unlinked=FALSE, gamma=0.95)

Arguments
markers a numeric matrix of markers (columns) by individuals (rows) in -1, 0, 1 format.
map a data frame with 3 columns "Locus" (name of markers), "LG" (linkage group
or chromosome), and "Position" (in cM or base pairs).
silent a TRUE/FALSE value statement indicating if the program should or should not
display the progress bar. silent=TRUE means that will not be displayed.
unlinked a TRUE/FALSE value statement indicating if the program should or should not
calculate the alpha(see next argument) percentile of interchromosomal LD.
gamma a percentile value for LD breakage to be used in the calculation of interchromo-
somal LD extent.
Value

$resp alist with 3 elements; "by.LG", "all.LG", "LDM". The first element (by.LG) is a list with as
many elements as chromosomes where each contains a matrix with 3 columns, the distance,
the r2 value, and the p-value associated to the chi-square test for disequilibrium. The second
element (all.LG) has a big matrix with distance, r2 values and p-values, for each point from
all chromosomes in a single data.frame. The third element (LDM) is the matrix of linkage
disequilibrium between pairs of markers.

If unlinked is selected the program should return the gamma percentile interchromosomal LD
(r2) for each chromosome and average.
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References

Laido, Giovanni, et al. Linkage disequilibrium and genome-wide association mapping in tetraploid
wheat (Triticum turgidum L.). PloS one 9.4 (2014): €95211.

See Also

The core functions of the package mmer and mmer2

Examples

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#i### remove them and run the examples using

#### command + shift + C |OR| control + shift + C

data(DT_cpdata)

#i##H# get the marker matrix

CPgeno <- GT_cpdata; CPgeno[1:5,1:5]

#it## get the map

mapCP <- MP_cpdata; head(mapCP)

names(mapCP) <- c("Locus”,"Position"”,"LG")

#### with example purposes we only do 3 chromosomes
mapCP <- mapCP[which(mapCP$LG <= 3),]

#### run the function

# res <- LD.decay(CPgeno, mapCP)

# names(res)

#### subset only markers with significant LD

# res$all.LG <- res$all.LG[which(res$all.LG$p < .001),]
#### plot the LD decay

# with(res$all.LG, plot(r2~d,col=transp(”cadetblue”),

# x1im=c(@,55), ylim=c(0,1),

# pch=20,cex=0.5,yaxt="n",

# xaxt="n",ylab=expression(r+2),
# xlab="Distance in cM")

# )

# axis(1, at=seq(@,55,5), labels=seq(0,55,5))
# axis(2,at=seq(0,1,.1), labels=seq(@,1,.1), las=1)

#### if you want to add the loess regression lines
#### this could take a long time!!!
mod <- loess(r2 ~ d, data=res$all.LG)
par (new=T)
lilo <- predict(mod,data.frame(d=1:55))
plot(lilo, bty="n", xaxt="n", yaxt="n", col="green",

type="1", ylim=c(0,1),ylab="",6x1lab="", 1wd=2)
res3 <- LD.decay(markers=CPgeno, map=mapCP,

unlinked = TRUE,gamma = .95)

abline(h=res3%$all.LG, col="red")

T E EEEE
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leg Legendre polynomial matrix

Description
Legendre polynomials of order 'n’ are created given a vector 'x’ and normalized to lay between
values u and v.

Usage

leg(x,n=1,u=-1,v=1, intercept=TRUE, intercept1=FALSE)

Arguments
X numeric vector to be used for the polynomial.
n order of the Legendre polynomials.
u lower bound for the polynomial.
v upper bound for the polynomial.
intercept a TRUE/FALSE value indicating if the intercept should be included.
intercept1 a TRUE/FALSE value indicating if the intercept should have value 1 (is multi-
plied by sqrt(2)).
Value

$S3 an Legendre polynomial matrix of order n.

Author(s)

Giovanny Covarrubias-Pazaran

References
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

x <- sort(rep(1:3,100))

# you need to install the orthopolynom library
# leg(x, n=1)

# leg(x, n=2)

# see dataset data(DT_legendre) for a random regression modeling example
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list2usmat list or vector to unstructured matrix

Description

list2usmat creates an unstructured square matrix taking a vector or list to fill the diagonal and
upper triangular with the values provided.

Usage
list2usmat(sigmal)
Arguments
sigmalL vector or list of values to put on the matrix.
Value

$res a matrix with the values provided.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use 1ist2usmat in the mmer solver.

Examples

list2usmat(as.list(1:3))
list2usmat(as.list(1:10))
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manhattan Creating a manhattan plot

Description
This function was designed to create a manhattan plot using a data frame with columns "Chrom"
(Chromosome), "Position" and "p.val" (significance for the test).

Usage

manhattan(map, col=NULL, fdr.level=0.05, show.fdr=TRUE, PVCN=NULL, ylim=NULL, ...)

Arguments
map the data frame with 3 columns with names; "Chrom" (Chromosome), "Position"
and "p.val" (significance for the test).
col colors prefered by the user to be used in the manhattan plot. The default is
NULL which will use the red-blue palette.
fdr.level false discovery rate to be drawn in the plot.
show. fdr a TRUE/FALSE value indicating if the FDR value should be shown in the man-
hattan plot or not. By default is TRUE meaning that will be displayed.
PVCN In case the user wants to provide the name of the column that should be treated
as the "p.val" column expected by the program in the 'map’ argument.
ylim the y axis limits for the manhattan plot if the user wants to customize it. By
default the plot will reflect the minimum and maximum values found.
additional arguments to be passed to the plot function such as pch, cex, etc.
Value

If all parameters are correctly indicated the program will return:

$plot.data a manhattan plot

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer
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Examples

#random population of 200 lines with 1000 markers

M <- matrix(rep(0,200x1000),1000,200)

for (i in 1:200) {

M[,i] <- ifelse(runif(1000)<0.5,-1,1)

}

colnames(M) <- 1:200

set.seed(1234)

pp <- abs(rnorm(500,0,3));pp[23:34] <- abs(rnorm(12,0,20))

geno <- data.frame(Locus=paste("m"”,1:500, sep="."),Chrom=sort(rep(c(1:5),100)),
Position=rep(seq(1,100,1),5),
p.val=pp, check.names=FALSE)

geno$Locus <- as.character(geno$Locus)

## look at the data, 5LGs, 100 markers in each

## -log(p.val) value for simulated trait

head(geno)

tail(geno)

manhattan(geno)

map.plot Creating a genetic map plot

Description
This function was designed to create a genetic map plot using a data frame indicating the Linkage
Group (LG), Position and marker names (Locus).

Usage

map.plot(data, trait = NULL, trait.scale = "same",
col.chr = NULL, col.trait = NULL, type = "hist”, cex = 0.4,
lwd = 1, cex.axis = 0.4, cex.trait=0.8, jump = 5)

Arguments

data the data frame with 3 columns with names; Locus, LG and Position

trait if something wants to be plotted next the linkage groups the user must indicate
the name of the column containing the values to be ploted, i.e. p-values, LOD
scores, X2 segregation distortion values, etc.

trait.scale is trait is not NULL, this is a character value indicating if the y axis limits for the
trait plotted next to the chromosomes should be the same or different for each
linkage group. The default value is "same", which means that the same y axis
limit is conserved across linkage groups. For giving an individual y axis limit
for each linkage group write "diff".

col.chr a vector with color names for the chromosomes. If NULL they will be drawn in

gray-black scale.
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col.trait a vector with color names for the dots, lines or histogram for the trait plotted
next to the LG’s

type a character value indicating if the trait should be plotted as scatterplot ‘dot°,
histogram ‘hist*, line ‘line‘ next to the chromosomes.

cex the cex value determining the size of the cM position labels in the LGs

lwd the width of the lines in the plot

cex.axis the cex value for sizing the labels of LGs and traits plotted (top labels)

cex.trait the cex value for sizing the dots or lines of the trait plotted

jump a scalar value indicating how often should be drawn a number next to the LG

indicating the position. The default is 5 which means every 5 cM a label will be
drawn, i.e. 0,5,10,15,... cM.

Value
If all parameters are correctly indicated the program will return:

$plot.data a plot with the LGs and the information used to create a plot

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#random population of 200 lines with 1000 markers

M <- matrix(rep(@,200%1000),1000,200)

for (i in 1:200) {

M[,i] <- ifelse(runif(1000)<0@.5,-1,1)

3

colnames(M) <- 1:200

set.seed(1234)

geno <- data.frame(Locus=paste("m"”,1:500, sep="."),LG=sort(rep(c(1:5),100)),
Position=rep(seq(1,100,1),5),
X2=rnorm(500,10,4), check.names=FALSE)

geno$lLocus <- as.character(geno$Locus)

## look at the data, 5LGs, 100 markers in each

## X2 value for segregation distortion simulated

head(geno)

tail(geno)

table(geno$LG) # 5 LGs, 100 marks
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map.plot(geno, trait="X2", type="line")
map.plot(geno, trait="X2", type="hist")
map.plot(geno, trait="X2", type="dot")

# data("DT_cpdata”)

# MP <- MP_cpdata

# colnames(MP)[3] <- c("LG")

# head(MP)

# map.plot(MP, type="line", cex=0.6)

MEMMA Multivariate Efficient Mixed Model Association Algorithm

Description

This function is used internally in the function mmer when multiple responses are selected for
a single variance component other than the error. It uses the efficient mixed model association
(MEMMA) algorithm.

Usage

MEMMA(Y, X=NULL, ZETA=NULL, tolpar = 1e-06, tolparinv = 1e-06, check.model=TRUE,
silent=TRUE)

Arguments

Y a numeric vector for the response variable
X an incidence matrix for fixed effects.

ZETA an incidence matrix for random effects. This can be for one or more random
effects. This NEEDS TO BE PROVIDED AS A LIST STRUCTURE. For ex-
ample Z=list(list(Z=Z1, K=K1), list(Z=72, K=K?2), list(Z=723, K=K3)) makes a
2 level list for 3 random effects. The general idea is that each random effect with
or without its variance-covariance structure is a list, i.e. list(Z=7Z1, K=K1) where
Z is the incidence matrix and K the var-cov matrix. When moving to more than
one random effect we need to make several lists that need to be inside another
list. What we call a 2-level list, i.e. list(Z=Z1, K=K1) and list(Z=72, K=K?2)
would need to be put in the form; list(list(Z=21, K=K1),list(Z=Z1, K=K1)),
which as can be seen, is a list of lists (2-level list).

tolpar tolerance parameter for convergence
tolparinv tolerance parameter for matrix inverse

check.model a TRUE/FALSE value indicating if list structure provided by the user is correct
to fix it. The default is TRUE but is turned off to FALSE within the mmer
function which would imply a double check.

silent a TRUE/FALSE value indicating if the function should draw the progress bar or
iterations performed while working or should not be displayed.
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Details

The likelihood function optimized in this algorithm is:

logL = (n - p) * log(sum(eta2/ lambda + delta)) + sum(log(lambda + delta))

where: (n-p) refers to the degrees of freedom lambda are the eigenvalues mentioned by Kang et
al.(2008) delta is the REML estimator of the ridge parameter

The algorithm can be summarized in the next steps:

1) provide initial value for the ridge parameter

2) estimate S =1 - X(X’X)-X’

3) obtain the phenotypic variance V = ZKZ’ + delta.prov*I

4) perform an eigen decomposition of SVS

5) create "lambda"" as the eigenvalues of SVS and "U"" as the eigenvectors
6) estimate eta=U’y

7) optimize the likelihood shown above providing "eta", "lambdas" and optimize with respect to
"delta" which is the ridge parameter and contains Ve/Vu

Value

If all parameters are correctly indicated the program will return a list with the following information:

$Vu a scalar value for the variance component estimated

$Ve a scalar value for the error variance estimated

$V.inv a matrix with the inverse of the phenotypic variance V = ZGZ+R, VA-1

$u.hat a vector with BLUPs for random effects

$Var.u.hat a vector with variances for BLUPs

$PEV.u.hat a vector with predicted error variance for BLUPs

$beta.hat a vector for BLUE:s of fixed effects

$Var.beta.hat a vector with variances for BLUESs

$X incidence matrix for fixed effects, if not passed is assumed to only include the intercept
$Z. incidence matrix for random effects, if not passed is assumed to be a diagonal matrix
$K the var-cov matrix for the random effect fitted in Z

$11 the log-likelihood value for obtained when optimizing the likelihood function when using ML
or REML
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References

Kang et al. 2008. Efficient control of population structure in model organism association mapping.
Genetics 178:1709-1723.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer

Examples

#### For CRAN time limitations most lines in the
#i### examples are silenced with one '#' mark,
#### remove them and run the examples

# data(CPdata)

# DT <- DT_cpdata

# GT <- GT_cpdata

# MP <- MP_cpdata

# ### look at the data

# head(DT)

# GT[1:5,1:5]

# ## fit a model including additive and dominance effects
# Y <- DT[,c("color”,"Yield")]

# Za <- diag(dim(Y)[11)

# A <- A.mat(GT) # additive relationship matrix
# === ssssssssss=siHHHE

# #t## ADDITIVE MODEL ##Ht#

# === sssssssss oo

# ETA.A <- list(add=list(Z=Za,K=A))

# #ans.A <- MEMMA(Y=Y, ZETA=ETA.A)

# #ans.A$var.comp

mmer mixed model equations in R

Description

Sommer is a structural multivariate-univariate linear mixed model solver for multiple random effects
allowing the specification and/or estimation of variance covariance structures. REML estimates can
be obtained using the Direct-Inversion Newton-Raphson, Average Information and Efficient Mixed
Model Association algorithms coded in C++ using the Armadillo library to optimize dense matrix
operations common in genomic selection models. Sommer was designed for genomic prediction
and genome wide association studies (GWAS), but also functional as a regular mixed model pro-
gram. These algorithms are intended to be used for problems of the type p > n and/or dense
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matrices. For problems with sparse covariance structures, or problems of the type n > p, the MME-
based algorithms are faster and we recommend to shift to the use of such software (e.g., Ime4,
breedR, or asreml-R).

For tutorials on how to perform different analysis with sommer please look at the vignettes by
typing in the terminal:

vignette(''vl.sommer.quick.start'")

vignette(''v2.sommer.changes.and.faqs'")

vignette(''v3.sommer.qg'')

vignette(''vd.sommer.gxe'')

Usage

mmer (fixed, random, rcov, data, weights, iters=20, tolpar = 1e-03,

tolparinv

= 1e-06, init=NULL, constraints=NULL,method="NR", getPEV=TRUE,

na.method.X="exclude", na.method.Y="exclude"”,return.param=FALSE,
date.warning=TRUE, verbose=TRUE, reshape.output=TRUE, stepweight=NULL,
emupdate=NULL)

Arguments

fixed

random

A formula specifying the response variable(s) and fixed effects, i.e:
response ~ covariate for univariate models
cbind(response.i,response.j) ~ covariate for multivariate models

The fcm() function can be used to constrain fixed effects in multi-response mod-
els.

A formula specifying the name of the random effects, i.e. random= ~ genotype
+ year.

Useful functions can be used to fit heterogeneous variances and other special
models (see ’Special Functions’ in the Details section for more information):

vs(...,Gu,Gti,Gtc) is the main function to specify variance models and spe-
cial structures for random effects. On the ... argument you provide the unknown
variance-covariance structures (i.e. us,ds,at,cs) and the random effect where
such covariance structure will be used (the random effect of interest). Gu is
used to provide known covariance matrices among the levels of the random ef-
fect, Gti initial values and Gtc for constraints. Auxiliar functions for building
the variance models are:

** ds(x), us(x), cs(x) and at(x, levs) can be used to specify unknown diag-
onal, unstructured and customized unstructured and diagonal covariance struc-
tures to be estimated by REML.

** unsm(x), uncm(x), fixm(x) and diag(x) can be used to build easily matri-
ces to specify constraints in the Gtc argument of the vs() function.

** overlay(), spl2Da(), spl2Db(), and leg() functions can be used to spec-
ify overlayed of design matrices of random effects, two dimensional spline and
random regression models within the vs () function.



100

rcov

data

weights

iters
tolpar
tolparinv

init

constraints

method

getPEV

na.method.X

na.method.Y

mmer

gvs(...,Gu,Guc,Gti,Gtc) is an alternative function to specify general vari-
ance structures between different random effects. An special case in the indirect
genetic effect models. Is similar to the vs function but in the ... argument the
different random effects are provided.

A formula specifying the name of the error term, i.e. rcov= ~ units.

Special heterogeneous and special variance models and constraints for the resid-
ual part are the same used on the random term but the name of the random effect
is always "units" which can be thought as a column with as many levels as rows
in the data, i.e. rcov=~vs(ds(covariate),units)

A data frame containing the variables specified in the formulas for response,
fixed, and random effects.

Name of the covariate for weights. To be used for the product R = Wsi*R*Wsi,
where * is the matrix product, Wsi is the square root of the inverse of W and R
is the residual matrix.

Maximum number of iterations allowed.
Convergence criteria for the change in log-likelihood.

Tolerance parameter for matrix inverse used when singularities are encountered
in the estimation procedure.

Initial values for the variance components. By default this is NULL and initial
values for the variance components are provided by the algorithm, but in case the
user want to provide initial values for ALL var-cov components this argument is
functional. It has to be provided as a list, where each list element corresponds to
one random effect (1x1 matrix) and if multitrait model is pursued each element
of the list is a matrix of variance covariance components among traits for such
random effect. Initial values can also be provided in the Gti argument of the
vs function. Is highly encouraged to use the Gti and Gtc arguments of the vs
function instead of this argument, but these argument can be used to provide all
initial values at once

When initial values are provided these have to be accompanied by their con-
straints. See the vs function for more details on the constraints. Is highly en-
couraged to use the Gti and Gtc arguments of the vs function instead of this
argument but these argument can be used to provide all constraints at once.

This refers to the method or algorithm to be used for estimating variance com-
ponents. Direct-inversion Newton-Raphson NR and Average Information Al
(Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015).

A TRUE/FALSE value indicating if the program should return the predicted
error variance and variance for random effects. This option is provided since
this can take a long time for certain models where p is > n by a big extent.

One of the two possible values; "include" or "exclude". If "include" is selected
then the function will impute the X matrices for fixed effects with the median
value. If "exclude" is selected it will get rid of all rows with missing values for
the X (fixed) covariates. The default is "exclude". The "include" option should
be used carefully.

One of the three possible values; "include", "include2" or "exclude" (default) to
treat the observations in response variable to be used in the estimation of vari-
ance components. The first option "include" will impute the response variables
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for all rows with the median value, whereas "include2" imputes the responses
only for rows where there is observation(s) for at least one of the responses (only
available in the multi-response models). If "exclude" is selected (default) it will
get rid of rows in response(s) where missing values are present for at least one
of the responses.

return.param A TRUE/FALSE value to indicate if the program should return the parameters
to be used for fitting the model instead of fitting the model.

date.warning A TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.

verbose A TRUE/FALSE value to indicate if the program should return the progress of
the iterative algorithm.

reshape.output A TRUE/FALSE value to indicate if the output should be reshaped to be easier to
interpret for the user, some information is missing from the multivariate models
for an easy interpretation.

stepweight A vector of values (of length equal to the number of iterations) indicating the
weight used to multiply the update (delta) for variance components at each iter-
ation. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and
the rest by 0.9. This argument can help to avoid that variance components go
outside the parameter space in the initial iterations which doesn’t happen very
often with the NR method but it can be detected by looking at the behavior of
the likelihood. In that case you may want to give a smaller weight to the initial
8-10 iterations.

emupdate A vector of values (of length equal to the number of iterations) indicating with
1’s the iterations where the algorithm should calculate an EM update instead of
an update based on first and second derivatives indicated with zeros (i.e. NR or
Al methods).

Details

The use of this function requires a good understanding of mixed models. Please review the "som-
mer.quick.start’ vignette and pay attention to details like format of your random and fixed variables
(i.e. character and factor variables have different properties when returning BLUEs or BLUPs,
please see the ’sommer.changes.and.faqs’ vignette).

Citation
Type citation("sommer") to know how to cite the sommer package in your publications.
Special variance structures

vs(at(x,levels),y)
can be used to specify heterogeneous variance for the "y" covariate at specific levels of the covariate

x", i.e. random=~vs(at(Location,c("A","B")),ID) fits a variance component for ID at levels A and
B of the covariate Location.

vs(ds(x),y)

can be used to specify a diagonal covariance structure for the "y" covariate for all levels of the

covariate "x", i.e. random=~vs(ds(Location),ID) fits a variance component for ID at all levels of
the covariate Location.
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vs(us(x),y)
can be used to specify an unstructured covariance structure for the "y" covariate for all levels of the

covariate "x", i.e. random=~vs(us(Location),ID) fits variance and covariance components for ID at
all levels of the covariate Location.

vs(overlay(...,rlist=NULL,prefix=NULL))

can be used to specify overlay of design matrices between consecutive random effects specified,
i.e. random=~vs(overlay(male,female)) overlays (overlaps) the incidence matrices for the male and
female random effects to obtain a single variance component for both effects. The ‘rlist* argument is
a list with each element being a numeric value that multiplies the incidence matrix to be overlayed.
See overlay for details.Can be combined with vs().

vs(leg(x,n),y)

can be used to fit a random regression model using a numerical variable x that marks the trayectory
for the random effect y. The leg function can be combined with the special functions ds, us at and
cs. For example random=~vs(leg(x,1),y) or random=~vs(us(leg(x,1)),y).

vs(x,Gtc=fcm(v))

can be used to constrain fixed effects in the multi-response mixed models. This is a vector that
specifies if the fixed effect is to be estimated for such trait. For example fixed=cbind(response.i,

response.j)~vs(Rowf, Gtc=fcm(c(1,0))) means that the fixed effect Rowf should only be estimated
for the first response and the second should only have the intercept.

gvs(x,y)
can be used to fit variance and covariance parameters between two or more random effects. For
example, indirect genetic effect models.

spl2Da(x.coord,y.coord,at.var,at.levels))

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y.coord (in numeric class) assuming a single variance component. The 2D spline can be fitted at
specific levels using the at.var and at . levels arguments. For example random=~spl2Da(x.coord=Row,y.coord=Range, at.

spl2Db(x.coord,y.coord,at.var,at.levels))

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y.coord (in numeric class) assuming multiple variance components. The 2D spline can be fitted at
specific levels using the at.var and at . levels arguments. For example random=~spl2Db(x.coord=Row,y.coord=Range, at.

S3 methods

S3 methods are available for some parameter extraction such as fitted.mmer, residuals.mmer,
summary.mmer, randef, coef.mmer, anova.mmer, plot.mmer, and predict.mmer to obtain ad-
justed means. In addition, the vpredict function (replacement of the pin function) can be used to
estimate standard errors for linear combinations of variance components (i.e. ratios like h2).

Additional Functions

Additional functions for genetic analysis have been included such as relationship matrix build-
ing (A.mat, D.mat, E.mat, H.mat), heritability (h2.fun), build a genotypic hybrid marker matrix
(build.HMM), plot of genetic maps (map.plot), and manhattan plots (manhattan). If you need to
build a pedigree-based relationship matrix use the getA function from the pedigreemm package.

Bug report and contact

If you have any technical questions or suggestions please post it in https://stackoverflow.com or
https://stats.stackexchange.com
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If you have any bug report please go to https://github.com/covaruber/sommer or send me an email to
address it asap, just make sure you have read the vignettes carefully before sending your question.

Example Datasets
The package has been equiped with several datasets to learn how to use the sommer package:

* DT_halfdiallel, DT_fulldiallel and DT_mohring datasets have examples to fit half and full
diallel designs.

* DT_h2 to calculate heritability
*DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses

* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive
effects.

* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from
2 highly heterozygous parents including additive, dominance and epistatic effects.

* DT_polyploid to fit genomic prediction and GWAS analysis in polyploids.

* DT_gryphon data contains an example of an animal model including pedigree information.
* DT_btdata dataset contains an animal (birds) model.

* DT_legendre simulated dataset for random regression model.

* DT_sleepstudy dataset to know how to translate Ime4 models to sommer models.

* DT_ige dataset to show how to fit indirect genetic effect models.

Models Enabled

For details about the models enabled and more information about the covariance structures please
check the help page of the package (sommer).

Value

If all parameters are correctly indicated the program will return a list with the following information:

Vi the inverse of the phenotypic variance matrix V- = (ZGZ+R)"-1
P the projection matrix Vi - [Vi*(X*Vi*X)A-*Vi]
sigma a list with the values of the variance-covariance components with one list ele-

ment for each random effect.

sigma_scaled  alist with the values of the scaled variance-covariance components with one list
element for each random effect.

sigmaSE Hessian matrix containing the variance-covariance for the variance components.
SE’s can be obtained taking the square root of the diagonal values of the Hessian.

Beta a data frame for trait BLUEs (fixed effects).

VarBeta a variance-covariance matrix for trait BLUESs

u a list (one element for each random effect) with a data frame for trait BLUPs.

Varu a list (one element for each random effect) with the variance-covariance matrix
for trait BLUPs.

PevU a list (one element for each random effect) with the predicted error variance

matrix for trait BLUPs.
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residuals
AIC

BIC
convergence

monitor

percChange

dL

dL2

method

call
constraints
constraintsF

data

dataOriginal

terms

termsN

sigmaVector

mmer

Fitted values y.hat=XB

Residual values e =Y - XB

Akaike information criterion

Bayesian information criterion

a TRUE/FALSE statement indicating if the model converged.

The values of log-likelihood and variance-covariance components across itera-
tions during the REML estimation.

The percent change of variance components across iterations. There should be
one column less than the number of iterations. Calculated as percChange =
((x_i/x_i-1) - 1) * 100 where i is the ith iteration.

The vector of first derivatives of the likelihood with respect to the ith variance-
covariance component.

The matrix of second derivatives of the likelihood with respect to the i.j th
variance-covariance component.

The method for extimation of variance components specified by the user.
Formula for fixed, random and rcov used.

contraints used in the mixed models for the random effects.

contraints used in the mixed models for the fixed effects.

The dataset used in the model after removing missing records for the response
variable.

The original dataset used in the model.

The name of terms for responses, fixed, random and residual effects in the
model.

The number of effects associated to fixed, random and residual effects in the
model.

a vectorized version of the sigma element (variance-covariance components) to
match easily the standard errors of the var-cov components stored in the element
sigmaSE.

reshape.output The value provided to the mmer function for the argument with the same name.

Author(s)

Giovanny Covarrubias-Pazaran
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Examples

HHHH HHHH

#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples

HiH#H# Hit##
HH s s s s s S S S S E S E EE S EEE EEE R RS SRR SRR RS

HHHH HHHH
-+

#### EXAMPLES
#### Different models with sommer

HHHH HHHH

data(DT_example)
DT <- DT_example
head(DT)

#### Univariate homogeneous variance models #it#i#

## Compound simmetry (CS) model

ans1 <- mmer(Yield~Env,
random= ~ Name + Env:Name,
rcov= ~ units,
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data=DT)
summary (ans1)

## Compound simmetry (CS) + Diagonal (DIAG) model
ans2 <- mmer(Yield~Env,
random= ~Name + vs(ds(Env),Name),
rcov= ~ vs(ds(Env),units),
data=DT)
summary (ans2)

IRTET
4
1

s
}
+

#### Univariate unstructured variance models ####

HHHH HHHH
HHHH HHHH

ans3 <- mmer(Yield~Env,
random=~ vs(us(Env),Name),
rcov=~vs(ds(Env),units),

data=DT)
summary (ans3)
# iz
# #### Multivariate homogeneous variance models ####
# HHHH HHHHE
#
# ## Multivariate Compound simmetry (CS) model
# DT$EnvName <- paste(DT$Env,DT$Name)
# ans4 <- mmer(cbind(Yield, Weight) ~ Env,
# random= ~ vs(Name, Gtc = unsm(2)) + vs(EnvName,Gtc = unsm(2)),
# rcov= ~ vs(units, Gtc = unsm(2)),
# data=DT)
# summary(ans4)
#
# H#iHH
# #### Multivariate heterogeneous variance models #i###
# HHHH HHHHE
#
# ## Multivariate Compound simmetry (CS) + Diagonal (DIAG) model
# ans5 <- mmer(cbind(Yield, Weight) ~ Env,
# random= ~ vs(Name, Gtc = unsm(2)) + vs(ds(Env),Name, Gtc = unsm(2)),
# rcov= ~ vs(ds(Env),units, Gtc = unsm(2)),
# data=DT)
# summary(ans5)
#
# HHHH H#tH#
# #### Multivariate unstructured variance models ##i##
# HHH fHHH
#
# ans6 <- mmer(cbind(Yield, Weight) ~ Env,
# random= ~ vs(us(Env),Name, Gtc = unsm(2)),
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rcov= ~ vs(ds(Env),units, Gtc = unsm(2)),
data=DT)
summary(ans6)

4 HHHH
HHHH HHHH

#### EXAMPLE SET 2
#### 2 variance components
#### one random effect with variance covariance structure

data("DT_cpdata”)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
head(DT)
GT[1:4,1:4]
#### create the variance-covariance matrix
A <- A.mat(GT)
#### look at the data and fit the model
mix1 <- mmer(Yield~1,
random=~vs(id, Gu=A) + Rowf,
rcov=~units,
data=DT)
summary (mix1)$varcomp
#### calculate heritability
vpredict(mix1, h1 ~ V1/(V1+V3) )
##H#H# multi trait example
mix2 <- mmer(cbind(Yield,color)~1,
random = ~ vs(id, Gu=A, Gtc = unsm(2)) + # unstructured at trait level
vs(Rowf, Gtc=diag(2)) + # diagonal structure at trait level
vs(Colf, Gtc=diag(2)), # diagonal structure at trait level
rcov = ~ vs(units, Gtc = unsm(2)), # unstructured at trait level
data=DT)
summary (mix2)

#### EXAMPLE SET 3
#### comparison with lmer, install 'lme4'
#### and run the code below

#### lmer cannot use var-cov matrices so we will not
#### use them in this comparison example

library(lme4)
library(sommer)
data("DT_cornhybrids™”)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- GT_cornhybrids
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fm1 <- Imer(Yield ~ Location + (1|GCA1) + (1|GCA2) + (1|SCA),
data=DT )
out <- mmer(Yield ~ Location,
random = ~ GCA1 + GCA2 + SCA,
rcov = ~ units,
data=DT)
summary (fm1)
summary (out)
### same BLUPs for GCA1, GCA2, SCA than 1lme4
plot(out$U$GCA1$Yield, ranef(fm1)$GCA1[,1])
plot(out$U$GCA2$Yield, ranef(fm1)$GCA2[,1])
vv=which(abs(out$U$SCA$Yield) > @)
plot(out$U$SCA$Yield[vv], ranef(fm1)$SCA[,1])

### a more complex model specifying which locations
head(DT)
out2 <- mmer(Yield ~ Location,
random = ~ vs(at(Location,c("3","4")),GCA2) +
vs(at(Location,c("3","4")),SCA),
rcov = ~ vs(ds(Location),units),
data=DT)
summary (out?2)

e E E E E E E E E E E E E E Y

mmer2 mixed model equations in R

Description
This function is deprecated. Use mmer instead. Now the mmer function can run both types of
models; formula-based and matrix-based models. Type ?mmer.
For tutorials on how to perform different analysis with sommer please look at the vignettes by
typing in the terminal:
vignette(''vl.sommer.quick.start'")
vignette(''v2.sommer.changes.and.faqs'")
vignette(''v3.sommer.qg'")

vignette(''vd.sommer.gxe'')

Usage

mmer2(fixed, random, rcov, data, weights,
iters=20, tolpar = 1e-03, tolparinv = 1e-06,
init=NULL, constraints=NULL,method="NR",
getPEV=TRUE, na.method.X="exclude",
na.method.Y="exclude",return.param=FALSE,
date.warning=TRUE, verbose=TRUE,
reshape.output=TRUE)
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Arguments

fixed

random

rcov

data

weights

iters
tolpar
tolparinv

init
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a formula specifying the response variable(s) and fixed effects, i.e:
Yield ~ Location for univariate models

cbind(Yield,color) ~ Location for multivariate models.

a formula specifying the name of the random effects, i.e. random= ~ genotype
+ year.

Useful functions can be used to fit heterogeneous variances and other special
models (see ’Special Functions’ in the Details section for more information):

vs(...,Gu,Gt,Gtc) is the main function to specify special variance-covariance
structures for random effects. On the ... argument you provide the unknown
variance-covariance structures (i.e. us,ds,at,cs) and the random effect where
such covariance structure will be used (the random effect of interest). Auxiliar
functions for building the variance models are:

* ds(x), us(x), cs(x) can be used to specify unknown diagonal, unstructured
and customized covariance structures respectively among levels of a random
effect to be estimated by REML.

* at(x,levs) can be used to specify heterogeneous variance for specific levels
of a random effect

* overlay(...,rlist,prefix) can be used to specify overlay of design ma-
trices of random effects

* spl2Da(...), spl2Db(...) can be used to fit a 2-dimensional spline (i.e.
spatial modeling; see Special functions section below).

* leg(...) can be used to fit a random regression model.

a formula specifying the name of the error term, i.e. rcov= ~ units.

The functions that can be used to fit heterogeneous residual variances are the
same used on the random term but the random effect is always "units", i.e.
rcov=~vs(ds(Location),units)

a data frame containing the variables specified in the formulas for response,
fixed, and random effects.

name of the covariate for weights. To be used for the product R = Wsi*R*Wsi,
where * is the matrix product, Wsi is the square root of the inverse of W and R
is the residual matrix.

Maximum number of iterations allowed. Default value is 15.
Convergence criteria.
tolerance parameter for matrix inverse used when singularities are encountered.

initial values for the variance components. By default this is NULL and variance
components are estimated by the method selected, but in case the user want to
provide initial values for ALL var-cov components this argument is functional.
It has to be provided as a list or an array, where each list element is one variance
component and if multitrait model is pursued each element of the list is a matrix
of variance covariance components among traits. Initial values can also be pro-
vided in the Gt argument of the vs function.Is highly encouraged to use the Gt
and Gtc arguments of the vs function instead of this argument
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constraints when initial values are provided these have to be accompanied by their con-
straints. See the vs function for more details on the constraints. Is highly en-
couraged to use the Gt and Gtc arguments of the vs function instead of this
argument.

method this refers to the method or algorithm to be used for estimating variance com-
ponents. Direct-inversion Newton-Raphson NR and Average Information Al
(Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015).

getPEV a TRUE/FALSE value indicating if the program should return the predicted error
variance and variance for random effects. This option is provided since this can
take a long time for certain models where p is > n by a big extent.

na.method.X one of the two possible values; "include" or "exclude". If "include" is selected
then the function will impute the X matrices for fixed effects with the median
value. If "exclude" is selected it will get rid of all rows with missing values for
the X (fixed) covariates. The default is "exclude". The "include" option should
be used carefully.

non:

na.method.Y one of the three possible values; "include", "include2" or "exclude". If "include"
is selected then the function will impute the response variables with the median
value. The difference between "include" and "include2" is only available in
the multitrait models when the imputation can happen for the entire matrix of
responses or only for complete cases ("include2"). If "exclude" is selected it will
get rid of rows in responses where missing values are present for the estimation
of variance components. The default is "exclude".

return.param  a TRUE/FALSE value to indicate if the program should return the parameters
used for modeling without fitting the model.

date.warning  a TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.

verbose a TRUE/FALSE value to indicate if the program should return the progress of
the iterative algorithm.

reshape.output a TRUE/FALSE value to indicate if the output should be reshaped to be easier
to use, some information is missing from the multivariate models for an easy
interpretation.

Details

Special Functions
vs(at(x,levels),y)

can be used to specify heterogeneous variance for the "y"" factor covariate at specific levels of the
factor covariate "x", i.e. random=~vs(at(Location,c("A","B")),ID) fits a variance component for ID
at levels A and B of the factor covariate Location.

vs(ds(x),y)

can be used to specify a diagonal covariance structure for the "y"" covariate for all levels of the

factor covariate "x", i.e. random=~vs(ds(Location,ID) fits a variance component for ID at all levels
of the factor covariate Location.

vs(us(x),y)
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can be used to specify an unstructured covariance structure for the "y"" covariate for all levels of the

factor covariate "x", i.e. random=~vs(us(Location),ID) fits variance and covariance components for
ID at all levels of the factor covariate Location.
vs(overlay(...,rlist=NULL,prefix=NULL))

can be used to specify overlay of design matrices between consecutive random effects specified,
i.e. random=~vs(overlay(male,female)) overlays (overlaps) the incidence matrices for the male and
female random effects to obtain a single variance component for both effects. The ‘rlist* argument is
a list with each element being a numeric value that multiplies the incidence matrix to be overlayed.
See overlay for details.Can be combined with vs().

spl2Da(x.coord,y.coord,at.var,at.levels, type,nsegments,penaltyord, degree,nestorder)

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y . coord (in numeric class). The 2D spline can be fitted at specific levels using the at and at. levels
arguments. For example random=~spl2Da(x.coord=Row,y.coord=Range,at.var=FIELD).

spl2Db(x.coord,y.coord,at.var,at.levels, type,nsegments,penaltyord, degree,nestorder)

can be used to fit a 2-dimensional spline (i.e. spatial modeling) using coordinates x.coord and
y . coord (in numeric class). The 2D spline can be fitted at specific levels using the at and at. levels
arguments. For example random=~spl2Db(x.coord=Row,y.coord=Range,at.var=FIELD).

vs(leg(x,n),y)

can be used to fit a random regression model using a numerical variable x that marks the trayectory
for the random effect y. The leg function can be combined with the special functions ds, us at and
cs. For example random=~vs(us(leg(x,1)),y).

For a short tutorial on how to use this special functions you can look at the vignettes by typing in
the terminal:

vignette(’sommer.start’)

Bug report and contact

If you have any questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com
Example Datasets

The package has been equiped with several datasets to learn how to use the sommer package:

*DT_halfdiallel and DT_fulldiallel datasets have examples to fit half and full diallel designs.

* DT_h2 to calculate heritability

*DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses

* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive
effects.

* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from
2 highly heterozygous parents including additive, dominance and epistatic effects.

* DT_polyploid to fit genomic prediction and GWAS analysis in polyploids.

* DT_gryphon data contains an example of an animal model including pedigree information.
* DT_btdata dataset contains an animal (birds) model.

* DT_legendre simulated dataset for random regression model.

Additional Functions
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Other functions such as summary, fitted, randef (notice here is randef not ranef), anova, variogram,

mmer2

residuals, coef and plot applicable to typical linear models can also be applied to models fitted
using the mmer2-type of functions.

Additional functions for genetic analysis have been included such as heritability (h2. fun), build a
genotypic hybrid marker matrix (build.HMM), plot of genetic maps (map.plot), creation of man-
hattan plots (manhattan). If you need to use pedigree you need to convert your pedigree into a
relationship matrix (i.e. use the getA function from the pedigreemm package).

Useful functions for analyzing field trials are included such as the sp12Da and sp12Db.

Models Enabled

For details about the models enabled and more information about the covariance structures please
check the help page of the package (sommer).

Value

If all parameters are correctly indicated the program will return a list with the following information:

Vi

sigma

sigma_scaled

sigmaSE
Beta
VarBeta
U

Varu

PevU

fitted
residuals
AIC

BIC
convergence

monitor

method
call

Author(s)

the inverse of the phenotypic variance matrix VA- = (ZGZ+R)"-1

a list with the values of the variance-covariance components with one list ele-
ment for each random effect.

a list with the values of the scaled variance-covariance components with one list
element for each random effect.

standard errors for the variance covariance components.

a data frame for trait BLUEs (fixed effects).

a variance-covariance matrix for trait BLUESs

a list (one element for each random effect) with a data frame for trait BLUPs.

a list (one element for each random effect) with the variance-covariance matrix
for trait BLUPs.

a list (one element for each random effect) with the predicted error variance
matrix for trait BLUPs.

Fitted values y.hat=XB

Residual valuese =Y - XB

Akaike information criterion

Bayesian information criterion

a TRUE/FALSE statement indicating if the model converged.

The values of log-likelihood and variance-covariance components across itera-
tions during the REML estimation.

The method for extimation of variance components specified by the user.

Formula for fixed, random and rcov used.

Giovanny Covarrubias-Pazaran
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overlay Overlay Matrix

Description

‘overlay‘ adds r times the design matrix for model term t to the existing design matrix. Specifically,
if the model up to this point has p effects and t has a effects, the a columns of the design matrix
for t are multiplied by the scalar r (default value 1.0). This can be used to force a correlation of 1
between two terms as in a diallel analysis.

Usage

overlay(..., rlist=NULL, prefix=NULL)
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Arguments
as many vectors as desired to overlay.
rlist a list of scalar values indicating the times that each incidence matrix overlayed
should be multiplied by. By default r=1.
prefix a character name to be added before the column names of the final overlay ma-
trix. This may be useful if you have entries with names starting with numbers
which programs such as asreml doesn’t like, or for posterior extraction of pa-
rameters, that way ’grep’ing is easier.
Value

$S3 an incidence matrix with as many columns levels in the vectors provided to build the incidence
matrix.

Author(s)

Giovanny Covarrubias-Pazaran

References

Fikret Isik. 2009. Analysis of Diallel Mating Designs. North Carolina State University, Raleigh,
USA.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmer and a function for creating dummy variables for diallel
models named add.diallel.vars.

Examples

HHHH
-

#### For CRAN time limitations most lines in the
#i#t## examples are silenced with one '#' mark,
#### remove them and run the examples

data("DT_halfdiallel"”)

DT <- DT_halfdiallel

head(DT)

DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)

A <- diag(7); colnames(A) <- rownames(A) <- 1:7;A # if you want to provide a covariance matrix
#### model using overlay
modh <- mmer (sugar~1,
random=~vs(overlay(femalef,malef), Gu=A)
+ genof,
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data=DT)
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plot.mmer plot form a LMM plot with mmer

Description

plot method for class "mmer"”.

Usage
## S3 method for class 'mmer'
plot(x,stnd=TRUE, ...)
Arguments
X an object of class "mmer”
stnd argument for ploting the residuals to know if they should be standarized.

Further arguments to be passed

Value

vector of plot

Author(s)

Giovanny Covarrubias <covarrubiasp@wisc.edu>

See Also

plot, mmer

Examples

data(DT_yatesoats)

DT <- DT_yatesoats

head(DT)

m3 <- mmer(fixed=Y ~ V + N + V:N,
random = ~ B + B:MP,
rcov=~units,
data = DT)

plot(m3)
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predict.mmer Predict form of a LMM fitted with mmer

Description

predict method for class "mmer”.

Usage

## S3 method for class 'mmer'
predict(object, classify=NULL,
hypertable=NULL,

L)
Arguments
object a mixed model of class "mmer"”
classify a character vector with the variables that define the margins of the multiway
table to be aggregated.
hypertable an optional table to force the terms to be included, ignored and averaged with
same format as the output hypertable of this function (see examples).
An ignored term means that the model matrices for that fixed or random effect
are not used in the BLUP and SE calculation.
An averaged term means that the model matrices for that fixed or random effect
is filled purely with the value 1/#levels.
Further arguments to be passed to the model fit (i.e. iters, etc.).
Details

This function allows to produce predictions specifying those variables that define the margins of
the hypertable to be predicted (argument classify). Predictions are obtained for each combination
of values of the specified variables that is present in the data set used to fit the model. See vignettes
for more details.

For predicted values the pertinent design matrices X and Z together with BLUEs (b) and BLUPs
(u) are multiplied and added together.

predicted.value equal Xb + Zu.1 + ... + Zu.n

For computing standard errors for predictions the parts of the coefficient matrix:

Cl11 equal (X’ ViX)-

Cl12 equal 0 - [(X’V-X)-X* V- GZ]

C22 equal PEV equal G - [Z’G[V- - (VX*XVXVX)]GZ’]

and are summarized as:

standard.errors equal sqrt( rowSums(XC11*X’) + rowSums(2*(XC12*Z’)) + rowSums(ZC22*7Z’)
)

when both fixed and random effects are present in the inclusion set. If only fixed and random effects
are included, only the respective terms from the SE for fixed or random effects are calculated.
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Value

pvals
hypertable
model

C11

C12

C22
Xextended
Zextended

Author(s)
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the table of predictions according to the specified arguments.

the summary table specifying the ignored, include and average sets.
the mixed model used within predict.

the inverse of the coefficient matrix corresponding to the fixed effects.

the inverse of the coefficient matrix corresponding to the covariance between
fixed and random effects.

the inverse of the coefficient matrix corresponding to the random effects.
the model matrix for fixed effects used to compute BLUPs and SEs.

the model matrix for random effects used to compute BLUPs and SEs.

Giovanny Covarrubias

References

Welham, S., Cullis, B., Gogel, B., Gilmour, A., and Thompson, R. (2004). Prediction in linear
mixed models. Australian and New Zealand Journal of Statistics, 46, 325 - 347.

See Also

predict, mmer

Examples

data(DT_yatesoats)
DT <- DT_yatesoats

m3 <- mmer(fixed=Y ~ V + N + V:N,

random = ~ B + B:MP,
rcov=~units,

DT)

summary (m3) $varcomp

p@ <- predict.mmer(object=m3, classify = "N")
p@shypertable; p@$pvals

p@ <- predict.mmer(object=m3, classify = "V")
p@shypertable; po$pvals

p@ <- predict.mmer(object=m3, classify = "B")
p@shypertable; p@$pvals

p0 <- predict.mmer(object=m3, classify = c("V","N"))
p@s$hypertable; p@$pvals

AR
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## Modify terms in the prediction

## Ignore a term: it doesn't include the

## model matrix in the BLUP and its SE
HHHEHHAEEEEE AR

pd <- predict.mmer(object=m3, classify = "N")

# modify the prediction

hypertable <- p@$hypertable; hypertable

# ignore the B:MP random term
hypertable[6,c("ignored”,"include”,"average”)] <- c(TRUE,FALSE,FALSE)
hypertable

p1 <- predict.mmer(object=m3, classify = "N", hypertable = hypertable)
pl1$pvals

B

## Modify terms in the prediction

## Average a term: it fills the model matrix
## for the term with 1/#levels affecting

## the BLUP and its SE
HHHHHHAEEEE AR

p@ <- predict.mmer(object=m3, classify = "N")

# modify the prediction

hypertable <- p@$hypertable; hypertable

# average the V:N fixed term
hypertable[4,c("ignored”,"include”,"average”)] <- c(FALSE,TRUE,TRUE)
hypertable

p1 <- predict.mmer(object=m3, classify = "N", hypertable = hypertable)
pl1$pvals

randef extracting random effects

Description

This function is extracts the random effects from a mixed model fitted by mmer.

Usage
randef (object)

Arguments

object an mmer object

Value

$randef a list structure with the random effects or BLUPs.
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Examples

# randef(model)

residuals.mmer Residuals form a GLMM fitted with mmer

Description

residuals method for class "mmer”.

Usage
## S3 method for class 'mmer'
residuals(object, ...)

Arguments
object an object of class "mmer"”

Further arguments to be passed

Value

vector of residuals of the form e =y - Xb - Zu, the so called conditional residuals.

Author(s)

Giovanny Covarrubias

See Also

residuals, mmer

simGECorMat Create a GE correlation matrix for simulation purposes.

Description
Makes a simple correlation matrix based on the number of environments and megaenvironments
desired.

Usage

simGECorMat (nEnv,nMegaEnv,mu=0.7, v=0.2, mu2=0, v2=0.3)
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Arguments
nEnv Number of environments to simulate. Needs to be divisible by the nMegaEnv
argument.
nMegaEnv Number of megaenvironments to simulate.
mu Mean value of the genetic correlation within megaenvironments.
v variance in the genetic correlation within megaenvironments.
mu2 Mean value of the genetic correlation between megaenvironments.
v2 variance in the genetic correlation between megaenvironments.
Details

Simple simulation of a correlation matrix for environments and megaenvironments.
Value

G the correlation matrix

$G the correlation matrix

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

mmer — the core function of the package

Examples

simGECorMat (9, 3)

spl2Da Two-dimensional penalised tensor-product of marginal B-Spline basis.

Description

Auxiliary function used for modelling the spatial or environmental effect as a two-dimensional
penalised tensor-product (isotropic approach) based on Lee et al. (2013) and Rodriguez-Alvarez et
al. (2018). This is a modified wrapper of some portions of the SpATS package to build a single
incidence matrix containing all the columns from tensor products of the x and y coordinates and it
fits such matrix as a single random effect. Then the heterogeneous covariances structure capabilities
of sommer can be used to enhance the model fit. You may be interested in reading and citing not
only sommer but also Wageningen publications if using this 2D spline methodology.
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Usage

spl2Da(x.coord,y.coord,at.var=NULL,at.levels=NULL, type="PSANOVA",
nsegments = ¢(10,10), penaltyord = c(2,2), degree = c(3,3),

nestorder = c(1,1))
Arguments

x.coord vector of coordinates on the x-axis direction (i.e. row) to use in the 2 dimen-
sional spline.

y.coord vector of coordinates on the y-axis direction (i.e. range or column) to use in the
2 dimensional spline.

at.var vector of indication variable where heterogeneous variance is required (e.g., a
different spl2D for each field).

at.levels character vector with the names of the leves for the at term that should be used,
if missing all levels are used.

type one of the two methods "PSANOVA" or "SAP". See details below.

nsegments numerical vector of length 2 containing the number of segments for each marginal

(strictly nsegments - 1 is the number of internal knots in the domain of the co-
variate). Atomic values are also valid, being recycled. Default set to 10.

penaltyord numerical vector of length 2 containing the penalty order for each marginal.
Atomic values are also valid, being recycled. Default set to 2 (second order).
Currently, only second order penalties are allowed.

degree numerical vector of length 2 containing the order of the polynomial of the B-
spline basis for each marginal. Atomic values are also valid, being recycled.
Default set to 3 (cubic B-splines).

nestorder numerical vector of length 2 containing the divisor of the number of segments
(nsegments) to be used for the construction of the nested B-spline basis for
the smooth-by-smooth interaction component. In this case, the nested B-spline
basis will be constructed assuming a total of nsegments/nestorder segments.
Default set to 1, which implies that nested basis are not used. See SAP for more
details.

Details

The following documentation is taken from the SpATS package. Please refer to this package
and associated publications if you are interested in going deeper on this technique:

Within the P-spline framework, anisotropic low-rank tensor-product smoothers have become the
general approach for modelling multidimensional surfaces (Eilers and Marx 2003; Wood 2006). In
the original SpATS package, was proposed to model the spatial or environmental effect by means of
the tensor-product of B-splines basis functions. In other words, was proposed to model the spatial
trend as a smooth bivariate surface jointly defined over the the spatial coordinates. Accordingly, the
current function has been designed to allow the user to specify the spatial coordinates that the spatial
trend is a function of. There is no restriction about how the spatial coordinates shall be specified:
these can be the longitude and latitude of the position of the plot on the field or the column and
row numbers. The only restriction is that the variables defining the spatial coordinates should be
numeric (in contrast to factors).
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As far as estimation is concerned, we have used in this package the equivalence between P-splines
and linear mixed models (Currie and Durban, 2002). Under this approach, the smoothing param-
eters are expressed as the ratio between variance components. Moreover, the smooth components
are decomposed in two parts: one which is not penalised (and treated as fixed) and one with is
penalised (and treated as random). For the two-dimensional case, the mixed model representation
leads also to a very interesting decomposition of the penalised part of the bivariate surface in three
different components (Lee and Durban, 2011): (a) a component that contains the smooth main ef-
fect (smooth trend) along one of the covariates that the surface is a function of (as, e.g, the x-spatial
coordinate or column position of the plot in the field), (b) a component that contains the smooth
main effect (smooth trend) along the other covariate (i.e., the y-spatial coordinate or row position);
and (c) a smooth interaction component (sum of the linear-by-smooth interaction components and
the smooth-by-smooth interaction component).

The original implementation of SpATS assumes two different smoothing parameters, i.e., one for
each covariate in the smooth component. Accordingly, the same smoothing parameters are used for
both, the main effects and the smooth interaction. However, this approach can be extended to deal
with the ANOVA-type decomposition presented in Lee and Durban (2011). In their approach, four
different smoothing parameters are considered for the smooth surface, that are in concordance with
the aforementioned decomposition: (a) two smoothing parameter, one for each of the main effects;
and (b) two smoothing parameter for the smooth interaction component.

It should be noted that, the computational burden associated with the estimation of the two-dimensional
tensor-product smoother might be prohibitive if the dimension of the marginal bases is large. In
these cases, Lee et al. (2013) propose to reduce the computational cost by using nested bases. The
idea is to reduce the dimension of the marginal bases (and therefore the associated number of pa-
rameters to be estimated), but only for the smooth-by-smooth interaction component. As pointed
out by the authors, this simplification can be justified by the fact that the main effects would in fact
explain most of the structure (or spatial trend) presented in the data, and so a less rich representa-
tion of the smooth-by-smooth interaction component could be needed. In order to ensure that the
reduced bivariate surface is in fact nested to the model including only the main effects, Lee et al.
(2013) show that the number of segments used for the nested basis should be a divisor of the number
of segments used in the original basis (nsegments argument). In the present function, the divisor
of the number of segments is specified through the argument nestorder. For a more detailed re-
view on this topic, see Lee (2010) and Lee et al. (2013). The "PSANOVA" approach represents an
alternative method. In this case, the smooth bivariate surface (or spatial trend) is decomposed in
five different components each of them depending on a single smoothing parameter (see Lee et al.,
2013).

As mentioned at the beginning, the piece of documentation stated above was taken completely from
the SpATS package in order to provide a deeper explanation. In practice, sommer uses some pieces
of code from SpATS to build the design matrix containing all the columns from tensor products
of the x and y coordinates and it fits such matrix as a single random effect. As a result the same
variance component is assumed for the linear, linear by linear, linear by spline, and spline by spline
interactions. This results in a less flexible approach than the one proposed by Rodriguez-Alvarez et
al. (2018) but still makes a pretty good job to model the spatial variation. Use under your own risk.

References

Rodriguez-Alvarez, M. X, Boer, M.P,, van Eeuwijk, F.A., and Eilers, PH.C. (2018). SpATS: Spatial
Analysis of Field Trials with Splines. R package version 1.0-9. https://CRAN.R-project.org/package=SpATS.
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Rodriguez-Alvarez, M.X., et al. (2015) Fast smoothng parameter separaton n multdmensonal gen-
eralzed P-splnes: the SAP algorthm. Statistics and Computing 25.5: 941-957.

Lee, D.-J., Durban, M., and Eilers, PH.C. (2013). Efficient two-dimensional smoothing with P-
spline ANOVA mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22
- 37.

Gilmour, A.R., Cullis, B.R., and Verbyla, A.P. (1997). Accounting for Natural and Extraneous Vari-
ation in the Analysis of Field Experiments. Journal of Agricultural, Biological, and Environmental
Statistics, 2, 269 - 293.

See Also

mmer, sp12Db

Examples
#H# ##
## example to use spl2Da()
H#H ##

data(DT_cpdata)

# DT <- DT_cpdata

# GT <- GT_cpdata

# MP <- MP_cpdata

# A <- A.mat(GT)

# mix <- mmer(Yield~1,

# random=~vs(id, Gu=A) +
# vs(Rowf) +

# vs(Colf) +

# spl2Da(Row,Col),

# rcov=~units,

# data=DT)

# summary(mix)$varcomp

#H# ##
## mimic 2 fields

## ##

aa <- DT; bb <- DT
aa$FIELD <- "A";bb$FIELD <- "B"
set.seed(1234)
aa$Yield <- aa$Yield + rnorm(length(aas$Yield),0,4)
DT2 <- rbind(aa,bb)
head(DT2)
A <- A.mat(GT)
mix <- mmer(Yield~1,
random=~vs(ds(FIELD),id, Gu=A) +
vs(ds(FIELD),Rowf) +
vs(ds(FIELD),Colf) +
spl2Da(Row,Col,at.var=FIELD),
rcov=~vs(ds(FIELD),units),
data=DT2)
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spl2Db

spl2Db

Two-dimensional penalised tensor-product of marginal B-Spline basis.

Description

Aucxiliary function used for modelling the spatial or environmental effect as a two-dimensional pe-
nalised tensor-product (isotropic approach) based on Lee et al. (2013) and Rodriguez-Alvarez et al.
(2018). sp12Db gets Tensor-Product P-Spline Mixed Model Incidence Matrices for use with sommer
and its main function mmer. We thank Sue Welham for making the TPSbits package available to the
community. If you’re using this function for your research please cite her TPSbits package :) this is
mostly a wrapper of her tpsmmb function to enable the use in sommer.

Usage

spl2Db(x.coord,y.coord,at.var=NULL,at.levels=NULL,nsegments = c(10,10),

degree

c(3,3), penaltyord = c(2,2), nestorder = c(1,1),

minbound=NULL, maxbound=NULL, method="Lee", what="bits")

Arguments

x.coord

y.coord

at.var

at.levels

nsegments

degree

penaltyord

nestorder

minbound

vector of coordinates on the x-axis direction (i.e. row) to use in the 2 dimen-
sional spline.

vector of coordinates on the y-axis direction (i.e. range or column) to use in the
2 dimensional spline.

vector of indication variable where heterogeneous variance is required (e.g., a
different spl2D for each field).

character vector with the names of the leves for the at term that should be used,
if missing all levels are used.

numerical vector of length 2 containing the number of segments for each marginal
(strictly nsegments - 1 is the number of internal knots in the domain of the co-
variate). Atomic values are also valid, being recycled. Default set to 10.

numerical vector of length 2 containing the order of the polynomial of the B-
spline basis for each marginal. Atomic values are also valid, being recycled.
Default set to 3 (cubic B-splines).

numerical vector of length 2 containing the penalty order for each marginal.
Atomic values are also valid, being recycled. Default set to 2 (second order).
Currently, only second order penalties are allowed.

numerical vector of length 2 containing the divisor of the number of segments
(nsegments) to be used for the construction of the nested B-spline basis for
the smooth-by-smooth interaction component. In this case, the nested B-spline
basis will be constructed assuming a total of nsegments/nestorder segments.
Default set to 1, which implies that nested basis are not used. See SAP for more
details.

A list of length 2. The lower bound to be used for column and row dimensions
respectively; default calculated as the minimum value for each dimension.
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maxbound A list of length 2. The upper bound to be used for column and row dimensions
respectively; default calculated as the maximum value for each dimension.

method A string. Method for forming the penalty; default="Lee" ie the penalty from
Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is
"Wood" ie. the method from Wood et al (2012, Stat Comp 23, 341-360). This
option is a research tool and requires further investigation.

what one of two values; *base’ or ’bits’ to return:

base = matrix for columns cbind(TP.col,TP.row,TP.C.n,TP.R.n,TP.CR.n). To be
used in the fixed part.

bits = matrices for the tensor products. To be used in the random part.

Details

The following documentation is taken from the SpATS package. Please refer to this package
and associated publications if you are interested in going deeper on this technique:

Within the P-spline framework, anisotropic low-rank tensor-product smoothers have become the
general approach for modelling multidimensional surfaces (Eilers and Marx 2003; Wood 2006). In
the original SpATS package, was proposed to model the spatial or environmental effect by means of
the tensor-product of B-splines basis functions. In other words, was proposed to model the spatial
trend as a smooth bivariate surface jointly defined over the the spatial coordinates. Accordingly, the
current function has been designed to allow the user to specify the spatial coordinates that the spatial
trend is a function of. There is no restriction about how the spatial coordinates shall be specified:
these can be the longitude and latitude of the position of the plot on the field or the column and
row numbers. The only restriction is that the variables defining the spatial coordinates should be
numeric (in contrast to factors).

As far as estimation is concerned, we have used in this package the equivalence between P-splines
and linear mixed models (Currie and Durban, 2002). Under this approach, the smoothing param-
eters are expressed as the ratio between variance components. Moreover, the smooth components
are decomposed in two parts: one which is not penalised (and treated as fixed) and one with is
penalised (and treated as random). For the two-dimensional case, the mixed model representation
leads also to a very interesting decomposition of the penalised part of the bivariate surface in three
different components (Lee and Durban, 2011): (a) a component that contains the smooth main ef-
fect (smooth trend) along one of the covariates that the surface is a function of (as, e.g, the x-spatial
coordinate or column position of the plot in the field), (b) a component that contains the smooth
main effect (smooth trend) along the other covariate (i.e., the y-spatial coordinate or row position);
and (c) a smooth interaction component (sum of the linear-by-smooth interaction components and
the smooth-by-smooth interaction component).

The default implementation assumes two different smoothing parameters, i.e., one for each covari-
ate in the smooth component. Accordingly, the same smoothing parameters are used for both, the
main effects and the smooth interaction. However, this approach can be extended to deal with the
ANOVA-type decomposition presented in Lee and Durban (2011). In their approach, four differ-
ent smoothing parameters are considered for the smooth surface, that are in concordance with the
aforementioned decomposition: (a) two smoothing parameter, one for each of the main effects; and
(b) two smoothing parameter for the smooth interaction component.

It should be noted that, the computational burden associated with the estimation of the two-dimensional
tensor-product smoother might be prohibitive if the dimension of the marginal bases is large. In
these cases, Lee et al. (2013) propose to reduce the computational cost by using nested bases. The
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idea is to reduce the dimension of the marginal bases (and therefore the associated number of pa-
rameters to be estimated), but only for the smooth-by-smooth interaction component. As pointed
out by the authors, this simplification can be justified by the fact that the main effects would in fact
explain most of the structure (or spatial trend) presented in the data, and so a less rich representa-
tion of the smooth-by-smooth interaction component could be needed. In order to ensure that the
reduced bivariate surface is in fact nested to the model including only the main effects, Lee et al.
(2013) show that the number of segments used for the nested basis should be a divisor of the number
of segments used in the original basis (nsegments argument). In the present function, the divisor
of the number of segments is specified through the argument nestorder. For a more detailed re-
view on this topic, see Lee (2010) and Lee et al. (2013). The "PSANOVA" approach represents an
alternative method. In this case, the smooth bivariate surface (or spatial trend) is decomposed in
five different components each of them depending on a single smoothing parameter (see Lee et al.,
2013).

Value

List of length 7 elements:

1. data = the input data frame augmented with structures required to fit tensor product splines in
asreml-R. This data frame can be used to fit the TPS model.

Added columns:

e TP.col, TP. row = column and row coordinates
e TP.CxR = combined index for use with smooth x smooth term

* TP.C.n for n=1:diff.c = X parts of column spline for use in random model (where diff.c
is the order of column differencing)

e TP.R.n for n=1:diff.r = X parts of row spline for use in random model (where diff.r is the
order of row differencing)

e TP.CR.n for n=1:(diff.c*diff.r) = interaction between the two X parts for use in fixed
model. The first variate is a constant term which should be omitted from the model when
the constant (1) is present. If all elements are included in the model then the constant
term should be omitted, eg. y ~-1+TP.CR.1+TP.CR.2+ TP.CR.3 + TP.CR.4 + other
terms. ..

e when asreml="grp" or "sepgrp”, the spline basis functions are also added into the data
frame. Column numbers for each term are given in the grp list structure.

fR =Xrl:Zc

fC =Xr2:Zc

fR.C=Zr:Xcl

R.fC=Zr:Xc2

fR.fC=Zc:Zr

all = Xrl:Zc | X12:Zc | Zr:Xcl | Zr:Xc2 | Zc:Zx

N A e

References

Sue Welham (2021). TPSbits: Creates Structures to Enable Fitting and Examination of 2D Tensor-
Product Splines using ASReml-R. R package version 1.0.0.



spl2Db 127

Rodriguez-Alvarez, M.X, Boer, M.P,, van Eeuwijk, F.A., and Eilers, PH.C. (2018). SpATS: Spatial
Analysis of Field Trials with Splines. R package version 1.0-9. https://CRAN.R-project.org/package=SpATS.
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Gilmour, A.R., Cullis, B.R., and Verbyla, A.P. (1997). Accounting for Natural and Extraneous Vari-
ation in the Analysis of Field Experiments. Journal of Agricultural, Biological, and Environmental
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See Also

mmer, spl2Da

Examples
## ##
## example to use spl2Db()
#H# #i#

data(DT_cpdata)

# DT <- DT_cpdata

# GT <- GT_cpdata

# MP <- MP_cpdata

# A <- A.mat(GT)

# mix <- mmer(Yield~1,

# random=~vs(id, Gu=A) +
# vs(Rowf) +

# vs(Colf) +

# spl2Db(Row,Col),

# rcov=~units,

# data=DT)

# summary(mix)$varcomp

H#H# ##
## mimic 2 fields

#H# ##

aa <- DT; bb <- DT
aa$FIELD <- "A";bb$FIELD <- "B"
set.seed(1234)
aa$Yield <- aa$Yield + rnorm(length(aas$Yield),0,4)
DT2 <- rbind(aa,bb)
head(DT2)
A <- A.mat(GT)
mix <- mmer(Yield~1,
random=~vs(ds(FIELD),id, Gu=A) +
vs(ds(FIELD),Rowf) +
vs(ds(FIELD),Colf) +
spl2Db(Row,Col,at.var=FIELD),
rcov=~vs(ds(FIELD),units),
data=DT2)
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spl2Dmats

spl2Dmats

Get Tensor Product Spline Mixed Model Incidence Matrices

Description

spl2Dmats gets Tensor-Product P-Spline Mixed Model Incidence Matrices for use with sommer
and its main function mmer. We thank Sue Welham for making the TPSbits package available to the
community. If you’re using this function for your research please cite her TPSbits package :) this is
mostly a wrapper of her tpsmmb function to enable the use in sommer.

Usage

spl2Dmats(

x.coord.name,
y.coord.name,

data,
at.name,
at.levels,

nsegments=NULL,
minbound=NULL,
maxbound=NULL,
degree = c(3, 3),
penaltyord = c(2,2),

nestorder

c(1,1),

method = "Lee"

Arguments

x.coord.name
y.coord.name
data

at.name

at.levels

nsegments

minbound

maxbound

A string. Gives the name of data element holding column locations.
A string. Gives the name of data element holding row locations.
A dataframe. Holds the dataset to be used for fitting.

name of a variable defining if the 2D spline matrices should be created at differ-
ent units (e.g., at different environments).

a vector of names indicating which levels of the at.name variable should be used
for fitting the 2D spline function.

A list of length 2. Number of segments to split column and row ranges into,
respectively (= number of internal knots + 1). If only one number is specified,
that value is used in both dimensions. If not specified, (number of unique values
- 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot
at each data value.

A list of length 2. The lower bound to be used for column and row dimensions
respectively; default calculated as the minimum value for each dimension.

A list of length 2. The upper bound to be used for column and row dimensions
respectively; default calculated as the maximum value for each dimension.
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A list of length 2. The degree of polynomial spline to be used for column and
row dimensions respectively; default=3.

penaltyord A list of length 2. The order of differencing for column and row dimensions,

respectively; default=2.

nestorder A list of length 2. The order of nesting for column and row dimensions, re-

method

Value

spectively; default=1 (no nesting). A value of 2 generates a spline with half the
number of segments in that dimension, etc. The number of segments in each
direction must be a multiple of the order of nesting.

A string. Method for forming the penalty; default="Lee" ie the penalty from
Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is
"Wood" ie. the method from Wood et al (2012, Stat Comp 23, 341-360). This
option is a research tool and requires further investigation.

List of length 7 elements:

1. data = the input data frame augmented with structures required to fit tensor product splines in
asreml-R. This data frame can be used to fit the TPS model.

Added columns:

L]

Nk

Examples

data("DT_
DT <- DT_
GT <- GT_

fR=
fC=
fR.C=Zr:Xcl
R.fC=Zr:Xc2
fR.fC =Zc:Zr
all = Xrl:Zc | X12:Zc | Zr:Xcl | Zr:Xc2 | Zc:Zx

TP.col, TP. row = column and row coordinates

TP.CxR = combined index for use with smooth x smooth term

TP.C.n for n=1:diff.c = X parts of column spline for use in random model (where diff.c
is the order of column differencing)

TP.R.n for n=1:diff.r = X parts of row spline for use in random model (where diff.r is the
order of row differencing)

TP.CR.n for n=1:(diff.c*diff.r) = interaction between the two X parts for use in fixed
model. The first variate is a constant term which should be omitted from the model when
the constant (1) is present. If all elements are included in the model then the constant
term should be omitted, eg. y ~-1+TP.CR.1+TP.CR.2+ TP.CR.3 + TP.CR.4 + other
terms. ..

when asreml="grp" or "sepgrp”, the spline basis functions are also added into the data
frame. Column numbers for each term are given in the grp list structure.

Xrl:Zc
Xr2:Zc

cpdata”)
cpdata
cpdata
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MP <- MP_cpdata
#### create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix

M <- spl2Dmats(x.coord.name = "Col”, y.coord.name = "Row"”, data=DT, nseg =c(14,21))

head(M$data)

# mlg <- mmer(Yield~1+TP.CR.2+TP.CR.3+TP.CR.4,

# random=~Rowf+Colf+vs (M$fC)+vs (M$fR)+vs(M$fC.R)+vs(M$C. fR)+vs(M$fC. fR)+vs(id,Gu=A),
# data=M$data, tolpar = le-6,

# iters=30)

#

# summary(mlg)$varcomp

summary .mmer summary form a GLMM fitted with mmer

Description

summary method for class "mmer".

Usage
## S3 method for class 'mmer'
summary(object, ...)

Arguments
object an object of class "mmer”

Further arguments to be passed

Value

vector of summary

Author(s)

Giovanny Covarrubias-Pazaran

See Also

summary, mmer
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tpsmmbwrapper Get Tensor Product Spline Mixed Model Incidence Matrices

Description

tpsmmbwrapper is a wrapper of tpsmmb function from the TPSbits package to avoid version de-
pendencies but if you’re using this function for your research please cite the TPSbits package. This
function is internally used by the spl2Dmatrices function to get Tensor-Product P-Spline Mixed
Model Bits (design matrices) for use with sommer and its main function mmer.

Usage

tpsmmbwrapper (
columncoordinates,
rowcoordinates,
data,
nsegments=NULL,
minbound=NULL,
maxbound=NULL,
degree = c(3, 3),
penaltyord = c(2, 2),
nestorder = c(1, 1),
asreml = "mbf"”,
eigenvalues = "include”,
method = "Lee",
stub = NULL

Arguments

columncoordinates
A string. Gives the name of data element holding column locations.

rowcoordinates A string. Gives the name of data element holding row locations.
data A dataframe. Holds the dataset to be used for fitting.

nsegments A list of length 2. Number of segments to split column and row ranges into,
respectively (= number of internal knots + 1). If only one number is specified,
that value is used in both dimensions. If not specified, (number of unique values
- 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot
at each data value.

minbound A list of length 2. The lower bound to be used for column and row dimensions
respectively; default calculated as the minimum value for each dimension.

maxbound A list of length 2. The upper bound to be used for column and row dimensions
respectively; default calculated as the maximum value for each dimension.

degree A list of length 2. The degree of polynomial spline to be used for column and
row dimensions respectively; default=3.



132

penaltyord

nestorder

asreml

eigenvalues

method

stub

Value

tpsmmbwrapper

A list of length 2. The order of differencing for column and row dimensions,
respectively; default=2.

A list of length 2. The order of nesting for column and row dimensions, re-
spectively; default=1 (no nesting). A value of 2 generates a spline with half the
number of segments in that dimension, etc. The number of segments in each
direction must be a multiple of the order of nesting.

A string. Indicates the types of structures to be generated for use in asreml
models; default "mbf"”. The appropriate eigenvalue scaling is included within
the Z matrices unless setting scaling="none" is used, and then the scaling
factors are supplied separately in the returned object.

* asreml="mbf" indicates the function should put the spline design matrices
into structures for use with "mbf";

* asreml="grp” indicates the function should add the composite spline de-
sign matrices (eg. for second-order differencing, matrices Xrl:Zc, Xr2:Zc,
Zr:Xcl, Zr:Xc2 and Zc:Zr) into the data frame and provide a group list
structure for each term;

* asreml="sepgrp” indicates the function should generate the individual X
and Z spline design matrices separately (ie. Xc, Xr, Zc and Zr), plus the
smooth x smooth interaction term as a whole (ie. Zc:Zr), and provide a
group list structure for each term.

* asreml="own" indicates the function should generate the composite matrix
( Xr:Zc | Zr:Xc | Zc:Zr ) as a single set of columns.

A string. Indicates whether eigenvalues should be included within the Z design
matrices eigenvalues="include”, or whether this scaling should be omitted
(eigenvalues="omit"); default eigenvalues="include". If the eigenvalue
scaling is omitted from the Z design matrices, then it should instead be included
in the model as a variance structure to obtain the correct TPspline model.

A string. Method for forming the penalty; default="Lee" ie the penalty from
Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is
"Wood" ie. the method from Wood et al (2012, Stat Comp 23, 341-360). This
option is a research tool and requires further investigation.

A string. Stub to be attached to names in the mbf list to avoid over-writing
structures and general confusion.

List of length 7, 8 or 9 (according to the asreml and eigenvalues parameter settings).

1. data = the input data frame augmented with structures required to fit tensor product splines in
asreml-R. This data frame can be used to fit the TPS model.

Added columns:

e TP.col, TP.row = column and row coordinates

e TP.CxR = combined index for use with smooth x smooth term

e TP.C.n for n=1:diff.c = X parts of column spline for use in random model (where diff.c
is the order of column differencing)
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* TP.R.n for n=1:diff.r = X parts of row spline for use in random model (where diff.r is the
order of row differencing)

e TP.CR.n for n=1:(diff.c*diff.r) = interaction between the two X parts for use in fixed
model. The first variate is a constant term which should be omitted from the model when
the constant (1) is present. If all elements are included in the model then the constant
term should be omitted, eg. y ~-1+TP.CR.1+TP.CR.2 + TP.CR.3 + TP.CR.4 + other
terms. ..

* when asreml="grp" or "sepgrp”, the spline basis functions are also added into the data
frame. Column numbers for each term are given in the grp list structure.

2. mbflist = list that can be used in call to asreml (so long as Z matrix data frames extracted
with right names, eg BcZ<stub>.df)

3. BcZ.df = mbf data frame mapping onto smooth part of column spline, last column (labelled
TP.col) gives column index

4. BrZ.df = mbf data frame mapping onto smooth part of row spline, last column (labelled
TP. row) gives row index

5. BerZ.df = mbf data frame mapping onto smooth x smooth term, last column (labelled TP.CxR)
maps onto col x row combined index

6. dim = list structure, holding dimension values relating to the model:

(a) "diff.c" = order of differencing used in column dimension
(b) "nbc"” = number of random basis functions in column dimension

(¢) "nbcn” = number of nested random basis functions in column dimension used in smooth
X smooth term

(d) "diff.r" = order of differencing used in column dimension
(e) "nbr" = number of random basis functions in column dimension

(f) "nbrn” = number of nested random basis functions in column dimension used in smooth
X smooth term

7. trace = list of trace values for ZGZ’ for the random TPspline terms, where Z is the design
matrix and G is the known diagonal variance matrix derived from eigenvalues. This can be
used to rescale the spline design matrix (or equivalently variance components).

8. grp =list structure, only added for settings asreml="grp", asreml="sepgrp" or asreml="own".
For asreml="grp", provides column indexes for each of the 5 random components of the 2D
splines. For asreml="sepgrp"”, provides column indexes for each of the X and Z compo-
nent matrices for the 1D splines, plus the composite smooth x smooth interaction term. For
asreml="own", provides column indexes for the composite random model. Dimensions of the
components can be derived from the values in the dim item. The Z terms are scaled by the
associated eigenvalues when eigenvalues="include"”, but not when eigenvalues="omit".

9. eigen =list structure, only added for option setting eigenvalues="omit". Holds the diagonal
elements of the inverse variance matrix for the terms Xc:Zr (called diagr), Zc:Xr (called
diagc) and Zc:Zr (called diagcr).
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transformConstraints  transformConstraints

Description

transformConstraints takes a list of matrices with constraints and transforms all the non-zero
values to the value desired. The purpose of this function is to make easy the transformation of
initial constraints to a fixed-constraint list to be provided to a mixed model fitted with the mmer
function.

Usage

transformConstraints(list@,value=1)

Arguments
listo a list of matrices with constraints according to the rules specified in the vs func-
tion (0: not to be estimated, 1: positive, 2:unconstrained, 3:fixed).
value value to be used to replace all the non-zero values in the constraint matrices.
Value

$res a list with the modified constraint matrices.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use transformConstraints in the mmer solver.

Examples

(a <- list(unsm(4), diag(4)))
transformConstraints(a, value=3)
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transp Creating color with transparency

Description

This function takes a color and returns the same with a certain alpha grade transparency.

Usage

transp(col, alpha=0.5)

Arguments
col Color to be used for transparency
alpha Grade of transparency desired
Details

No major details.

Value

If arguments are correctly specified the function returns:

$res A new color with certain grade of transparency

References

Robert J. Henry. 2013. Molecular Markers in Plants. Wiley-Blackwell. ISBN 978-0-470-95951-0.
Ben Hui Liu. 1998. Statistical Genomics. CRC Press LLC. ISBN 0-8493-3166-8.

See Also

The core functions of the package mmer

Examples

transp(”"red"”, alpha=0.5)
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uncm unconstrained indication matrix

Description
uncm creates a square matrix with 2’s in the diagnals and off-diagonals to quickly specify an uncon-
strained constraint in the Gtc argument of the vs function.

Usage

uncm(x, reps=NULL)

Arguments
X integer specifying the number of traits to be fitted for a given random effect.
reps integer specifying the number of times the matrix should be repeated in a list
format to provide easily the constraints in complex models that use the ds(), us()
or cs() structures.
Value

$res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the vs
function.

Author(s)

Giovanny Covarrubias-Pazaran

References
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use uncm in the mmer solver.

Examples

uncm(4)
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unsm unstructured indication matrix

Description
unsm creates a square matrix with ones in the diagonals and 2’s in the off-diagonals to quickly
specify an unstructured constraint in the Gtc argument of the vs function.

Usage

unsm(x, reps=NULL)

Arguments
X integer specifying the number of traits to be fitted for a given random effect.
reps integer specifying the number of times the matrix should be repeated in a list
format to provide easily the constraints in complex models that use the ds(), us()
or cs() structures.
Value

$res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the vs
function.

Author(s)

Giovanny Covarrubias-Pazaran

References
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use unsm in the mmer solver.

Examples

unsm(3)
unsm(3,2)
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us unstructured covariance structure

Description

us creates an unstructured covariance structure for specific levels of the random effect.

Usage

us(x)

Arguments

X vector of observations for the random effect.

Value

$res a list with the provided vector and the variance covariance structure expected for the levels of
the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vs to know how to use us in the mmer solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
us(x)
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vpredict vpredict form of a LMM fitted with mmer

Description

vpredict method for class "mmer".

Post-analysis procedure to calculate linear combinations of variance components. Its intended use
is when the variance components are either simple variances or are variances and covariances in
an unstructured matrix. The functions covered are linear combinations of the variance components
(for example, phenotypic variance), a ratio of two components (for example, heritabilities) and the
correlation based on three components (for example, genetic correlation).

The calculations are based on the estimated variance parameters and their variance matrix as rep-
resented by the inverse of the Fisher or Average information matrix. Note that this matrix has zero
values for fixed variance parameters including those near the parameter space boundary.

The transform is specified with a formula. On the left side of the formula is a name for the transfor-
mation. On the right side of the formula is a transformation specified with shortcut names like ‘“V1°,
‘V2¢, etc. The easiest way to identify these shortcut names is to use ‘summary(object)$varcomp®.
The rows of this object can referred to with shortcuts “V1°, ‘V2°, etc. See the example below.

Usage

vpredict(object, transform)
## S3 method for class 'mmer'
vpredict(object, transform)

Arguments
object a model fitted with the mmer function.
transform a formula to calculate the function.
Details

The delta method (e.g., Lynch and Walsh 1998, Appendix 1; Ver Hoef 2012) uses a Taylor series
expansion to approximate the moments of a function of parameters. Here, a second-order Taylor
series expansion is implemented to approximate the standard error for a function of (co)variance
parameters. Partial first derivatives of the function are calculated by algorithmic differentiation
with deriv.

Though vpredict can calculate standard errors for non-linear functions of (co)variance parameters
from a fitted mmer model, it is limited to non-linear functions constructed by mathematical opera-
tions such as the arithmetic operators +, -, *, / and *, and single-variable functions such as exp and
log. See deriv for more information.



140 vpredict

Value

dd the parameter and its standard error.

Author(s)

Giovanny Covarrubias

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Lynch, M. and B. Walsh 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates,
Inc., Sunderland, MA, USA.

Ver Hoef, J.M. 2012. Who invented the delta method? The American Statistician 66:124-127. DOI:
10.1080/00031305.2012.687494

See Also

vpredict, mmer

Examples

#### EXAMPLE 1
#### simple example with univariate models

H

data(DT_cpdata)

DT <- DT_cpdata

GT <- GT_cpdata

MP <- MP_cpdata

#### create the variance-covariance matrix
A <- A.mat(GT)

#### look at the data and fit the model
head(DT)

mix1 <- mmer(Yield~1,
random=~vs(id,Gu=A),
data=DT)

summary (mix1)$varcomp

#### run the vpredict function
vpredict(mix1, h2 ~ V1 / (V1 +V2) )

#### EXAMPLE 2
#### simple example with multivariate models

i

#
#

e E E E E E E E E E E E E E R S

data(DT_cpdata)
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DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata

A <- A.mat(GT)

#### look at the data
head(DT)

summary (mix2)$varcomp

#### create the variance-covariance matrix

and fit the model

mix2 <- mmer(cbind(Yield,color)~1,
random=~vs(id,Gu=A, Gt=unsm(2)),
rcov=~vs(units, Gt=unsm(2)),
data=DT)

## genetic correlation
vpredict(mix2, gen.cor ~ V2 / sqrt(V1%V3))

#### EXAMPLE 3

#### more complex multivariate model

data(DT_btdata)
DT <- DT_btdata

data =
summary (mix3)$varcomp

mix3 <- mmer(cbind(tarsus, back) ~ sex,
random = ~ vs(dam, Gtc=unsm(2)) + vs(fosternest,Gtc=diag(2)),
rcov=~vs(units,Gtc=unsm(2)),

DT)

#### calculate the genetic correlation
vpredict(mix3, gen.cor ~ V2 / sqrt(V1*V3))

EXAMPLE 4

going back to simple examples

data(DT_btdata)
DT <- DT_btdata

data =
summary (mix4)$varcomp

mix4 <- mmer(tarsus ~ sex, random = ~ dam + fosternest,

DT)

#### calculate the ratio and its SE
vpredict(mix4, dam.prop ~ V1 / ( V1 + V2 + V3 ) )
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variance structure specification
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Description

vs is the main function to build the variance-covariance structure for the random effects to be fitted
in the mmer solver.

Usage

vs(..., Gu=NULL, Gti=NULL, Gtc=NULL, reorderGu=TRUE, buildGu=TRUE)

Arguments

variance structure to be specified following the logic desired in the internal kro-
necker product. For example, if user wants to define a diagonal variance struc-
ture for the random effect ’genotypes’(g) with respect to a random effect ’envi-
ronments’(e), this is:

var(g) =G.e@I.g

being G. e a matrix containing the variance covariance components for g (geno-
types) in each level of e (environments), I.g is the covariance among levels of
g (genotypes; i.e. relationship matrix), and @ is the kronecker product. This
would be specified in the mmer solver as:

random=~vs(ds(e),g)

One strength of sommer is the ability to specify very complex structures with as
many kronecker products as desired. For example:

var(g) =G.e@G.f@G.heI.g

is equivalent to

random=~vs(e,f,h,g)

where different covariance structures can be applied to the levels of e, f,h (i.e.

ds, us, cs, at or a combination of these). For more examples please see the
vignettes ‘sommer.start’ available in the package.

Gu matrix with the known variance-covariance values for the levels of the u.th ran-
dom effect (i.e. relationship matrix among individuals or any other known co-
variance matrix). If NULL, then an identity matrix is assumed. The Gu matrix
can have more levels than the ones present in the random effect linked to it but
not the other way around. Otherwise, an error message of missing level in Gu
will be returned.

Gti matrix with dimensions t x t (t equal to number of traits) with initial values of
the variance-covariance components for the random effect specified in the ....
argument. If NULL the program will provide the initial values. The values need
to be scaled, see Details section.

Gtc matrix with dimensions t x t (t equal to number of traits) of constraints for the
variance-covariance components for the random effect specified in the ... argu-
ment according to the following rules:

0: not to be estimated
1: estimated and constrained to be positive (i.e. variance component)

2: estimated and unconstrained (can be negative or positive,i.e. covariance
component)

3: not to be estimated but fixed (value has to be provided in the Gti argument)
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reorderGu

buildGu

Details
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In the multi-response scenario if the user doesn’t specify this argument the de-
fault is to build an unstructured matrix (using the unsm() function). This argu-
ment needs to be used wisely since some covariance among responses may not
make sense. Useful functions to specify constraints are; diag(), unsm(), uncm(),
fixm().

a TRUE/FALSE statement if the Gu matrix should be reordered based on the
names of the design matrix of the random effect or passed with the custom or-
der of the user. This may be important when fitting covariance components in a
customized fashion. Only for advanced users.

a TRUE/FALSE statement to indicate if the Gu matrix should be built in R when
the value for the argument Gu=NULL. Repeat, only when when the value for the
argument Gu is equal to NULL. In some cases when the incidence matrix is wide
(e.g. rrBLUP models) the covariance structure is a huge p x p matrix that can be
avoided when performing matrix operations. By setting this argument to FALSE
it allows to skip forming this covariance matrix.

When providing initial values in the Gti argument the user has to provide scaled variance compo-
nent values. The user can provide values from a previous model by accessing the sigma_scaled
output from an mmer model or if an specific value is desired the user can obtain the scaled value as:

m=x/var(y)

where x is the desired initial value and y is the response variable. You can find an example in the

DT_cpdata dataset.

Value

$res a list with all neccesary elements (incidence matrices, known var-cov structures, unknown
covariance structures to be estimated and constraints) to be used in the mmer solver.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Covarrubias-Pazaran G (2018) Software update: Moving the R package sommer to multivariate
mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also

The core function of the package: mmer
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Examples

data(DT_example)
DT <- DT_example
A <- A_example

## Hit

## example to without structure

## #i#

ds(DT$Year)

mix <- mmer(Yield~Env,
random= ~ vs(Name),
rcov=~ vs(units),
data=DT)

#H# ##

## example to without structure but
## using covariance among levels in the
## random effect Name

#H# ##
ds(DT$Year)
mix <- mmer(Yield~Env,
random= ~ vs(Name, Gu=A),
rcov=~ vs(units),
data=DT)
## ##
## example to use ds() structure (DIAGONAL)
#H# ##
ds(DT$Year)
mix <- mmer(Yield~Env,
random= ~ vs(ds(Year),Name),
rcov=~ vs(ds(Year),units),
data=DT)
## ##
## example to use at() structure (level-specific)
## ##
unique(DT$Year)

mix <- mmer(Yield~Env,
random= ~ vs(at(Year,c("2011","2012")),Name),
rcov=~ vs(ds(Year),units),

data=DT)
## ##
## example to use us() structure (UNSTRUCTURED)
#H# H##
us(DT$Year)
mix <- mmer(Yield~Env,
random= ~ vs(us(Year),Name),

rcov=~ vs(ds(Year),units),
data=DT)

\A
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## ##

## example to use cs() structure (CUSTOMIZED)
## ##
unique(DT$Year)

mm <- matrix(1,3,3); mm[1,3] <- mm[3,1] <- @;mm #don't estimate cov 2011-2013
mix <- mmer(Yield~Env,

random= ~ vs(cs(Year,mm),Name),
rcov=~ vs(ds(Year),units),
data=DT)

#H# ##

## example to use overlay() + vs() structure

## ##

data("DT_halfdiallel”)
DT <- DT_halfdiallel
head(DT)
DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)
A <- diag(7); colnames(A) <- rownames(A) <- 1:7;A # if you want to provide a covariance matrix
#### model using overlay
modh <- mmer(sugar-~1,
random=~vs(overlay(femalef,malef), Gu=A)

+ genof,

data=DT)
## #i#
## example to use vs() + ds() + spl2D() structure
#H# ##
# ### mimic two fields
# data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# aa <- DT; bb <- DT
# aa$FIELD <- "A";bb$FIELD <- "B"
# set.seed(1234)
# aa$Yield <- aa$Yield + rnorm(length(aa$Yield),0,4)
# DT2 <- rbind(aa,bb)
# head(DT2)
#
# mix <- mmer(Yield~1,
# random=~vs(ds(FIELD),id, Gu=A) +
# vs(ds(FIELD),Rowf) +
# vs(ds(FIELD),Colf) +
# vs(ds(FIELD),spl2D(Row,Col)),
# rcov=~vs(ds(FIELD),units),
# data=DT2)
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wald. test Wald Test for Model Coefficients

Description

Computes a Wald x? test for 1 or more coefficients, given their variance-covariance matrix.

Usage

wald.test(Sigma, b, Terms = NULL, L = NULL, H@ = NULL,
df = NULL, verbose = FALSE)
## S3 method for class 'wald.test'

print(x, digits =2, ...)
Arguments
Sigma A var-cov matrix, usually extracted from one of the fitting functions (e.g., 1m,
glm, ...).
b A vector of coefficients with var-cov matrix Sigma. These coefficients are usu-

ally extracted from one of the fitting functions available in R (e.g., 1m, glm,...).

Terms An optional integer vector specifying which coefficients should be jointly tested,
using a Wald x? or F test. Its elements correspond to the columns or rows of
the var-cov matrix given in Sigma. Default is NULL.

L An optional matrix conformable to b, such as its product with b i.e., L %x% b
gives the linear combinations of the coefficients to be tested. Default is NULL.

Ho A numeric vector giving the null hypothesis for the test. It must be as long as
Terms or must have the same number of columns as L. Default to O for all the
coefficients to be tested.

df A numeric vector giving the degrees of freedom to be used in an F test, i.e.
the degrees of freedom of the residuals of the model from which b and Sigma
were fitted. Default to NULL, for no F' test. See the section Details for more

information.

verbose A logical scalar controlling the amount of output information. The default is
FALSE, providing minimum output.

X Object of class “wald.test”

digits Number of decimal places for displaying test results. Default to 2.

Additional arguments to print.

Details

The key assumption is that the coefficients asymptotically follow a (multivariate) normal distribu-
tion with mean = model coefficients and variance = their var-cov matrix.
One (and only one) of Terms or L must be given. When L is given, it must have the same number
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of columns as the length of b, and the same number of rows as the number of linear combinations
of coefficients. When df is given, the x2 Wald statistic is divided by m = the number of linear com-
binations of coefficients to be tested (i.e., length(Terms) or nrow(L)). Under the null hypothesis
H, this new statistic follows an F'(m, df) distribution.

Value

An object of class wald. test, printed with print.wald. test.

References

Diggle, PJ., Liang, K.-Y., Zeger, S.L., 1994. Analysis of longitudinal data. Oxford, Clarendon
Press, 253 p.

Draper, N.R., Smith, H., 1998. Applied Regression Analysis. New York, John Wiley & Sons, Inc.,
706 p.

Examples

data(DT_yatesoats)
DT <- DT_yatesoats

m3 <- mmer(fixed=Y ~ V + N + V:N-1,
random = ~ B + B:MP,
rcov=~units,
data = DT)

wald.test(b = m3$Beta$Estimate, Sigma = m3$VarBeta, Terms = 2)
LL <- matrix(@,nrow=1, ncol=12)

LL[1,2] <- 1

LL[1,3] <- -1

LL

wald.test(b = m3$Beta$Estimate, Sigma = m3$VarBeta, L=LL)
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