Package ‘sp’

April 20, 2022
Version 1.4-7
Title Classes and Methods for Spatial Data
Depends R (>= 3.0.0), methods
Imports utils, stats, graphics, grDevices, lattice, grid

Suggests RColorBrewer, rgdal (>= 1.2-3), rgeos (>= 0.3-13), gstat,
maptools, deldir, knitr, rmarkdown

Description Classes and methods for spatial
data; the classes document where the spatial location information
resides, for 2D or 3D data. Utility functions are provided, e.g. for
plotting data as maps, spatial selection, as well as methods for
retrieving coordinates, for subsetting, print, summary, etc.

License GPL (>=2)
URL https://github.com/edzer/sp/ https://edzer.github.io/sp/

BugReports https://github.com/edzer/sp/issues

Collate bpy.colors.R AAA R Class-CRS.R CRS-methods.R Class-Spatial.R
Spatial-methods.R projected.R Class-SpatialPoints.R
SpatialPoints-methods.R Class-SpatialPointsDataFrame.R
SpatialPointsDataFrame-methods.R Class-SpatialMultiPoints.R
SpatialMultiPoints-methods.R
Class-SpatialMultiPointsDataFrame.R
SpatialMultiPointsDataFrame-methods.R Class-GridTopology.R
Class-SpatialGrid.R Class-SpatialGridDataFrame.R
Class-SpatialLines.R SpatialLines-methods.R
Class-SpatialLinesDataFrame.R SpatialLinesDataFrame-methods.R
Class-SpatialPolygons.R Class-SpatialPolygonsDataFrame.R
SpatialPolygons-methods.R SpatialPolygonsDataFrame-methods.R
GridTopology-methods.R SpatialGrid-methods.R
SpatialGridDataFrame-methods.R SpatialPolygons-internals.R
point.in.polygon.R SpatialPolygons-displayMethods.R zerodist.R
image.R stack.R bubble.R mapasp.R select.spatial.R gridded.R
asciigrid.R spplot.R over.R spsample.R recenter.R dms.R
gridlines.R spdists.R rbind.R flipSGDF.R chfids.R loadmeuse.R
compassRose.R surfaceArea.R spOptions.R subset.R disaggregate.R
sp_spatl.R merge.R aggregate.R

https://github.com/edzer/sp/
https://edzer.github.io/sp/
https://github.com/edzer/sp/issues

2 R topics documented:

VignetteBuilder knitr
NeedsCompilation yes

Author Edzer Pebesma [aut, cre],
Roger Bivand [aut],
Barry Rowlingson [ctb],
Virgilio Gomez-Rubio [ctb],
Robert Hijmans [ctb],
Michael Sumner [ctb],
Don MacQueen [ctb],
Jim Lemon [ctb],
Finn Lindgren [ctb],
Josh O'Brien [ctb],
Joseph O'Rourke [ctb]

Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>
Repository CRAN
Date/Publication 2022-04-20 10:00:02 UTC

R topics documented:

addAttrToGeom-methods o 4
AEIEZALe e e e e e 5
as.SpatialPolygons.GridTopology 7
as.SpatialPolygons.PolygonsList L. 8
bbox-methods e 10
bpy.colors 11
bubble e 12
char2dms 14
compassRose 15
coordinates e e 16
coordinates-methods 17
coordnames-methods L 18
CRS-class e 18
degAXIS e e e 21
dimensions-methods 22
disaggregate-methods oL Lo 23
DMS-class. e 24
flip 25
geometry-methods L. L 26
gridded-methods 27
gridindex2nb L e 28
gridlines 29
GridTopology-class e 31
image.SpatialGridDataFrame 33
is.projected oL L. L 35
Line o e 37

Line-class e 38

R topics documented: 3

Lines-class 39
loadMeuse 39
MAPASP + « v v e 40
METZE .« o o o e e e e e e e e e e e e e e 41
MEUSE . .« o v v v vttt e e e e e e e 42
meuse.grid L 43
meuse.grid_1l 44
MEUSE.TIV . . . o vttt ittt e e e e e e e 45
over-methods L e 46
panel.spplot 49
point.in.polygon L. e 51
Polygon-class 52
POlygons oL e e e 53
Polygons-class 53
polygons-methods 54
read.asciigrid Lo 55
recenter-methods L. 56
Rlogo o e e 57
select.spatial L e 58
] 59
sp-deprecated L. e 60
Spatial-class e e e e 61
SpatialGrid-class L e 63
SpatialGridDataFrame-class 64
SpatialLines e e e e e e 67
SpatialLines-class e e 68
SpatialLinesDataFrame-class 70
SpatialMultiPoints 71
SpatialMultiPoints-class L 72
SpatialMultiPointsDataFrame-classo 0oL, 74
SpatialPixels 75
SpatialPixels-class e e e 78
SpatialPixelsDataFrame o oo 79
SpatialPixelsDataFrame-class Lo 80
SpatialPoints 82
SpatialPoints-class L e 83
SpatialPointsDataFrame-class L o o 85
SpatialPolygons L 87
SpatialPolygons-class e 88
SpatialPolygonsDataFrame-class L oL, 91
spChFIDs-methods 92
SpDIStSNT . . . L e e e e 93
SPPIOt . . e e 95
spsample e e e e 100
spTransform 103
stack . ..o L 104
surfaceArea 105

zerodiSt e 107

4 addAttrToGeom-methods

Index 109

addAttrToGeom-methods constructs SpatialXxxDataFrame from geometry and attributes

Description

constructs SpatialXxxDataFrame from geometry and attributes

Usage
addAttrToGeom(x, y, match.ID, ...)
Arguments
X geometry (locations) of the queries
y data.frame object with attributes
match.ID logical; if TRUE, the IDs of the geometry and of the data.frame are matched
(possibly swapping records), and an error occurs when some IDs do not match
(optional) arguments passed to the constructor functions
Value

an object of class XxxDataFrame, where Xxx is the class of x

Methods

x = ""SpatialPoints'', y = ""data.frame"
x = ""SpatialPixels", y = ""data.frame"
x = ""SpatialGrid", y = "data.frame"

x = "'SpatialLines'", y = ""data.frame"

x = "'SpatialPolygons'', y = '"data.frame"

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

over

aggregate 5

aggregate aggregation of spatial objects

Description

spatial aggregation of thematic information in spatial objects

Usage

S3 method for class 'Spatial’
aggregate(x, by = 1list(ID = rep(1, length(x))),

FUN, ..., dissolve = TRUE, areaWeighted = FALSE)
Arguments
X object deriving from Spatial, with attributes
by aggregation predicate; if by is a Spatial object, the geometry by which attributes

in x are aggregated; if by is a list, aggregation by attribute(s), see aggregate.data.frame
FUN aggregation function, e.g. mean; see details

arguments passed on to function FUN, unless minDimension is specified, which
is passed on to function over

dissolve logical; should, when aggregating based on attributes, the resulting geometries
be dissolved? Note that if x has class SpatialPointsDataFrame, this returns
an object of class SpatialMultiPointsDataFrame

areaWeighted logical; should the aggregation of x be weighted by the areas it intersects with
each feature of by? See value.

Details

FUN should be a function that takes as first argument a vector, and that returns a single number. The
canonical examples are mean and sum. Counting features is obtained when summing an attribute
variable that has the value 1 everywhere.

Value

The aggregation of attribute values of x either over the geometry of by by using over for spatial
matching, or by attribute values, using aggregation function FUN.

If areaWeighted is TRUE, FUN is ignored and the area weighted mean is computed for numerical
variables, or if all attributes are factors, the area dominant factor level (area mode) is returned.
This will compute the glntersection of x and by; see examples below.

If by is missing, aggregates over all features.

Note

uses over to find spatial match if by is a Spatial object

6 aggregate

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

Examples

data("meuse”)

coordinates(meuse) <- ~xty

data("meuse.grid")

coordinates(meuse.grid) <- ~x+y

gridded(meuse.grid) <- TRUE

i = cut(meuse.grid$dist, c(@,.25,.5,.75,1), include.lowest = TRUE)
j = sample(1:2, 3103, replace=TRUE)

Not run:

if (require(rgeos)) {

aggregation by spatial object:

ab = gUnaryUnion(as(meuse.grid, "SpatialPolygons”), meuse.grid$part.a)
X = aggregate(meuse["zinc"], ab, mean)

spplot(x)

aggregation of multiple variables

x = aggregate(meuse[c("zinc", "copper”)], ab, mean)
spplot(x)

aggregation by attribute, then dissolve to polygon:
x = aggregate(meuse.grid["dist"], list(i=i), mean)
spplot(x["i"]1)

x = aggregate(meuse.grid["dist"], list(i=i,j=j), mean)
spplot(x["dist"], col.regions=bpy.colors())
spplot(x["i"], col.regions=bpy.colors(4))
spplot(x["j"1, col.regions=bpy.colors())

3

End(Not run)

x = aggregate(meuse.grid["dist"], list(i=i,j=j), mean, dissolve = FALSE)
spplot(x["j"1, col.regions=bpy.colors())

if (require(gstat) && require(rgeos)) {

x = idw(log(zinc)~1, meuse, meuse.grid, debug.level=0)[1]
spplot(x[1],col.regions=bpy.colors())

i = cut(x$vari.pred, seq(4, 7.5, by=.5),

include.lowest = TRUE)

xa = aggregate(x["varl.pred"], list(i=i), mean)
spplot(xal1],col.regions=bpy.colors(8))

3

if (require(rgeos)) {
Area-weighted example, using two partly overlapping grids:

gtl
gt2

SpatialGrid(GridTopology(c(@,0), c(1,1), c(4,4)))
SpatialGrid(GridTopology(c(-1.25,-1.25), c(1,1), c(4,4)))

convert both to polygons; give pl1 attributes to aggregate
pl = SpatialPolygonsDataFrame(as(gtl, "SpatialPolygons"”),

as.SpatialPolygons.Grid Topology 7

data.frame(v = 1:16, w=5:20, x=factor(1:16)), match.ID = FALSE)
p2 = as(gt2, "SpatialPolygons")

plot the scene:

plot(p1, xlim = c(-2,4), ylim = c(-2,4))

plot(p2, add = TRUE, border = 'red')

i = gIntersection(pl, p2, byid = TRUE)

plot(i, add=TRUE, density = 5, col = 'blue')

plot IDs p2:

ids.p2 = sapply(p2@polygons, function(x) slot(x, name = "ID"))
text(coordinates(p2), ids.p2)

plot IDs i:
ids.i = sapply(i@polygons, function(x) slot(x, name = "ID"))
text(coordinates(i), ids.i, cex = .8, col = 'blue')

compute & plot area-weighted average; will warn for the factor
ret = aggregate(pl, p2, areaWeighted = TRUE)
spplot(ret)

all-factor attributes: compute area-dominant factor level:
ret = aggregate(p1["x"], p2, areaWeighted = TRUE)
spplot(ret)

as.SpatialPolygons.GridTopology
Make SpatialPolygons object from GridTopology object

Description

Converts grids of regular rectangles into a SpatialPolygons object, which can be transformed to
a different projection or datum with spTransform in package rgdal. The function is not suitable
for high-resolution grids. The ordering of the grid cells is as in coordinates() of the same object,
and is reported by IDvaluesGridTopology.

Usage

as.SpatialPolygons.GridTopology(grd, proj4string = CRS(as.character(NA)))
IDvaluesGridTopology(obj)

as.SpatialPolygons.SpatialPixels(obj)

IDvaluesSpatialPixels(obj)

HexPoints2SpatialPolygons(hex, dx)

Arguments

grd GridTopology object
projastring object of class CRS-class
obj SpatialPixels object

8 as.SpatialPolygons.PolygonsList

hex SpatialPoints object with points that are generated by hexagonal sampling;
see spsample

dx spacing of two horizontally adjacent points; if missing, this will be computed
from the points

Value

as.SpatialPolygons.GridTopology and as.SpatialPolygons.SpatialPixels returna SpatialPolygons
object; IDvaluesGridTopology and IDvaluesSpatialPixels return a character vector with the
object grid indices.

See Also

GridTopology, SpatialPixels, SpatialPolygons spTransform in package rgdal

Examples

library(lattice)

grd <- GridTopology(cellcentre.offset=c(-175,55), cellsize=c(10,10), cells.dim=c(4,4))

SpP_grd <- as.SpatialPolygons.GridTopology(grd)

plot(SpP_grd)

text(coordinates(SpP_grd), sapply(slot(SpP_grd, "polygons”), function(i) slot(i, "ID")), cex=0.5)
trdata <- data.frame(A=rep(c(1,2,3,4), 4), B=rep(c(1,2,3,4), each=4),
row.names=sapply(slot(SpP_grd, "polygons"), function(i) slot(i, "ID")))

SpPDF <- SpatialPolygonsDataFrame(SpP_grd, trdata)

spplot (SpPDF)

data(meuse.grid)

gridded(meuse.grid)=~x+y

xx = spsample(meuse.grid, type="hexagonal”, cellsize=200)

xxpl = HexPoints2SpatialPolygons(xx)

image (meuse.grid["dist"])

plot(xxpl, add = TRUE)

points(xx, cex = .5)

Not run:

spplot(aggregate(as(meuse.grid[,1:3], "SpatialPolygonsDataFrame"), xxpl,
areaWeighted=TRUE), main = "aggregated meuse.grid")

End(Not run)

as.SpatialPolygons.PolygonsList
Making SpatialPolygons objects

Description

This function is used in making SpatialPolygons objects from other formats.

as.SpatialPolygons.PolygonsList

Usage
as.SpatialPolygons.PolygonsList(Srl, proj4string=CRS(as.character(NA)))

Arguments

Srl A list of Polygons objects
proj4string Object of class "CRS"; holding a valid proj4 string

Value

The functions return a SpatialPolygons object

Author(s)

Roger Bivand

Examples

10 bbox-methods

grd <- GridTopology(c(1,1), c(1,1), c(10,10))

polys <- as.SpatialPolygons.GridTopology(grd)

plot(polys)

text(coordinates(polys), labels=sapply(slot(polys, "polygons”), function(i) slot(i, "ID")), cex=0.6)

bbox-methods retrieve bbox from spatial data

Description

retrieves spatial bounding box from spatial data

Usage
bbox (obj)
Arguments
obj object deriving from class "Spatial", or one of classes: "Line", "Lines", "Poly-
gon" or "Polygons", or ANY, which requires obj to be an array with at least two
columns
Value

two-column matrix; the first column has the minimum, the second the maximum values; rows
represent the spatial dimensions

Methods

obj = ""Spatial'' object deriving from class "Spatial"
obj ="ANY" an array with at least two columns

obj = ""Line'" object deriving from class "Line"

obj = "Lines' object deriving from class "Lines"

obj = ""Polygon"' object deriving from class "Polygon"

obj = ""Polygons'' object deriving from class "Polygons"

bpy.colors 11

Examples

just 9 points on a grid:
x <- c¢(1,1,1,2,2,2,3,3,3)
y <- ¢(1,2,3,1,2,3,1,2,3)
xy <- cbind(x,y)

S <- SpatialPoints(xy)
bbox(S)

data.frame

data(meuse.grid)
coordinates(meuse.grid) <- ~x+y
gridded(meuse.grid) <- TRUE
bbox(meuse.grid)

bpy.colors blue-pink-yellow color scheme, which also prints well on black/white
printers

Description

LT3

Create a vector of ‘n’ “contiguous” colors.

Usage

bpy.colors(n = 100, cutoff.tails = 0.1, alpha = 1.0)

Arguments

n number of colors (>= 1) to be in the palette

cutoff.tails tail fraction to be cut off on each side. If 0, this palette runs from black to white;
by cutting off the tails, it runs from blue to yellow, which looks nicer.

alpha numeric; alpha transparency, 0 is fully transparent, 1 is opaque.

Value

A character vector, ‘cv’, of color names. This can be used either to create a user-defined color
palette for subsequent graphics by ‘palette(cv)’, a ‘col=" specification in graphics functions or in

3 >

par’.

Note

This color map prints well on black-and-white printers.

Author(s)

unknown; the pallette was posted to gnuplot-info a few decades ago; R implementation Edzer
Pebesma, <edzer.pebesma@uni-muenster.de>

12 bubble

See Also

rainbow, cm.colors

Examples

bpy.colors(10)

p <- expand.grid(x=1:30,y=1:30)

p$z <- p$x + p$y

coordinates(p) <- c("x", "y")

gridded(p) <- TRUE

image(p, col = bpy.colors(100), asp = 1)

require(lattice)

trellis.par.set("regions”, list(col=bpy.colors())) # make this default pallette

bubble Create a bubble plot of spatial data

Description

Create a bubble plot of spatial data, with options for bicolour residual plots (xyplot wrapper)

Usage

bubble(obj, zcol =1, ..., fill = TRUE, maxsize = 3, do.sqgrt = TRUE, pch,
col = c("#d01c8b", "#4dac26"), key.entries = quantile(datal,zcol]), main,
identify = FALSE, labels = row.names(data.frame(obj)), key.space = "right",
scales = list(draw = FALSE), xlab = NULL, ylab = NULL, panel = panel.bubble,
sp.layout = NULL,

xlim = bbexpand(bbox(obj)[1,], 0.04),

ylim = bbexpand(bbox(obj)[2,], 0.04))

Arguments

obj object of, or extending, class SpatialPointsDataFrame or SpatialGridDataFrame,
see coordinates or SpatialPointsDataFrame; the object knows about its spatial
coordinates

zcol z-variable column name, or column number after removing spatial coordinates
from x@data: 1 refers to the first non-coordinate column

fill logical; if TRUE, filled circles are plotted (pch = 16), else open circles (pch =
1); the pch argument overrides this

maxsize cex value for largest circle

do.sqgrt logical; if TRUE the plotting symbol area (sqrt(diameter)) is proportional to the

value of the z-variable; if FALSE, the symbol size (diameter) is proportional to
the z-variable

pch plotting character

bubble 13

col colours to be used; numeric vector of size two: first value is for negative values,
second for positive values. Default colors: 5-class PiYG from colorbrewer.org.

key.entries the values that will be plotted in the key; by default the five quantiles min, q.25,
median q.75, max

main main plotting title

identify logical; if true, regular plot is called instead of xyplot, and followed by a call
to identify().

labels labels argument passed to plot if identify is TRUE

arguments, passed to xyplot, or plot if identification is required.

key.space location of the key
scales scales argument as passed to xyplot
x1lab x-axis label
ylab y-axis label
panel panel function used
sp.layout possible layout items; see spplot
xLlim X axis limit
ylim y axis limit
Value

returns (or plots) the bubble plot; if identify is TRUE, returns the indexes (row numbers) of
identified points.

Author(s)

Edzer Pebesma

See Also

xyplot, mapasp, identify

Examples
data(meuse)
coordinates(meuse) <- c("x", "y") # promote to SpatialPointsDataFrame
bubble(meuse, "cadmium”, maxsize = 2.5, main = "cadmium concentrations (ppm)”,
key.entries = 2*(-1:4))
bubble(meuse, "zinc”, main = "zinc concentrations (ppm)”,

key.entries = 100 * 2%(0:4))

14 char2dms

char2dms Convert character vector to DMS-class object

Description

These two helper functions convert character vectors and decimal degree vectors to the DMS-class
representation of degrees, minutes, and decimal seconds. "DMS" objects cannot contain NAs.

Usage

char2dms(from, chd = "d"”, chm = "'", chs = "\"")
dd2dms(dd, NS = FALSE)

Arguments
from character vector of degree, minute, decimal second data
chd degree character terminator
chm minute character terminator
chs second character terminator
dd numeric vector of decimal degrees
NS logical, TRUE for north/south decimal degrees, FALSE for east/west decimal
degrees
Details

In char2dms, the input data vector should use a regular format, such as that used in the PROJ.4
library, with a trailing capital (NSWE) indicating compass direction.

Value

Both functions return a "DMS" object.

Methods

from = ""DMS'"', to = ""numeric' coerce a "DMS" object to a "numeric” vector

from = ""DMS'"', to = ""character' coerce a "DMS" objecttoa "character"” vector (the as.character.DMS
S3 method is also available)

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>

See Also

DMS-class

compassRose 15

Examples

data(state)

str(state.centers$y)

stateN <- dd2dms(state.center$y, NS=TRUE)
str(attributes(stateN))

ch.stateN <- as.character(stateN)
str(ch.stateN)

stateNa <- char2dms(ch.stateN)
str(attributes(stateNa))

ch.stateN <- as(stateN, "character"”)
str(ch.stateN)

stateNa <- char2dms(ch.stateN)
str(attributes(stateNa))

compassRose Display a compass rose.

Description

Displays a basic compass rose, usually to orient a map.

Usage

compassRose(x,y,rot=0,cex=1)

Arguments
Y The position of the center of the compass rose in user units.
rot Rotation for the compass rose in degrees. See Details.
cex The character expansion to use in the display.

Details

‘compassRose’ displays a conventional compass rose at the position requested. The size of the
compass rose is determined by the character expansion, as the central "rose" is calculated relative
to the character size. Rotation is in degrees counterclockwise.

Value

nil

Author(s)

Jim Lemon

16

coordinates

coordinates

set spatial coordinates to create a Spatial object, or retrieve spatial
coordinates from a Spatial object

Description

set spatial coordinates to create a Spatial object, or retrieve spatial coordinates from a Spatial object

Usage

coordinates(obj, ...)
coordinates(object) <- value

Arguments
obj
object

value

Value

object deriving from class "Spatial”
object of class "data.frame"

spatial coordinates; either a matrix, list, or data frame with numeric data, or col-
umn names, column number or a reference: a formula (in the form of e.g. ~x+y),
column numbers (e.g. ¢(1,2)) or column names (e.g. c("x","y")) specifying
which columns in object are the spatial coordinates. If the coordinates are part
of object, giving the reference does not duplicate them, giving their value does
duplicate them in the resulting structure.

additional arguments that may be used by particular methods

usually an object of class SpatialPointsDataFrame; if the coordinates set cover the full set of vari-
ables in object, an object of class SpatialPoints is returned

Examples

data.frame
data(meuse.grid)

coordinates(meuse.grid) <- ~x+y
gridded(meuse.grid) <- TRUE

class(meuse.grid)

bbox (meuse.grid)

data(meuse)

meuse.xy = meuselc("x", "y")]
coordinates(meuse.xy) <- ~xt+y

class(meuse.xy)

coordinates-methods 17

coordinates-methods retrieve (or set) spatial coordinates

Description

retrieve (or set) spatial coordinates from (for) spatial data

Methods

obj = "list" list with (at least) two numeric components of equal length

obj = "data.frame" data.frame with at least two numeric components

obj = "matrix'" numeric matrix with at least two columns

obj = ""SpatialPoints'' object of, or deriving from, SpatialPoints

obj = ""SpatialPointsDataFrame'' object of, or deriving from, SpatialPointsDataFrame

obj = ""SpatialPolygons' object of, or deriving from, SpatialPolygons

obj = "'SpatialPolygonsDataFrame' object of, or deriving from, SpatialPolygonsDataFrame
obj = ""Line'" object of class Line; returned value is matrix

obj = ""Lines" object of class Lines; returned value is list of matrices

obj = ""SpatialLines' object of, or deriving from, SpatialLines; returned value is list of lists of
matrices

obj = "GridTopology'' object of, or deriving from, GridTopology

obj = "GridTopology'" object of, or deriving from, GridTopology

obj = ""SpatialPixels' object of, or deriving from, SpatialPixels

obj = ""SpatialPixelsDataFrame'' object of, or deriving from, SpatialPixelsDataFrame
obj = ""SpatialGrid" object of, or deriving from, SpatialGrid

obj = ""SpatialGridDataFrame'' object of, or deriving from, SpatialGridDataFrame

Methods for "coordinates<-'"

object = "data.frame", value="ANY"' promote data.frame to object of class SpatialPointsDataFrame-
class, by specifying coordinates; see coordinates

18 CRS-class

coordnames-methods retrieve or assign coordinate names for classes in sp

Description

retrieve or assign coordinate names for classes in sp

Methods for coordnames

x = ""SpatialPoints'' retrieves coordinate names

x = ""SpatialLines" retrieves coordinate names

x = ""Lines' retrieves coordinate names

x = ""Line" retrieves coordinate names

x = ""SpatialPolygons'' retrieves coordinate names
x = ""Polygons" retrieves coordinate names

x = "Polygon"' retrieves coordinate names

Methods for ''coordnames<-"'

x = ""SpatialPoints'', value = "character' replace coordinate names

x = ""SpatialLines'', value = ""character' replace coordinate names

x = ""Lines'', value = "character' replace coordinate names

x = ""Line'', value = "character' replace coordinate names

x = ""SpatialPolygons", value = ''character'' replace coordinate names
x = ""GridTopology'", value = '"character' replace coordinate names

x = ""SpatialGrid'', value = ""character' replace coordinate names

x = ""SpatialPixels", value = '"character' replace coordinate names

CRS-class Class "CRS" of coordinate reference system arguments

Description

Interface class to the PROJ projection and transformation system. The class is defined as an empty
stub accepting value NA in the sp package. The initiation function may call the PROJ library
through rgdal to verify the argument set against those known in the library, returning error messages
where necessary. If the "CRS" object is instantiated using CRS() with rgdal using PROJ >= 6 and
GDAL >= 3, the object may also have a WKT2 (2019) string carried as a comment. The arguments
for a Proj.4 string must be entered exactly as in the Proj.4 documentation, in particular there cannot
be any white space in +<key>=<value> strings, and successive such strings can only be separated
by blanks. Note that only “+proj=longlat +ellps=WGS84” is accepted for geographical coordinates,
which must be ordered (eastings, northings); the “+ellps="" definition must be given (or expanded
internally from a given “+datum="value) for recent versions of the Proj.4 library, and should be set
to an appropriate value.

CRS-class 19

Usage

CRS(projargs, doCheckCRSArgs=TRUE, SRS_string=NULL, get_source_if_boundcrs=TRUE)
identicalCRS(x,y)

Arguments

projargs A character string of projection arguments; the arguments must be entered ex-
actly as in the PROJ.4 documentation; if the projection is unknown, use as.character (NA),
it may be missing or an empty string of zero length and will then set to the miss-
ing value. With rgdal built with PROJ >= 6 and GDAL >= 3, the +init= key
may only be used with value epsg:<code>. From sp version 1.4-4, the string
associated with the SRS_string argument may be entered as-is and will be set
as SRS_string if the projargs argument does not begin with a + (suggested by
Mikko Vihtakari).

doCheckCRSArgs default TRUE, must be set to FALSE by package developers including CRS in
an S4 class definition to avoid uncontrollable loading of the rgdal namespace

SRS_string default NULL, only used when rgdal is built with PROJ >= 6 and GDAL >= 3;
a valid WKT string or SRS definition such as "EPSG:4326" or "ESRI:102761"

get_source_if_boundcrs
(from rgdal 1.5-17, default TRUE) The presence of the +towgs84= key in a
Proj4 string projargs= argument value may promote the output WKT2 CRS to
BOUNDCRS for PROJ >= 6 and GDAL >= 3, which is a coordinate operation
from the input datum to WGS84. This is often unfortunate, so a PROJ function
is called through rgdal to retrieve the underlying source definition.

X object having a proj4string method, or if y is missing, list with objects that have
a proj4string method
y object of class Spatial, or having a proj4string method
Value

CRS returns on success an object of class CRS. identicalCRS returns a logical, indicating whether
x and y have identical CRS, or if y is missing whether all objects in list x have identical CRS.

Objects from the Class

Objects can be created by calls of the form CRS("projargs”), where "projargs" is a valid string
of PROJ.4 arguments. If the argument is a zero-length string or a character NA, the object records
NA. If the "CRS" object is instantiated using CRS() with rgdal using PROJ >= 6 and GDAL >=
3, the object may also have a WKT2 (2019) string carried as a comment. The initiation function
may call the PROIJ library through rgdal to verify the argument set against those known in the
library, returning error messages where necessary. The function CRSargs() can be used to show
the expanded Proj.4 string used by the PROJ library.

Slots

projargs: Object of class "character”: projection arguments; the arguments must be entered
exactly as in the PROJ.4 documentation, in particular there cannot be any white space in
+<arg>=<value> strings, and successive such strings can only be separated by blanks.

20 CRS-class

Methods

show signature(object = "CRS"): print deprecated Proj.4 projection arguments and WKT2 2019
representation if available

wkt signature(object = "CRS"): return WKT comment on object

rebuild_CRS rebuild a CRS object, usually used to add a WKT comment with PROJ >= 6 and
GDAL >=3

Note

Lists of projections may be seen by using the programs installed with the PROJ.4 library, in par-
ticular proj and cs2cs; with the latter, -lp lists projections, -le ellipsoids, -lu units, and -1d datum(s)
known to the installed software (available in rgdal using projInfo). These are added to in suc-
cessive releases, so tracking the website or compiling and installing the most recent revisions will
give the greatest choice. Finding the very important datum transformation parameters to be given
with the +towgs84 tag is a further challenge, and is essential when the datums used in data to be
used together differ. Tracing projection arguments is easier now than before the mass ownership of
GPS receivers raised the issue of matching coordinates from different argument sets (GPS output
and paper map, for example). See GridsDatums, make_EPSG and showEPSG for help in finding CRS
definitions.

The 4.9.1 release of the PROJ library omitted a small file of defaults, leading to reports of “ma-
jor axis or radius = 0 or not given” errors. From 0.9-3, rgdal checks for the presence of this
file (proj_def.dat), and if not found, and under similar conditions to those used by PROJ.4, adds
“+ellps=WGS84” to the input string being checked by checkCRSArgs The “+no_defs” tag ignores
the file of defaults, and the default work-around implemented to get around this problem; strings
including “init” and “datum” tags also trigger the avoidance of the work-around. Now messages are
issued when a candidate CRS is checked; they may be suppressed using suppressMessages.

From release 6 of the PROJ library, when used in building rgdal with GDAL >= 3, the +datum=
key in the Proj.4 string CRS representation is deprecated, and the +towgs84= and +nadgrids=
keys may be deprecated soon. For this reason, sp, rgdal and sf are starting to use WKT2 (2019)
string representations. In sp, the "CRS" object in itself remains unchanged, but the content of its
"projargs” slot may be degraded. To work around the degradation, a comment is added around the
"CRS" object containing a WKT2 (2019) string when rgdal is available and built with PROJ >= 6
and GDAL >=3.

Author(s)

Roger Bivand <Roger .Bivand@nhh.no>

References

https://github.com/0SGeo/PROJ

Examples

CRSQO)

CRS(H H)

CRS(as.character(NA))
CRS("+proj=longlat +datum=WGS84")

https://github.com/OSGeo/PROJ

degAxis

run <- FALSE
run <- require(rgdal)
if (run) {
print(CRSargs(CRS("+proj=longlat +datum=NAD27")))
3
if (run) {
print(CRSargs(CRS("+init=epsg:4267")))
3
if (run) {
print(CRSargs(CRS("+init=epsg:26978")))
3
if (run) {
print (CRSargs(CRS(paste("+proj=sterea +lat_0=52.15616055555555",
"+1lon_0=5.38763888888889 +k=0.999908 +x_0=155000 +y_0=463000 +ellps=bessel”,
" +towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812 +units=m"))))
3
if (run) {
print(CRSargs(CRS("+init=epsg:28992")))
3
if (run) {
print (CRSargs(CRS("EPSG:28992")))
3
if (run) {
print (CRSargs(CRS(SRS_string="EPSG:28992")))
3
if (run) {
0 <- try(CRS(SRS_string="ESRI:102760"))
if (!inherits(o, "try-error”)) print(CRSargs(o))
3
if (run) {
0o <- try(CRS("EPSG:4326"))
if (!inherits(o, "try-error”)) print(CRSargs(o))
3
if (run) {
0 <- try(CRS("ESRI:102760"))
if (!inherits(o, "try-error”)) print(CRSargs(o))
3
if (run) {
0 <- new("Spatial”)
proj4string(o) <- CRS("+init=epsg:27700")
3
if (run && !is.null(comment(slot(o, "proj4string”)))) {
cat(wkt(o), sep="\n")
cat(wkt(slot(o, "proj4string”)), sep="\n")
3

21

degAxis axis with degrees

Description

draw axes on a plot using degree symbols in numbers

22 dimensions-methods

Usage
degAxis(side, at, labels, ...)
Arguments
side integer; see axis
at numeric; if missing, axTicks is called for nice values; see axis
labels character; if omitted labels are constructed with degree symbols, ending in
N/S/E/W; in case of negative degrees, sign is reversed and S or W is added;
see axis
passed to the actual axis call
Value

axis is plotted on current graph

Note

decimal degrees are used if variation is small, instead of minutes and seconds

Examples

xy = cbind(x = 2 * runif(100) - 1, y = 2 * runif(100) - 1)
plot(SpatialPoints(xy, proj4string = CRS("+proj=longlat +ellps=WGS84")),xlim=c(-1,1),ylim=c(-1,1))

degAxis(1)
degAxis(2, at = c(-1,-0.5,0,0.5,1))
#
dimensions-methods retrieve spatial dimensions from spatial data
Description

retrieves spatial dimensions box from spatial data

Usage

dimensions(obj)

Arguments

obj object deriving from class "Spatial”

Value

two-column matrix; the first column has the minimum, the second the maximum values; rows
represent the spatial dimensions

disaggregate-methods 23

Methods

obj = "Spatial"' object deriving from class "Spatial"

Examples

just 9 points on a grid:
x <- ¢(1,1,1,2,2,2,3,3,3)
y <- ¢(1,2,3,1,2,3,1,2,3)
xy <- cbind(x,y)

S <- SpatialPoints(xy)
dimensions(S)

data.frame

data(meuse.grid)
coordinates(meuse.grid) <- ~x+y
gridded(meuse.grid) <- TRUE
dimensions(meuse.grid)

disaggregate-methods disaggregate SpatialLines, SpatialLinesDataFrame, SpatialPolygons,
or SpatialPolygonsDataFrame objects

Description

disaggregate SpatialLines, SpatialLinesDataFrame, SpatialPolygons, or SpatialPolygonsDataFrame
objects, using functions from rgeos to handle polygon hole nesting

Usage
disaggregate(x, ...)
Arguments
X object of class SpatialLines or SpatialPolygons
ignored
Value

object of class SpatialLines or SpatialPolygons, where groups of Line or Polygon are disaggregated
to one Line per Lines, or one Polygon per Polygons, respectively.

Author(s)

Robert Hijmans, Edzer Pebesma

24 DMS-class

Examples

Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2)), hole = FALSE)
Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2)), hole = FALSE)

Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5)), hole = FALSE)
Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE)

Srs1 = Polygons(list(Sr1, Sr2), "s1/2")
Srs3 = Polygons(list(Sr3, Sr4), "s3/4")
sp = SpatialPolygons(list(Srs1,Srs3), 1:2)
length(sp) ## [1] 2
length(disaggregate(sp)) ## [1] 3

11 = cbind(c(1,2,3),c(3,2,2))

11a = cbind(11[,1]+.05,11[,2]+.05)
12 = cbind(c(1,2,3),c(1,1.5,1))
S11 = Line(11)

Slla = Line(11a)

S12 = Line(12)

S1 = Lines(list(S11, Sl1a), ID="a")
S2 = Lines(list(S12), ID="b")

sl = SpatiallLines(list(S1,S2))
length(sl)
length(disaggregate(sl))

DMS-class Class "DMS" for degree, minute, decimal second values

Description

The class provides a container for coordinates stored as degree, minute, decimal second values.

Objects from the Class

Objects can be created by calls of the form new("DMS", . . .), converted from decimal degrees using
dd2dms (), or converted from character strings using char2dms().

Slots

WS: Object of class "logical” TRUE if input value negative
deg: Object of class "numeric” degrees

min: Object of class "numeric” minutes

sec: Object of class "numeric” decimal seconds

NS: Object of class "logical” TRUE if input value is a Northing

Methods

coerce signature(from="DMS",to = "numeric"): convert to decimal degrees

show signature(object = "DMS"): print data values

flip 25

Author(s)

Roger Bivand <Roger .Bivand@nhh.no>

See Also

char2dms, dd2dms

Examples

data(state)

dd2dms(state.center$x)

dd2dms(state.center$y, NS=TRUE)
as.numeric(dd2dms(state.centers$y))
as(dd2dms(state.center$y, NS=TRUE), "numeric")
as.numeric.DMS(dd2dms(state.centers$y))
state.centers$y

flip rearrange data in SpatialPointsDataFrame or SpatialGridDataFrame
for plotting with spplot (levelplot/xyplot wrapper)

Description

rearrange SpatialPointsDataFrame for plotting with spplot or levelplot

Usage
flipHorizontal(x)
flipVertical(x)

Arguments

X object of class SpatialGridDataFrame

Value
object of class SpatialGridDataFrame, with pixels flipped horizontally or vertically. Note that the
spatial structure is destroyed (or at least: drastically changed).

Author(s)

Michael Sumner

26 geometry-methods

Examples

data(meuse.grid) # data frame
gridded(meuse.grid) = c("x", "y") # promotes to
fullgrid(meuse.grid) = TRUE

d = meuse.grid["dist"]

image(d, axes=TRUE)

image(flipHorizontal(d), axes=TRUE)
image(flipVertical(d), axes=TRUE)

geometry-methods Methods for retrieving the geometry from a composite (geometry +
attributes) object

Description

geometry retrieves the SpatialXxx object from a SpatialXxxDataFrame object, with Xxx Lines,
Points, Polygons, Grid, or Pixels. geometry<- converts a data.frame into a Spatial object.

Usage

geometry(obj)
geometry(obj) <- value

Arguments
obj in case of assignment, a data.frame, else an object of class Spatial
value object of class Spatial

Methods

obj = ""Spatial"’

obj = ""SpatialPointsDataFrame"

obj = ""SpatialMultiPointsDataFrame"
obj = "'SpatialPolygonsDataFrame'"
obj = ""SpatialPixelsDataFrame"

obj = ""SpatialGridDataFrame"

obj = ""SpatialLinesDataFrame"

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

gridded-methods 27

Examples

data(meuse)

m = meuse

coordinates(m) = meuse[, c("x", "y")]
pts = geometry(m)

class(pts)

geometry(meuse) = pts

class(meuse)

identical(m, meuse) # TRUE

gridded-methods specify spatial data as being gridded, or find out whether they are

Description

returns logical (TRUE or FALSE) telling whether the object is gridded or not; in assignment pro-
motes a non-gridded structure to a gridded one, or demotes a gridded structure back to a non-
structured one.

Usage

gridded(obj)

gridded(obj) <- value

fullgrid(obj)

fullgrid(obj) <- value

gridparameters(obj)
Arguments

obj object deriving from class "Spatial” (for gridded), or object of class Spatial GridDataFrame-

class (for fullgrid and gridparameters)

value logical replacement values, TRUE or FALSE

Value

if obj derives from class Spatial, gridded(object) will tell whether it is has topology on a regular
grid; if assigned TRUE, if the object derives from SpatialPoints and has gridded topology, grid
topology will be added to object, and the class of the object will be promoted to SpatialGrid-class
or SpatialGridDataFrame-class

fullgrid returns a logical, telling whether the grid is full and ordered (i.e., in full matrix form), or
whether it is not full or unordered (i.e. a list of points that happen to lie on a grid. If assigned, the
way the points are stored may be changed. Changing a set of points to full matrix form and back
may change the original order of the points, and will remove duplicate points if they were present.

gridparameters returns, if obj inherits from SpatialGridDataFrame its grid parameters, else it
returns numeric(0). The returned value is a data.frame with three columns, named cellcentre.offset
("lower left cell centre coordinates"), cellsize, and cells.dim (cell dimension); the rows correspond
to the spatial dimensions.

28 gridIndex2nb

Methods

obj = ""Spatial" object deriving from class "Spatial"

Examples

just 9 points on a grid:
x <- ¢(1,1,1,2,2,2,3,3,3)
y <- ¢(1,2,3,1,2,3,1,2,3)
xy <- cbind(x,y)

S <- SpatialPoints(xy)
class(S)

plot(S)

gridded(S) <- TRUE
gridded(S)

class(S)

summary (S)

plot(S)

gridded(S) <- FALSE
gridded(S)

class(S)

data.frame

data(meuse.grid)
coordinates(meuse.grid) <- ~x+y
gridded(meuse.grid) <- TRUE
plot(meuse.grid) # not much good
summary (meuse.grid)

gridIndex2nb create neighbourhood (nb) object from grid geometry

Description

create neighbourhood (nb) object from grid geometry

Usage
gridIndex2nb(obj, maxdist = sqrt(2), fullMat = TRUE, ...)
Arguments
obj object of class SpatialGrid or SpatialPixels
maxdist maximum distance to be considered (inclusive), expressed in number of grid cell
(sqrt(2) results in queen neighbours)
fullMat use dist to compute distances from grid (row/col) indices; FALSE avoids form-

ing the full distance matrix, at a large performance cost

arguments passed on to dist

gridlines 29

Value

Object of class nb, which is a list.

The nb object follows the convention of nb objects in package spdep; it is a list with each list
element corresponding to a grid cell or pixel; the list element contains the indices of neighbours
defined as cells less than maxdist away, measured in cell unit (N/S/E/W neighbour has distance 1).

Note

Unequal grid cell size is ignored; grid cell row/col indices are taken to be the coordinates from
which distances are computed.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

plot.nb in package spdep

gridlines Create N-S and E-W grid lines over a geographic region

Description

Create N-S and E-W grid lines over a geographic region; create and plot corresponding labels

Usage

gridlines(x, easts = pretty(bbox(x)[1,]1), norths = pretty(bbox(x)[2,1),
ndiscr = 100)

gridat(x, easts = pretty(bbox(x)[1,]1), norths = pretty(bbox(x)[2,1),
offset = 0.5, side = "WS")

S3 method for class 'SpatiallLines'

labels(object, labelCRS, side = 1:2, ...)
S3 method for class 'SpatialPointsDataFrame'
text(x, ...)
Arguments
X object deriving from class Spatial-class
easts numeric; east-west values for vertical lines
norths numeric; north-south values for horizontal lines
ndiscr integer; number of points used to discretize the line, could be set to 2, unless the

grid is (re)projected

offset offset value to be returned, see text

30

object
labelCRS

side

Value

gridlines

SpatialLines-class object, as returned by gridlines

the CRS in which the grid lines were drawn and labels should be printed; if
missing, the CRS from object is taken

for labels: integer, indicating side(s) at which gridlines labels will be drawn:
1=below (S), 2=left (W), 3=above (N), and 4=right (E); for gridat: default
“WS”, if “EN” labels placed on the top and right borders

for labels: ignored; for text: arguments passed on to text, see below for ex-
ample use of adj

gridlines returns an object of class SpatialLines-class, with lines as specified; the return object
inherits the projection information of x; gridat returns a SpatialPointsDataFrame with points at
the west and south ends of the grid lines created by gridlines, with degree labels.

The labels method for Spatiallines objects returns a SpatialPointsDataFrame-class object with
the parameters needed to print labels below and left of the gridlines. The locations for the labels are
those of proj4string(object) the labels also unless 1abelCRS is given, in which case they are in
that CRS. This object is prepared to be plotted with text:

The text method for SpatialPointsDataFrame puts text labels on its coordinates, and takes care
of attributes pos, labels, srt and of fset; see text.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>, using example code of Roger Bivand.

See Also

spTransform; llgridlines in rgdal (recent versions) for plotting long-lat grid over projected data

Examples

data(meuse)

coordinates(meuse) = ~x+y

plot(meuse)

plot(gridlines(meuse), add = TRUE)
text(labels(gridlines(meuse)))
title("default gridlines within Meuse bounding box")

proj4string(meuse) <- CRS("+init=epsg:28992")
crs.longlat <- CRS("+init=epsg:4326")

if (require(rgdal, quietly=TRUE)) {

meuse_l11 <- spTransform(meuse, crs.longlat)

grd <- gridlines(meuse_11)

grd_x <- spTransform(grd, CRS("+init=epsg:28992"))

labels South and West:

plot(meuse)

plot(grd_x, add=TRUE, lty=2)
grdat_l1 <- gridat(meuse_11)

GridTopology-class

grdat_x <- spTransform(grdat_l1, CRS("+init=epsg:28992"))
text(grdat_x)

labels North and East:

plot(meuse)

plot(grd_x, add=TRUE, 1lty=2)

grdat_l11 <- gridat(meuse_l1l, side="EN")

grdat_x <- spTransform(grdat_11, CRS("+init=epsg:28992"))
text(grdat_x)

now using labels:

plot(meuse)

plot(grd_x, add=TRUE, lty=2)
text(labels(grd_x, crs.longlat))

demonstrate axis labels with angle, both sides:

sp = SpatialPoints(rbind(c(-101,9), c(-101,55), c(-19,9), c(-19,55)), crs.longlat)
laea = CRS("+proj=laea +lat_0=30 +lon_0=-40")

sp.l = spTransform(sp, laea)

plot(sp.1l, expandBB = c(@, 0.05, @, .05))

gl = spTransform(gridlines(sp), laea)

plot(gl, add = TRUE)

text(labels(gl, crs.longlat))

text(labels(gl, crs.longlat, side = 3:4), col = 'red')

title("curved text label demo")

polar:

pts=SpatialPoints(rbind(c(-180,-70),c(0,-70),c(180,-89),c(180,-70)), crs.longlat)
polar = CRS("+init=epsg:3031")

gl = spTransform(gridlines(pts, easts = seq(-180,180,20), ndiscr = 100), polar)
plot(spTransform(pts, polar), expandBB = c(.05,0,.05,0))

lines(gl)

1 = labels(gl, crs.longlat, side = 3)

1$pos = NULL # pos is too simple, use adj:

text(l, adj = c(0.5, -0.5))

1 = labels(gl, crs.longlat, side = 4)

1$srt = @ # otherwise they end up upside-down

text(l)

title("grid line labels on polar projection, epsg 3031")

3

Not run:

if (require(maps)) demo(polar) # adds the map of the antarctic

End(Not run)

GridTopology-class Class "GridTopology"

Description

class for defining a rectangular grid of arbitrary dimension

32 GridTopology-class

Objects from the Class

Objects are created by using e.g.
GridTopology(c(0,0), c(1,1), c(5,5))

see SpatialGrid

Slots

cellcentre.offset: numeric; vector with the smallest centroid coordinates for each dimension;
coordinates refer to the cell centre

cellsize: numeric; vector with the cell size in each dimension

cells.dim: integer; vector with number of cells in each dimension

Methods

coordinates signature(x = "SpatialGrid"): calculates coordinates for each point on the grid
summary signature(object = "SpatialGrid"”): summarize object

coerce signature(from="GridTopology”,to = "data.frame"): convert to data.frame with columns
cellcentre.offset, cellsize and cells.dim

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

See Also

SpatialGridDataFrame-class, SpatialGrid-class

Examples

x = GridTopology(c(0,0), c(1,1), c(5,5))
class(x)

X

summary (x)

coordinates(x)

y = SpatialGrid(grid = x)

class(y)

y

image.SpatialGridDataFrame 33

image.SpatialGridDataFrame
Image or contour method for gridded spatial data; convert to and
from image data structure

Description

Create image for gridded data in SpatialGridDataFrame or SpatialPixelsDataFrame objects.

Usage

S3 method for class 'SpatialGridDataFrame'

image(x, attr = 1, xcol =1, ycol = 2,

col = heat.colors(12), red=NULL, green=NULL, blue=NULL,
axes = FALSE, x1im = NULL,

ylim = NULL, add = FALSE, ..., asp = NA, setParUsrBB=FALSE,
interpolate = FALSE, angle = 0,
useRasterImage = !(.Platform$GUI[1] == "Rgui"” &&
getIdentification() == "R Console"”) && missing(breaks), breaks,

zlim = range(as.numeric(x[[attr]])[is.finite(x[[attr]1)]1))
S3 method for class 'SpatialPixelsDataFrame'

image(x, ...)
S3 method for class 'SpatialPixels'
image(x, ...)

S3 method for class 'SpatialGridDataFrame'’

contour(x, attr = 1, xcol = 1, ycol = 2,

col = 1, add = FALSE, xlim = NULL, ylim = NULL, axes = FALSE,
., setParUsrBB = FALSE)

S3 method for class 'SpatialPixelsDataFrame'

contour(x, ...)

as.image.SpatialGridDataFrame(x, xcol = 1, ycol = 2, attr = 1)

image2Grid(im, p4 = as.character(NA), digits=10)

Arguments
X object of class SpatialGridDataFrame
attr column of attribute variable; this may be the column name in the data.frame of
data (as.data.frame(data)), or a column number
xcol column number of x-coordinate, in the coordinate matrix
ycol column number of y-coordinate, in the coordinate matrix
col a vector of colors

red,green,blue columns names or numbers given instead of the attr argument when the data
represent an image encoded in three colour bands on the 0-255 integer scale;
all three columns must be given in this case, and the attribute values will be
constructed using function rgb

34 image.SpatialGridDataFrame

axes logical; should coordinate axes be drawn?

x1im x-axis limits

ylim y-axis limits

zlim data limits for plotting the (raster, attribute) values

add logical; if FALSE, the image is added to the plot layout setup by plot (as(x, "Spatial”), axes=axes, x1
which sets up axes and plotting region; if TRUE, the image is added to the ex-
isting plot.

arguments passed to image, see examples
asp aspect ratio to be used for plot
setParUsrBB default FALSE, see Spatial-class for further details

useRasterImage if TRUE, use rasterImage to render the image if available; for legacy rendering
set FALSE; should be FALSE on Windows SDI installations

breaks class breaks for coloured values

interpolate default FALSE, a logical vector (or scalar) indicating whether to apply linear
interpolation to the image when drawing, see rasterImage

angle default O, angle of rotation (in degrees, anti-clockwise from positive x-axis,
about the bottom-left corner), see rasterImage

im list with components named X, y, and z, as used for image

p4 CRS object, proj4 string

digits default 10, number of significant digits to use for checking equal row/column
spacing

Value

as.image.SpatialGridDataFrame returns the list with elements x and y, containing the coordi-
nates of the cell centres of a matrix z, containing the attribute values in matrix form as needed by
image.

Note

Providing xcol and ycol attributes seems obsolete, and it is for 2D data, but it may provide oppor-
tunities for plotting certain slices in 3D data. I haven’t given this much thought yet.

filled.contour seems to misinterpret the coordinate values, if we take the image.default manual page
as the reference.

Author(s)

Edzer Pebesma

See Also

image.default, SpatialGridDataFrame-class, levelplot in package lattice. Function image.plot
in package fields can be used to make a legend for an image, see an example in https://stat.
ethz.ch/pipermail/r-sig-geo/2007-June/002143.html

https://stat.ethz.ch/pipermail/r-sig-geo/2007-June/002143.html
https://stat.ethz.ch/pipermail/r-sig-geo/2007-June/002143.html

is.projected 35

Examples

data(meuse.grid)

coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame
gridded(meuse.grid) = TRUE # promote to SpatialGridDataFrame
data(meuse)

coordinates(meuse) = c("x", "y"

I~

image(meuse.grid["dist"”], main
points(coordinates(meuse), pch
image(meuse.grid["dist”], main = "Distance to river Meuse”,
useRasterImage=TRUE)

points(coordinates(meuse), pch

"Distance to river Meuse")
"

nyn
+

color scale:

layout(cbind(1,2), c(4,1),1)

image(meuse.grid["dist"])

imageScale(meuse.grid$dist, axis.pos=4, add.axis=FALSE)
axis(4,at=c(0,.2,.4,.8), las=2)

data(Rlogo)

d = dim(Rlogo)

cellsize = abs(c(gtl[2],gt[6]))

cells.dim = c(d[1], d[2]) # c(d[2]1,d[1]1)

cellcentre.offset = c(x =gt[1] + 0.5 * cellsize[1], y = gt[4] - (d[2] - 0.5) *x abs(cellsize[2]))
grid = GridTopology(cellcentre.offset, cellsize, cells.dim)
df = as.vector(Rlogo[,,1])

for (band in 2:d[3]) df = cbind(df, as.vector(Rlogol[,,hband]))
df = as.data.frame(df)

names(df) = paste(”band”, 1:d[3], sep="")

Rlogo <- SpatialGridDataFrame(grid = grid, data = df)

summary (Rlogo)

image(Rlogo, red="band1"”, green="band2", blue="band3")
image(Rlogo, red="band1"”, green="band2", blue="band3",
useRasterImage=FALSE)

is.na(Rlogo$band1) <- Rlogo$handl == 255

is.na(Rlogo$hand2) <- Rlogo$band2 == 255

is.na(Rlogo$band3) <- Rlogo$band3 == 255

Rlogo$i7 <- 7

image(Rlogo, "i7")

image(Rlogo, red="bandl1", green="band2", blue="band3", add=TRUE)

is.projected Sets or retrieves projection attributes on classes extending Spatial-
Data

Description

Sets or retrieves projection attributes on classes extending SpatialData; set or retrieve option value
for error or warning on exceedance of geographical coordinate range, set or retrieve option value for
exceedance tolerance of geographical coordinate range. Note that only “+proj=longlat +ellps=WGS84”
is accepted for geographical coordinates, which must be ordered (eastings, northings); the “+ellps="

36 is.projected

definition must be given (or expanded internally from a given “+datum=" value) for recent versions
of the PROJ library, and should be set to an appropriate value.

From release 6 of the PROJ library, when used in building rgdal with GDAL >= 3, the +datum=
key in the Proj.4 string CRS representation is deprecated, and the +towgs84= and +nadgrids=
keys may be deprecated soon. For this reason, sp, rgdal and sf are starting to use WKT2 (2019)
string representations. In sp, the "CRS" object in itself remains unchanged, but the content of its
"projargs” slot may be degraded. To work around the degradation, a comment is added around the
"CRS" object containing a WKT2 (2019) string when rgdal is available and built with PROJ >= 6
and GDAL >=3. The wkt () accessor function returns the WKT?2 (2019) string comment belonging
to the "CRS" object.

Usage

is.projected(obj)
proj4string(obj)
proj4string(obj) <- value
wkt(obj)

get_11_warn()
get_11_TOL()
get_ReplCRS_warn()
set_11_warn(value)
set_11_TOL(value)
set_ReplCRS_warn(value)

Arguments

obj An object of class or extending Spatial-class

value For proj4string CRS object, containing a valid proj4 string; attempts to as-
sign an object containing “longlat” to data extending beyond longitude [-180,
360] or lattitude [-90, 90] will be stopped. For set_l11_warn a single logical
value, if FALSE (default) error on range exceedance, if TRUE, warning. For
set_11_TOL the value of the power of .Machine$double.eps (default 0.25) to
use as tolerance in testing range exceedance. set_ReplCRS_warn may be used
to turn off warnings issued when changing object CRS with the proj4string
replacement method (by setting value=FALSE).

Details

proj4 strings are operative through CRAN package rgdal. For strings defined as “longlat”, the
minimum longitude should be -180, the maximum longitude 360, the minimum latitude -90, and
the maximum latitude 90. Note that the proj4string replacement method does not project spatial
data - for this use spTransform methods in the rgdal package.

Value

is.projected returns a logical that may be NA; proj4string returns a character vector of length
1.

Line 37

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also
CRS

Examples

o <- new("Spatial”)

proj4string(o) <- CRS("+init=epsg:27700")

if (!is.null(comment(slot(o, "proj4string”)))) {
cat(strsplit(wkt(o), "\n")[[1]1], sep="\n")
cat(strsplit(wkt(slot(o, "proj4string”)), "\n")[[111, sep="\n")

3

is.projected(CRS("+proj=longlat”))

is.projected(CRS("+proj=geocent”))

is.projected(CRS("+proj=geocent +units=km"))

Line create objects of class Line or Lines

Description

create objects of class Line or Lines from coordinates

Usage

Line(coords)
Lines(slinelist, ID)

Arguments

coords 2-column numeric matrix with coordinates for a single line

slinelist list with elements of class Line-class

ID a single word unique character identifier, character vector of length one
Value

Line returns an object of class Line-class; Lines returns an object of class Lines-class

See Also

SpatialLines-class

38 Line-class

Examples

from the sp vignette:

11 = cbind(c(1,2,3),c(3,2,2))

11a = cbind(11[,1]+.05,11[,2]+.05)
12 = cbind(c(1,2,3),c(1,1.5,1))

S11 = Line(11)

Slla = Line(11a)

S12 = Line(12)

S1 = Lines(list(S11, Sl1a), ID="a")
S2 = Lines(list(S12), ID="b")

Line-class Class "Line"

Description

class for line objects

Objects from the Class

Objects can be created by calls of the form new("Line", .. .), or (preferred) by calls to the function
Line

Slots

coords: Object of class "matrix”, containing the line coordinates

Methods

coordinates signature(obj = "Line"): retrieve coordinates from line

lines signature(x = "Line"): add lines to a plot

Author(s)

Roger Bivand, Edzer Pebesma

See Also

Lines-class, SpatialLines-class

Lines-class 39

Lines-class Class "Lines"

Description

class for sets of line objects

Arguments
SL, Lines an Lines object
Objects from the Class

Objects can be created by calls to the function Line

Slots

Lines: Object of class "1ist", containing elements of class Line-class

ID: "character"” vector of length one, with unique identifier string

Methods

coordinates signature(obj = "Line"): retrieve coordinates from lines; returns list with matrices

lines signature(x ="Line"): add lines to a plot

Author(s)

Roger Bivand, Edzer Pebesma

See Also

Lines-class, SpatialLines-class

loadMeuse deprecated function to load the Meuse data set

Description

deprecated function to load the Meuse data set

Usage

loadMeuse ()

Value

none; it prints a warning to run demo(meuse)

40 mapasp

See Also

meuse, meuse.grid

Examples
demo (meuse)
mapasp Calculate aspect ratio for plotting geographic maps, create nice de-
gree axis labels
Description

Calculate aspect ratio for plotting geographic maps; create nice degree axis labels

Usage

mapasp(data, xlim, ylim)

degreelLabelsEW(x)
degreelLabelsNS(x)
Arguments
data object of class or extending Spatial
x1lim the xlim argument passed (or derived from bounding box)
ylim the ylim argument passed (or derived from bounding box)
X numeric; values at which tics and marks will be generated
Value

mapasp is used for the aspect argument in lattice plots and spplot;
let x = dy/dx, with dy and dx the y- and x-size of the map.
let s = 1/cos((My * pi)/180) with My the y coordinate of the middle of the map (the mean of ylim)

for latlong (longlat) data, mapasp returns s * x. for other data, mapasp returns "iso".

Note

the values for x are typically obtained from axTicks

See Also

levelplot in package lattice

merge

41

merge Merge a Spatial* object having attributes with a data.frame

Description

Merge a Spatial object having a data.frame (i.e. merging of non-spatial attributes).

Usage

S4 method for signature 'Spatial,data.frame’
merge(x, y, by = intersect(names(x), names(y)),
by.x = by, by.y = by, all.x = TRUE, suffixes = c(".x",".y"),

incomparables = NULL, duplicateGeoms = FALSE, ...)
Arguments
X object deriving from Spatial
y object of class data. frame, or any other class that can be coerced to a data.frame

with as.data.frame

by, by.x, by.y specifications of the common columns. See 'Details’ in (base) merge.

all.x logical; if TRUE, then the returned object will have all rows of x, even those that
has no matching row in y. These rows will have NAs in those columns that are

usually filled with values from y

suffixes character(2) specifying the suffixes to be used for making non-by names() unique.

incomparables values which cannot be matched. See match.

duplicateGeoms logical; if TRUE geometries in x are duplicated if there are multiple matches

between records in x and y

arguments to be passed to or from methods.

Value

a Spatial* object

Author(s)

Robert J. Hijmans

See Also

merge

42 meuse

meuse Meuse river data set

Description

This data set gives locations and topsoil heavy metal concentrations, along with a number of soil
and landscape variables at the observation locations, collected in a flood plain of the river Meuse,
near the village of Stein (NL). Heavy metal concentrations are from composite samples of an area
of approximately 15 m x 15 m.

Usage

data(meuse)

Format

This data frame contains the following columns:

X a numeric vector; Easting (m) in Rijksdriehoek (RDH) (Netherlands topographical) map coordi-
nates

y anumeric vector; Northing (m) in RDH coordinates

cadmium topsoil cadmium concentration, mg kg-1 soil ("ppm"); zero cadmium values in the orig-
inal data set have been shifted to 0.2 (half the lowest non-zero value)

copper topsoil copper concentration, mg kg-1 soil ("ppm")
lead topsoil lead concentration, mg kg-1 soil ("ppm")

zinc topsoil zinc concentration, mg kg-1 soil ("ppm")

elev relative elevation above local river bed, m

dist distance to the Meuse; obtained from the nearest cell in meuse.grid, which in turn was derived
by a spread (spatial distance) GIS operation, horizontal precision 20 metres; then normalized

to $[0,11$
om organic matter, kg (100 kg)-1 soil (percent)
ffreq flooding frequency class: 1 = once in two years; 2 = once in ten years; 3 = one in 50 years

soil soil type according to the 1:50 000 soil map of the Netherlands. 1 = Rd10A (Calcareous
weakly-developed meadow soils, light sandy clay); 2 = RA90C/VII (Non-calcareous weakly-
developed meadow soils, heavy sandy clay to light clay); 3 = Bkd26/VII (Red Brick soil,
fine-sandy, silty light clay)

lime lime class: 0 = absent, 1 = present by field test with 5% HCl

landuse landuse class: Aa Agriculture/unspecified = , Ab = Agr/sugar beetsm, Ag = Agr/small
grains, Ah = Agr/??, Am = Agr/maize, B = woods, Bw = trees in pasture, DEN = ??, Fh = tall
fruit trees, Fl = low fruit trees; Fw = fruit trees in pasture, Ga = home gardens, SPO = sport
field, STA = stable yard, Tv = 7?7 , W = pasture

dist.m distance to river Meuse in metres, as obtained during the field survey

meuse.grid 43

Note

row.names refer to the original sample number.

Soil units were mapped with a minimum delination width of 150 m, and so somewhat generalize
the landscape.

Approximate equivalent World Reference Base 2002 for Soil Resources names are: RA10A Gleyic
Fluvisols; Rd90C Haplic Fluvisols; Bkd26 Haplic Luvisols. Units Rd90C and Bkd26 have winter
groundwater > 80cm, summer > 120cm depth.

Author(s)

Field data were collected by Ruud van Rijn and Mathieu Rikken; compiled for R by Edzer Pebesma;
description extended by David Rossiter

References

M G J Rikken and R P G Van Rijn, 1993. Soil pollution with heavy metals - an inquiry into
spatial variation, cost of mapping and the risk evaluation of copper, cadmium, lead and zinc in
the floodplains of the Meuse west of Stein, the Netherlands. Doctoraalveldwerkverslag, Dept. of
Physical Geography, Utrecht University

P.A. Burrough, R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford
University Press.

Stichting voor Bodemkartering (STIBOKA), 1970. Bodemkaart van Nederland : Blad 59 Peer,
Blad 60 West en 60 Oost Sittard: schaal 1 : 50 000. Wageningen, STIBOKA.

http://www.gstat.org/

Examples

data(meuse)

summary (meuse)

coordinates(meuse) <- ~x+y

proj4string(meuse) <- CRS("+init=epsg:28992")

meuse.grid Prediction Grid for Meuse Data Set

Description

The meuse.grid data frame has 3103 rows and 7 columns; a grid with 40 m x 40 m spacing that
covers the Meuse study area (see meuse)

Usage

data(meuse.grid)

http://www.gstat.org/

44 meuse.grid_Il

Format

This data frame contains the following columns:

X a numeric vector; x-coordinate (see meuse)
y anumeric vector; y-coordinate (see meuse)

dist distance to the Meuse river; obtained by a spread (spatial distance) GIS operation, from border
of river; normalized to $[0,1]$

ffreq flooding frequency class, for definitions see this item in meuse; it is not known how this map
was generated

part.a arbitrary division of the area in two areas, a and b
part.b see part.a

soil soil type, for definitions see this item in meuse; it is questionable whether these data come
from a real soil map, they do not match the published 1:50 000 map
Details
x and y are in RD New, the Dutch topographical map coordinate system. Roger Bivand projected
this to UTM in the R-Grass interface package.
Source

http://www.gstat.org/

References

See the meuse documentation

Examples

data(meuse.grid)

coordinates(meuse.grid) = ~x+y
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
gridded(meuse.grid) = TRUE

spplot(meuse.grid)

meuse.grid_11 Prediction Grid for Meuse Data Set, geographical coordinates

Description
The object contains the meuse.grid data as a SpatialPointsDataFrame after transformation to WGS84
and geographical coordinates.

Usage

data(meuse.grid_11)

http://www.gstat.org/

meuse.riv 45

Format

The format is: Formal class ’SpatialPointsDataFrame’ [package "sp"].

Source

See the meuse documentation

Examples

data(meuse.grid_11)

meuse.riv River Meuse outline

Description

The meuse.riv data consists of an outline of the Meuse river in the area a few kilometers around
the meuse data set.

The meuse. area polygon has an outline of meuse.grid. See example below how it can be created
from meuse.grid.

Usage

data(meuse.riv)
data(meuse.area)

Format

meuse.riv: two-column data.frame containing 176 coordinates.

meuse.area: two-column matrix with coordinates of outline.

Details
x and y are in RDM, the Dutch topographical map coordinate system. See examples of spTransform
in the rgdal package for projection parameters.

References

See the meuse documentation

46 over-methods

Examples

data(meuse.riv)

plot(meuse.riv, type = "1", asp = 1)
data(meuse.grid)
coordinates(meuse.grid) = c("x", "y")
gridded(meuse.grid) = TRUE
image(meuse.grid, "dist"”, add = TRUE)

data(meuse)

coordinates(meuse) = c("x", "y")

meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)),"meuse.riv")))
spplot(meuse.grid, col.regions=bpy.colors(), main = "meuse.grid”,

sp.layout=list(

list("sp.polygons”, meuse.sr),

list("sp.points”, meuse, pch="+", col="black")
)

)

spplot(meuse, "zinc", col.regions=bpy.colors(), main = "zinc, ppm",
cuts = c(100,200,400,700,1200,2000), key.space = "right",
sp.layout= list("”sp.polygons”, meuse.sr, fill = "lightblue”)

)

creating meuse.area from meuse.grid:
if (require(rgeos)) {

meuse.area = gUnaryUnion(as(meuse.grid, "SpatialPolygons”))
plot(meuse.area)

}

over-methods consistent spatial overlay for points, grids and polygons

Description
consistent spatial overlay for points, grids and polygons: at the spatial locations of object x retrieves
the indexes or attributes from spatial object y

Usage

over(x, y, returnList = FALSE, fn = NULL, ...)
X %overk% y

Arguments
X geometry (locations) of the queries
y layer from which the geometries or attributes are queried
returnList logical; see value

fn (optional) a function; see value

over-methods 47

arguments passed on to function fn, except for the special argument minDimension:
minimal dimension for an intersection to be counted; -1 takes any intersection,
and does not order; 0 takes any intersection but will order according to dimen-
sionality of the intersections (if returnList is TRUE, 1 (2) selects intersections
with dimension 1, meaning lines (2, meaning areas); see vignette("over") for
details

Value

If y is only geometry an object of length length(x). If returnList is FALSE, a vector with
the (first) index of y for each geometry (point, grid cell centre, polygon or lines) matching x. if
returnList is TRUE, a list of length 1length(x), with list element i the vector of all indices of the
geometries in y that correspond to the i-th geometry in x.

If y has attribute data, attribute data are returned. returnList is FALSE, a data.frame with
number of rows equal to length(x) is returned, if it is TRUE a list with length(x) elements is
returned, with a list element the data. frame elements of all geometries in y that correspond to that
element of x.

In case the rgeos over methods are used, matching is done by gRelate, which uses DE-9IM
(https://en.wikipedia.org/wiki/DE-9IM). From the string returned, characters 1, 2, 4 and
5 are used, indicating the dimension of the overlap of the inner and boundary of each x geometry
with the inner and boundary of each y geometry. The order in which matched y geometries are
returned is determined by the dimension of the overlap (2: area overlap, 1: line in common, 0:
point in common), and then by the position in the string (1, 2, 4, 5, meaning points in polygons are
preferred over points on polygon boundaries).

Methods

x = ""SpatialPoints'', y = '"SpatialPolygons'' returns a numeric vector of length equal to the num-
ber of points; the number is the index (number) of the polygon of y in which a point falls;
NA denotes the point does not fall in a polygon; if a point falls in multiple polygons, the last
polygon is recorded.

x = "'SpatialPointsDataFrame'', y = ''SpatialPolygons' equal to the previous method, except that
an argument fn=xxx is allowed, e.g. fn =mean which will then report a data.frame with the
mean attribute values of the x points falling in each polygon (set) of y

x = "'SpatialPoints'', y = ''SpatialPolygonsDataFrame'' returns a data.frame of the second argu-
ment with row entries corresponding to the first argument

x = ""SpatialPolygons", y = ''SpatialPoints' returns the polygon index of points in y; if x is a
SpatialPolygonsDataFrame, a data.frame with rows from x corresponding to points in y is
returned.

x = ""SpatialGridDataFrame", y = ''SpatialPoints'' returns object of class SpatialPointsDataFrame
with grid attribute values x at spatial point locations y; NA for NA grid cells or points outside
grid, and NA values on NA grid cells.

x = ""SpatialGrid", y = '"SpatialPoints" returns grid values x at spatial point locations y; NA for
NA grid cells or points outside the grid

x = "SpatialPixelsDataFrame', y = '"SpatialPoints' returns grid values x at spatial point loca-
tions y; NA for NA grid cells or points outside the grid

https://en.wikipedia.org/wiki/DE-9IM

48

over-methods

x = "'SpatialPixels', y = ""SpatialPoints' returns grid values x at spatial point locations y; NA for
NA grid cells or points outside the grid

x = ""SpatialPoints'', y = "'SpatialGrid" xx

x = ""SpatialPoints'', y = ''SpatialGridDataFrame' xx

x = ""SpatialPoints'', y = ''SpatialPixels' xx

x = ""SpatialPoints'', y = ''SpatialPixelsDataFrame' xx
x = ""SpatialPolygons'', y = ''SpatialGridDataFrame'' xx

Note

over can be seen as a left outer join in SQL; the match is a spatial intersection.

points on a polygon boundary and points corresponding to a polygon vertex are considered to be
inside the polygon.

These methods assume that pixels and grid cells are never overlapping; for objects of class SpatialPixels
this is not guaranteed.

over methods that involve Spatiallines objects, or pairs of SpatialPolygons require package
rgeos, and use glntersects.

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

See Also

vignette("over") for examples and figures; point.in.polygon, package glntersects

Examples

r1 = cbind(c(180114, 180553, 181127, 181477, 181294, 181007, 180409,
180162, 180114), c(332349, 332057, 332342, 333250, 333558, 333676,
332618, 332413, 332349))

r2 = cbind(c(180042, 180545, 180553, 180314, 179955, 179142, 179437,
179524, 179979, 180042), c(332373, 332026, 331426, 330889, 330683,
331133, 331623, 332152, 332357, 332373))

r3 = cbind(c(179110, 179907, 180433, 180712, 180752, 180329, 179875,
179668, 179572, 179269, 178879, 178600, 178544, 179046, 179110),
c(331086, 330620, 330494, 330265, 330075, 330233, 330336, 330004,
329783, 329665, 329720, 329933, 330478, 331062, 331086))

r4 = cbind(c(180304, 180403,179632,179420,180304),

c(332791, 333204, 333635, 333058, 332791))

sr1=Polygons(list(Polygon(r1)),"r1")
sr2=Polygons(list(Polygon(r2)),"r2")
sr3=Polygons(list(Polygon(r3)),"r3")
sr4=Polygons(list(Polygon(r4)),"r4")
sr=SpatialPolygons(list(sr1,sr2,sr3,sr4))
srdf=SpatialPolygonsDataFrame(sr, data.frame(cbind(1:4,5:2),
row.names=c("r1","r2","r3","r4")))

panel.spplot 49

data(meuse)
coordinates(meuse) = ~x+y

plot(meuse)

polygon(ril)

polygon(r2)

polygon(r3)

polygon(r4)

retrieve mean heavy metal concentrations per polygon:
over(sr, meuse[,1:4], fn = mean)

return the number of points in each polygon:
sapply(over(sr, geometry(meuse), returnList = TRUE), length)

data(meuse.grid)
coordinates(meuse.grid) = ~x+y
gridded(meuse.grid) = TRUE

over(sr, geometry(meuse))

over(sr, meuse)

over(sr, geometry(meuse), returnList = TRUE)
over(sr, meuse, returnList = TRUE)

over (meuse, sr)
over(meuse, srdf)

same thing, with grid:

over(sr, meuse.grid)

over(sr, meuse.grid, fn = mean)
over(sr, meuse.grid, returnList = TRUE)

over(meuse.grid, sr)

over(meuse.grid, srdf, fn = mean)
over(as(meuse.grid, "SpatialPoints”), sr)
over(as(meuse.grid, "SpatialPoints"), srdf)

panel.spplot panel and panel utility functions for spplot

Description

panel functions for spplot functions, and functions that can be useful within these panel functions

Usage

spplot.key(sp.layout, rows = 1, cols = 1)

SpatialPolygonsRescale(obj, offset, scale = 1, fill = "black”, col = "black”,
plot.grid = TRUE, ...)

sp.lines(obj, col =1, ...)

sp.points(obj, pch = 3, ...)

50 panel.spplot
sp.polygons(obj, col = 1, fill = "transparent”, ...)
sp.grid(obj, col = 1, alpha = 1,..., at = pretty(obj[[1]]), col.regions = col)
sp.text(loc, txt, ...)
sp.panel.layout(lst, p.number, ...)

bbexpand(x, fraction)

Arguments

sp.layout list; see spplot for definition

rows integer; panel row(s) for which the layout should be drawn

cols integer; panel column(s) for which the layout should be drawn

obj object of class SpatialPolygons-class for SpatialPolygonsRescale; of class
SpatialLines-class, Lines-class or Line-class for sp.lines of a class that has a
coordinates-methods for sp. points; of class SpatialPolygons-class for sp.polygons.
When obj is character, the actual object is retrieved by get (obj) before its class
is evaluated.

offset offset for shifting a Polygons object

scale scale for rescaling

fill fill color

col line color

plot.grid logical; plot through grid functions (TRUE), or through traditional graphics
functions (FALSE)

pch plotting character

at numeric; values at which colour breaks should occur

col.regions

colours to fill the grid cells, defaults to col

loc numeric vector of two elements
txt text to be plotted
alpha alpha (transparency) level
1st sp.layout argument, see spplot
p.number panel number; in a panel, panel.number() should be passed to this argument
X length two numeric vector, containing a range
fraction fraction to expand the range by
arguments passed to the underlying panel, lattice or grid functions
Note

The panel functions of spplot, panel.gridplot for grids, panel.pointsplot for points, or panel.polygonsplot
for lines or polygons can be called with arguments (x,y,...). Customizing spplot plots can be

done by extending the panel function, or by supplying an sp.layout argument; see the documenta-

tion for spplot. Inside these panel functions, sp.panel.layout is called to deal with plotting the

items in a sp. layout object.

SpatialPolygonsRescale scales and shifts an object of class SpatialPolygons-class; this is useful
e.g. for scale bars, or other layout items.

point.in.polygon 51

sp.lines, sp.points, sp.polygons and sp.text plot lines, points, polygons or text in a panel.
spplot.key draws the sp.layout object at given rows/cols.

sp.pagefn can be passed as a page argument, and will call function spplot.key for the last panel
drawn on a page.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

https://edzer.github.io/sp/ has a graph gallery with examples with R code.

See Also

spplot, spplot-methods

point.in.polygon do point(s) fall in a given polygon?

Description

verifies for one or more points whether they fall in a given polygon

Usage

point.in.polygon(point.x, point.y, pol.x, pol.y, mode.checked=FALSE)

Arguments
point.x numerical array of x-coordinates of points
point.y numerical array of y-coordinates of points
pol.x numerical array of x-coordinates of polygon
pol.y numerical array of y-coordinates of polygon

mode . checked default FALSE, used internally to save time when all the other argument are
known to be of storage mode double
Value
integer array; values are: 0: point is strictly exterior to pol; 1: point is strictly interior to pol; 2:
point lies on the relative interior of an edge of pol; 3: point is a vertex of pol.
References

Uses the C function InPoly(). InPoly is Copyright (c) 1998 by Joseph O’Rourke. It may be freely
redistributed in its entirety provided that this copyright notice is not removed.

https://edzer.github.io/sp/

52 Polygon-class

Examples

open polygon:
point.in.polygon(1:10,1:10,c(3,5,5,3),c(3,3,5,5))

closed polygon:
point.in.polygon(1:10,rep(4,10),c(3,5,5,3,3),c(3,3,5,5,3))

Polygon-class Class "Polygon”

Description

class for spatial polygon

Objects from the Class

Objects can be created by calls to the function Polygon

Slots

ringDir: Object of class "integer”; the ring direction of the ring (polygon) coordinates, holes
are expected to be anti-clockwise

labpt: Object of class "numeric”; an x, y coordinate pair forming the label point of the polygon

area: Object of class "numeric”; the planar area of the polygon, does not respect projection as
objects of this class have no projection defined

hole: Object of class "logical”; does the polygon seem to be a hole

coords: Object of class "matrix”; coordinates of the polygon; first point should equal the last
point

Extends

Class "Line", directly.

Methods

No methods defined with class "Polygon" in the signature.

Author(s)

Roger Bivand

See Also

Polygons-class, SpatialPolygons-class

polygons 53

polygons sets spatial coordinates to create spatial data, or retrieves spatial
coordinates

Description

sets spatial coordinates to create spatial data, or retrieves spatial coordinates

Usage

polygons(obj)
polygons(object) <- value

Arguments
obj object of class "SpatialPolygons" or "SpatialPolygonsDataFrame"
object object of class "data.frame"
value object of class "SpatialPolygons"

Value

polygons returns the SpatialPolygons of obj; polygons<- promotes a data.frame to a SpatialPoly-
gonsDataFrame object

Examples

grd <- GridTopology(c(1,1), c(1,1), c(10,10))

polys <- as.SpatialPolygons.GridTopology(grd)

centroids <- coordinates(polys)

x <- centroids[,1]

y <- centroids[,2]

z<- 1.4+ 0.1*x + 0.2%y + 0.002%x*X

df <- data.frame(x=x, y=y, z=z, row.names=row.names(polys))
polygons(df) <- polys

class(df)

summary (df)

Polygons-class Class "Polygons"

Description

Collection of objects of class "Polygon”

Objects from the Class

Objects can be created by calls to the function Polygons

54 polygons-methods

Slots

Polygons: Object of class "1ist"; list with objects of class Polygon-class
plotOrder: Object of class "integer"; order in which the Polygon objects should be plotted,
currently by order of decreasing size

labpt: Object of class "numeric”; pair of x, y coordinates giving a label point, the label point of
the largest polygon component

ID: Object of class "character”; unique identifier string

area: Object of class "numeric”; the gross total planar area of the Polygon list but not double-
counting holes (changed from 0.9-58 - islands are summed, holes are ignored rather than
subtracted); these values are used to make sure that polygons of a smaller area are plotted
after polygons of a larger area, does not respect projection as objects of this class have no
projection defined

Methods

No methods defined with class "Polygons" in the signature.

Note

By default, single polygons (where Polygons is a list of length one) are not expected to be holes, but
in multiple polygons, hole definitions for member polygons can be set. Polygon objects belonging
to an Polygons object should either not overlap one-other, or should be fully included (as lakes or
islands in lakes). They should not be self-intersecting. Checking of hole FALSE/TRUE status for
Polygons objects is included in the maptools package using functions in the rgeos package, function
checkPolygonsHoles().

Author(s)

Roger Bivand

polygons-methods Retrieve polygons from SpatialPolygonsDataFrame object

Description

Retrieve polygons from SpatialPolygonsDataFrame object

Methods for polygons

obj = ""SpatialPolygons'' object of, or deriving from, SpatialPolygons
obj = ""SpatialPolygonsDataFrame' object of, or deriving from, SpatialPolygonsDataFrame

Methods for ''polygons<-"

object = ""data.frame", value="'SpatialPolygons'' promote data.frame to object of class SpatialPolygonsDataFrame-
class, by specifying polygons

read.asciigrid 55

read.asciigrid read/write to/from (ESRI) asciigrid format

Description

read/write to/from ESRI asciigrid format

Usage

read.asciigrid(fname, as.image = FALSE, plot.image = FALSE, colname = fname,
proj4string = CRS(as.character(NA)))

write.asciigrid(x, fname, attr = 1, na.value = -9999, ...)
Arguments
fname file name
as.image logical; if FALSE, a list is returned, ready to be shown with the image command;
if FALSE an object of class SpatialGridDataFrame-class is returned
plot.image logical; if TRUE, an image of the map is plotted
colname alternative name for data column if not file name

proj4string A CRS object setting the projection arguments of the Spatial Grid returned
X object of class SpatialGridDataFrame

attr attribute column; if missing, the first column is taken; a name or a column num-
ber may be given

na.value numeric; value given to missing valued cells in the resulting map

arguments passed to write.table, which is used to write the numeric data

Value

read.asciigrid returns the grid map read; either as an object of class SpatialGridDataFrame-class
or, if as.image is TRUE, as list with components x, y and z.

Author(s)

Edzer Pebesma

See Also

as.image.SpatialGridDataFrame, image

Examples

X <- read.asciigrid(system.file("external/test.ag", package="sp")[1])
class(x)
image(x)

56

recenter-methods

recenter-methods Methods for Function recenter in Package ‘sp’

Description

Methods for function recenter in package sp to shift or re-center geographical coordinates for
a Pacific view. All longitudes < 0 are added to 360, to avoid for instance parts of Alaska being
represented on the far left and right of a plot because they have values straddling 180 degrees. In
general, using a projected coordinate reference system is to be preferred, but this method permits a
geographical coordinate reference system to be used. This idea was suggested by Greg Snow, and

corresponds to the two world representations in the maps package.

Methods

obj = ""SpatialPolygons'' recenter a SpatialPolygons object
obj = ""Polygons'' recenter a Polygons object

obj = ""Polygon'' recenter an Polygon object

obj = "SpatialLines" recenter a SpatialLines object

obj = ""Lines' recenter a Lines object

obj = "Line" recenter an Line object

Examples

crds <- matrix(c(179, -179, -179, 179, 50, 50, 52, 52), ncol=2)
SL <- Spatiallines(list(Lines(list(Line(crds)), "1")),
CRS("+proj=longlat +ellps=WGS84"))

bbox (SL)

SLr <- recenter(SL)

bbox (SLr)

rcrds <- rbind(crds, crds[1,])

SpP <- SpatialPolygons(list(Polygons(list(Polygon(rcrds)), ID="r1")),
proj4string=CRS("+proj=longlat +ellps=WGS84"))

bbox (SpP)

SpPr <- recenter(SpP)

bbox (SpPr)

opar <- par(mfrow=c(1,2))

plot(SpP)

plot(SpPr)

par(opar)

crds <- matrix(c(-1, 1, 1, -1, 50, 50, 52, 52), ncol=2)

SL <- SpatiallLines(list(Lines(list(Line(crds)), "1")),
CRS("+proj=longlat +ellps=WGS84"))

bbox (SL)

SLr <- recenter(SL)

bbox (SLr)

rcrds <- rbind(crds, crds[1,])

SpP <- SpatialPolygons(list(Polygons(list(Polygon(rcrds)), ID="r1")),

Rlogo 57

proj4string=CRS("+proj=longlat +ellps=WGS84"))
bbox (SpP)
SpPr <- recenter(SpP)
bbox (SpPr)
opar <- par(mfrow=c(1,2))
plot(SpP)
plot(SpPr)
par(opar)

Rlogo Rlogo jpeg image

Description

Rlogo jpeg image data as imported by getRasterData in the rgdal package

Usage

data(Rlogo)

Format

The format is: int [1:101, 1:77, 1:3] 255 255 255 255 255 255 255 255 255 255 ...

Examples

Not run:

library(rgdal)

logo <- system.file("pictures/Rlogo.jpg", package="rgdal”)[1]
X <- GDAL.open(logo)

gt = .Call('RGDAL_GetGeoTransform', x, PACKAGE="rgdal")

data <- getRasterData(x)

GDAL.close(x)

End(Not run)

data(Rlogo)

d = dim(Rlogo)

cellsize = abs(c(gt[2]1,gtl[6]))

cells.dim = c(d[1], d[2]) # c(d[2]1,d[1])

cellcentre.offset = c(x = gt[1] + 0.5 x cellsize[1], y = gt[4] - (d[2] - 0.5) * abs(cellsize[2]))
grid = GridTopology(cellcentre.offset, cellsize, cells.dim)

df = as.vector(Rlogol[,,1])

for (band in 2:d[3]) df = cbind(df, as.vector(Rlogo[,,band]))

df = as.data.frame(df)

names(df) = paste(”band”, 1:d[3], sep="")

Rlogo <- SpatialGridDataFrame(grid = grid, data = df)

summary (Rlogo)

spplot(Rlogo, zcol=1:3, names.attr=c("red”,"green”,"blue”),
col.regions=grey(0:100/100),

main="example of three-layer (RGB) raster image”, as.table=TRUE)

58 select.spatial

select.spatial select points spatially

Description

select a number of points by digitizing the area they fall in

Usage

select.spatial(data, digitize = TRUE, pch = "+", rownames = FALSE)

Arguments
data data object of class, or extending SpatialPoints; this object knows about its x
and y coordinate
digitize logical; if TRUE, points in a digitized polygon are selected; if FALSE, points
identified by mouse clicks are selected
pch plotting character used for points
rownames logical; if FALSE, row (coordinate) numbers are returned; if TRUE and data
contains a data.frame part, row.names for selected points in the data.frame are
returned.
Value
if rownames == FALSE, array with either indexes (row numbers) of points inside the digitized
polygon; if rownames == TRUE, character array with corresponding row names in the data.frame
part
See Also

point.in.polygon, locator, SpatialPoints-class, SpatialPointsDataFrame-class

Examples

data(meuse)

the following command requires user interaction: left mouse
selects points, right mouse ends digitizing

data(meuse)

coordinates(meuse) = c("x", "y")

select.spatial (meuse)

sp

59

sp A package providing classes and methods for spatial data: points,
lines, polygons and grids

Description

This package provides S4 classes for importing, manipulating and exporting spatial data in R, and
for methods including print/show, plot, subset, [, [[, \$, names, dim, summary, and a number of
methods specific to spatial data handling.

Introduction

Several spatial statistical packages have been around for a long while, but no organized set of classes
for spatial data has yet been devised. Many of the spatial packages make their own assumptions, or
use their own class definitions for spatial data, making it inconvenient to move from one package
to another. This package tries to provide a solid set of classes for many different types of spatial
data. The idea is that spatial statistical packages will either support these classes (i.e., directly read
and write them) or will provide conversion to them, so that we have a base class set with which
any package can exchange. This way, many-to-many conversions can be replace with one-to-many
conversions, provided either in this package or the spatial packages. Wherever possible conversion
(coercion) functions are automatic, or provided by sp.

External packages that depend on sp will provide importing and exporting from and to external GIS
formats, e.g. through GDAL, OGR or shapelib.

In addition, this package tries to provide convenient methods to print, summarize and plot such
spatial data.

Dimensions

In principal, geographical data are two-dimensional, on a flat surface (a map) or on a sphere (the
earth). This package provides space for dealing with higher dimensional data where possible; this
is e.g. very simple for points and grids, but hard to do for polygons. Plotting functions are devised
primarily for two-dimensional data, or two-dimensional projections of higher dimensional data.

Coordinate reference systems

Central to spatial data is that they have a coordinate reference system, which is coded in object
of CRS class. Central to operations on different spatial data sets is that their coordinate reference
system is compatible (i.e., identical).

This CRS can be a character string describing a reference system in a way understood by the PROJ.4
projection library, or a (character) missing value. An interface to the PROJ.4 library is available only
if the R package rgdal is present.

Class structure

All spatial classes derive from a basic class Spatial, which only provides a bounding box and a
CRS. This class has no useful instances, but useful derived classes.

60 sp-deprecated
SpatialPoints extends Spatial and has coordinates. The method coordinates extracts the numeric
matrix with coordinates from an object of class SpatialPoints, or from other (possibly derived)
classes that have points.

Objects of class SpatialGrid points on a regular grid. Either a full grid is stored or a partial grid
(i.e., only the non-missing valued cells); calling coordinates on them will give the coordinates for
the grid cells.

SpatialPoints, SpatialPixels and SpatialGrid can be of arbitrary dimension, although most of the
effort is in making them work for two dimensional data.

SpatialLines provides lines, and SpatialPolygons provides polygons, i.e., lines that end where they
start and do not intersect with itself. SpatialLiines and SpatialPolygons only have two-dimensional
data.

SpatialPointsDataFrame extends SpatialPoints with a data slot, having a data.frame with attribute
data. Similarly, SpatialPixelsDataFrame, SpatialLinesDataFrame, SpatialPolygonsDataFrame ex-
tend the primary spatial information with attribute data.

References
PROJ.4: https://github.com/0SGeo/PROJ
GDAL and OGR: https://gdal.org/.

Authors
sp is a collaborative effort of Edzer Pebesma, Roger Bivand, Barry Rowlingson and Virgilo G\’omez-
Rubio.

sp-deprecated Deprecated functions in sp

Description
Deprecated functions is sp: getSpP*, getPolygon*, getLines* getSL*

Note

For overlay the new implementation is found in the over method; this works slightly different and
more consistent.

https://github.com/OSGeo/PROJ
https://gdal.org/

Spatial-class 61

Spatial-class Class "Spatial”

Description

An abstract class from which useful spatial classes are derived

Usage

Spatial (bbox, proj4string = CRS(as.character(NA)))
S3 method for class 'Spatial’

subset(x, subset, select, drop = FALSE, ...)
Arguments
bbox a bounding box matrix

proj4string a CRS object

X object of class Spatial
subset see subset.data.frame
select see subset.data.frame
drop see subset.data.frame
passed through
Objects from the Class

are never to be generated; only derived classes can be meaningful

Slots
bbox

: Object of class "matrix”; 2-column matrix holding the minimum in first and maximum in

second column for the x-coordinate (first row), y-coordinate (second row) and optionally, for
points and grids only, further coordinates. The constructed Spatial object will be invalid if any

n on

bbox values are NA or infinite. The column names must be c("min”, "max")

proj4string: Object of class "CRS". The name of this slot was chosen to reflect the use of Proj.4

strings to represent coordinate reference systems (CRS). The slot name will continue to be
used, but as PROJ >= 6 and GDAL >= 3 are taken into use for reading files and for projection
and transformation, the Proj.4 string CRS representation is being supplemented by a WKT?2
(2019) representation. The reason for the modification is that important keys in the Proj.4
string representation are being deprecated in PROJ >= 6 and GDAL >= 3. Legacy "CRS"
objects hold only a valid Proj.4 string, which can be used for unprojecting or reprojecting
coordinates; it is initialised to NA. If the "CRS" object is instantiated using CRS() with rgdal
using PROJ >= 6 and GDAL >= 3, the object may also have a WKT2 (2019) string carried
as a comment. Non-NA strings may be checked for validity in the rgdal package, but attempts
to assign a string containing "longlat" to data extending beyond longitude [-180, 360] or lat-
titude [-90, 90] will be stopped or warned, use set_11_warn to warn rather than stop, and
set_11_TOL to change the default tolerance for the range exceedance tests.

62 Spatial-class

Methods

bbox signature(obj = "Spatial”): retrieves the bbox element
dimensions signature(obj = "Spatial”): retrieves the number of spatial dimensions spanned
gridded signature(obj = "Spatial”): logical, tells whether the data is on a regular spatial grid

plot signature(x = "Spatial”,y = "missing"): plot method for spatial objects; does nothing
but setting up a plotting region choosing a suitable aspect if not given(see below), colouring
the plot background using either a bg= argument or par("bg"), and possibly drawing axes.

summary signature(object = "Spatial”): summarize object
$ retrieves attribute column

$<- sets or replaces attribute column, or promote a geometry-only object to an object having an
attribute

rebuild_CRS rebuild a CRS object, usually used to add a WKT comment with PROJ >= 6 and
GDAL >=3

plot method arguments

The plot method for “Spatial” objects takes the following arguments:

x object of class Spatial

xlim default NULL,; the x limits (x1, x2) of the plot

ylim default NULL; the y limits of the plot

asp default NA; the y/x aspect ratio

axes default FALSE; a logical value indicating whether both axes should be drawn
bg default par(”"bg"); colour to be used for the background of the device region
xaxs The style of axis interval calculation to be used for the x-axis

yaxs The style of axis interval calculation to be used for the y-axis

lab A numerical vector of the form c(x,y,len) which modifies the default way that axes are
annotated

setParUsrBB default FALSE; set the par “usr” bounding box; see below
bgMap object of class ggmap, or returned by function RgoogleMaps: : GetMap

expandBB numeric; factor to expand the plotting region default: bbox (x) with on each side (1=be-
low, 2=left, 3=above and 4=right); defaults to c(0,0,0,0); setting x1im or ylim overrides
this.

... passed through

Warning

this class is not useful in itself, but all spatial classes in this package derive from it

SpatialGrid-class 63

Note

The default aspect for map plots is 1; if however data are not projected (coordinates are longlat), the
aspect is by default set to 1/cos(My * pi)/180) with My the y coordinate of the middle of the map
(the mean of ylim, which defaults to the y range of bounding box).

The argument setParUsrBB may be used to pass the logical value TRUE to functions within plot. Spatial.
When set to TRUE, par(“usr”’) will be overwritten with c(x1im,ylim), which defaults to the bound-

ing box of the spatial object. This is only needed in the particular context of graphic output to

a specified device with given width and height, to be matched to the spatial object, when using
par(“xaxs”) and par(“‘yaxs”) in addition to par(mar=c(0,0,0,0)).

Author(s)

r-spatial team; Edzer Pebesma, <edzer.pebesma@uni-muenster.de> Roger Bivand, Barry Rowl-
ingson, Virgilio G\’omez-Rubio

See Also

SpatialPoints-class, SpatialGrid-class,

SpatialPointsDataFrame-class, SpatialGridDataFrame-class

Examples

o <- new("Spatial”)

proj4string(o) <- CRS("+init=epsg:27700")

if (!is.null(comment(slot(o, "proj4string”)))) {
cat(strsplit(wkt(o), "\n")[[1]1], sep="\n")
cat(strsplit(wkt(slot(o, "proj4string”)), "\n")[[11], sep="\n")

3

SpatialGrid-class Class "SpatialGrid"

Description

class for defining a full, rectangular grid of arbitrary dimension

Objects from the Class

Objects are created by using e.g.
SpatialGrid(grid)
with grid of class GridTopology-class

Slots

grid object of class GridTopology-class, defining the grid topology (offset, cellsize, dim)
bbox: Object of class "matrix"; bounding box
proj4string: Object of class "CRS"; projection

64 SpatialGridDataFrame-class

Extends

Class "SpatialPoints” directly; Class "Spatial”, by class "SpatialPoints".

Methods

coordinates signature(x = "SpatialGrid"): calculates coordinates for each point on the grid;
coordinates are not stored in objects of class SpatialGrid

summary signature(object = "SpatialGrid"”): summarize object
plot signature(x = "SpatialGrid"): plots cell centers

"['" signature(x ="SpatialGrid"): select rows and columns

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

SpatialGridDataFrame-class, SpatialGrid

Examples

X = GridTopology(c(@,0), c(1,1), c(5,5))
class(x)

X

summary (x)

coordinates(x)

y = SpatialGrid(grid = x)

class(y)

y

SpatialGridDataFrame-class
Class "SpatialGridDataFrame"

Description

Class for spatial attributes that have spatial locations on a (full) regular grid.

Objects from the Class

Objects can be created by calls of the form as(x, "SpatialGridDataFrame"), where x is of class
SpatialPixelsDataFrame-class, or by importing through rgdal. Ordered full grids are stored instead
or unordered non-NA cells;

SpatialGridDataFrame-class 65

Slots

grid: see GridTopology-class; grid parameters
bbox: Object of class "matrix"”; bounding box
proj4string: Object of class "CRS"; projection

data: Object of class data.frame, containing attribute data

Extends

Class "SpatialGrid”, directly. Class "Spatial”, by class "SpatialGrid".

Methods

coordinates signature(x = "SpatialGridDataFrame"): retrieves (and calculates!) coordinates

[signature(x = "SpatialGridDataFrame"): selects rows, columns, and attributes; returns an
object of class SpatialGridDataFrame

as.matrix signature(x = "SpatialGridDataFrame"): coerce to matrix; increasing col index
corresponds to decreasing y coordinate, row index increases with coordinate index

as.array signature(x = "SpatialGridDataFrame"): coerce to array; increasing array index for
the second dimension corresponds to decreasing coordinates, all other coordinate dimensions
increase with array index

cbind signature(...): if arguments have identical topology, combine their attribute values

Plot method arguments

The plot methods for “SpatialPixelsDataFrame” or “SpatialGridDataFrame” objects take the fol-
lowing arguments:
x object of class SpatialPixelsDataFrame or SpatialGridDataFrame
. arguments passed on to image.SpatialGridDataFrame
attr integer or character, indicating the attribute variable to be plotted; default 1

col color ramp to be used; default bpy . colors(100) for continuous, or RColorBrewer: :brewer.pal(nlevels(x[[1]1),"
for factor variables

breaks for continuous attributes: values at which color breaks should take place

zlim for continuous attributes: numeric of length 2, specifying the range of attribute values to be
plotted; default to data range range(as.numeric(x[[attr]])[is.finite(x[[attrl])1)

axes logical: draw x and y axes? default FALSE
xaxs character, default "i", see par
yaxs character, default equal to xaxs, see par

at numeric or NULL, values at which axis tics and labels should be drawn; default NULL (use
pretty)
border color, to be used for drawing grid lines; default NA (don’t draw grid lines)

axis.pos integer, 1-4; default 4, see axis

add.axis logical: draw axis along scale? default TRUE

66 SpatialGridDataFrame-class

what what to draw: "image", "scale”, or "both"; default "both"

scale.size size for the scale bar; use Ilcm to specify in absolute size, or a numeric value such as 1/6
to specify relative size; default 1cm(2.8)

scale.shrink non-negative numeric indicating the amount to shrink the scale length, default O

scale.frac for categorical attributes: numeric between O and 1, indicating the scale width, default
0.3

scale.n for categorical attributes: integer, indicating how many scale categories should fill a com-
plete width; default 15

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

SpatialGrid-class, which does not contain the attribute data, and SpatialPixelsDataFrame-class
which holds possibly incomplete grids

Plotting gridded data with sp: https://r-spatial.org/r/2016/03/08/plotting-spatial-grids.
html

Examples

data(meuse.grid) # only the non-missing valued cells
coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame
gridded(meuse.grid) <- TRUE # promote to SpatialPixelsDataFrame

x = as(meuse.grid, "SpatialGridDataFrame") # creates the full grid
x[["idist"]] = 1 - x[["dist"]] # assigns new attribute

image(x["idist"]) # note the single [for attribute selection

toy example:
df = data.frame(z = c(1:6,NA,8,9),
xc = c(1,1,1,2,2,2,3,3,3),
yc = c(rep(c(@, 1.5, 3),3)))
coordinates(df) = ~xctyc
gridded(df) = TRUE
df = as(df, "SpatialGridDataFrame") # to full grid
image (df["z"])
draw labels to verify:
cc = coordinates(df)
z=df[["z"]]
zc=as.character(z)
zc[is.na(zc)J="NA"
text(ccl[,1],ccl,2],zc)

the following is weird, but illustrates the concept of row/col selection:
fullgrid(meuse.grid) = TRUE

image (meuse.grid)

image(meuse.grid[20:70, 10:70, "dist"], add = TRUE, col = bpy.colors())

as.matrix, as.array

https://r-spatial.org/r/2016/03/08/plotting-spatial-grids.html
https://r-spatial.org/r/2016/03/08/plotting-spatial-grids.html

SpatialLines 67

sgdim = c(3,4)

SG = SpatialGrid(GridTopology(rep(0,2), rep(10,2), sgdim))
SGDF = SpatialGridDataFrame(SG, data.frame(val = 1:12))
as.array(SGDF)

as.matrix(SGDF)

as(SGDF, "array")

SpatiallLines create objects of class SpatialLines or SpatialLinesDataFrame

Description

create objects of class SpatiallLines or SpatiallLinesDataFrame from lists of Lines objects and
data.frames; extract list od Lines from a SpatialLines object

Usage

Spatiallines(LinesList, proj4string = CRS(as.character(NA)))
SpatiallLinesDataFrame(sl, data, match.ID = TRUE)
as.Spatiallines.SLDF (SLDF)

getSpatialLinesMidPoints(SL)

LineLength(cc, longlat = FALSE, sum = TRUE)

LinesLength(Ls, longlat = FALSE)

SpatiallinesLengths(SL, longlat)

Arguments

LinesList list with objects of class Lines-class
proj4string Object of class "CRS"; holding a valid proj4 string
sl, SL object of class SpatialLines-class

data object of class data. frame; the number of rows in data should equal the num-
ber of Lines elements in sl

match.ID logical: (default TRUE): match SpatialLines member Lines ID slot values with
data.frame row names, and re-order the data frame rows if necessary; if charac-
ter: indicates the column in data with Lines IDs to match

SLDF SpatialLinesDataFrame object

Ls Object of class Lines

cc Object of class Line, or two-column matrix with points

longlat if FALSE, Euclidean distance, if TRUE Great Circle distance in kilometers

sum logical; if TRUE return scalar length of sum of segments in Line, if FALSE return

vector with segment lengths

68 SpatialLines-class

Value

Spatiallines returns object of class Spatiallines; SpatiallLinesDataFrame returns object of

class SpatialLinesDataFrame getSpatialLinesMidPoints returns an object of class SpatialPoints,each
point containing the (weighted) mean of the lines elements; weighted in the sense that mean is called

twice.

See Also

SpatialLines-class

SpatialLines-class a class for spatial lines

Description

a class that holds spatial lines

Objects from the Class

hold a list of Lines objects; each Lines object holds a list of Line (line) objects.

Slots

lines: Object of class "1ist"; list members are all of class Lines-class
bbox: Object of class "matrix"”; see Spatial-class

proj4string: Object of class "CRS"; see CRS-class

Extends

Class "Spatial”, directly.

Methods

[signature(obj = "SpatiallLines"”): select subset of (sets of) lines; NAs are not permitted in
the row index

coordinates value is a list of lists with matrices

plot signature(x = "SpatiallLines”,y = "missing"): plot lines in SpatialLines object
lines signature(x = "SpatiallLines"”): add lines in SpatialLines object to a plot

rbind signature(object = "SpatiallLines"): rbind-like method, see notes

summary signature(object = "SpatiallLines"”): summarize object

SpatialLines-class 69

plot method arguments
The plot method for “SpatialLines” objects takes the following arguments:

x object of class SpatialLines

xlim default NULL,; the x limits (x1, x2) of the plot
ylim default NULL,; the y limits of the plot

col default 1; default plotting color

Iwd default 1; line width

Ity default 1; line type

add default FALSE; add to existing plot

axes default FALSE; a logical value indicating whether both axes should be drawn
lend default O; line end style

ljoin default O; line join style

Imitre default 10; line mitre limit

... passed through

setParUsrBB set the par “usr” bounding box, see note in Spatial-class

Note

rbind calls the function SpatiallLines, where it is checked that all IDs are unique. If rbind-
ing Spatiallines without unique IDs, it is possible to set the argument makeUniqueIDs = TRUE,
although it is preferred to change these explicitly with spChFIDs.

Author(s)

Roger Bivand, Edzer Pebesma

See Also

Line-class, Lines-class

Examples

from the sp vignette:

11 = cbind(c(1,2,3),c(3,2,2))
rownames(11) = letters[1:3]

11a = cbind(11[,1]+.05,11[,2]+.05)
rownames(l1a) = letters[1:3]

12 = cbind(c(1,2,3),c(1,1.5,1))
rownames(12) = letters[1:3]

S11 = Line(11)

Slla = Line(11a)

S12 = Line(12)

S1 = Lines(list(S11, Sl1a), ID="a")
S2 = Lines(list(S12), ID="b")

S1 = SpatiallLines(list(S1,S2))

70 SpatialLinesDataFrame-class

summary (S1)
plot(S1l, col = c("red”, "blue"))

SpatiallLinesDataFrame-class
a class for spatial lines with attributes

Description

this class holds data consisting of (sets of lines), where each set of lines relates to an attribute row
in a data.frame

Objects from the Class

can be created by the function SpatialLinesDataFrame

Slots

data: Object of class data.frame containing the attribute table
lines: Object of class "1ist"; see SpatialLines-class
bbox: Object of class "matrix"; see Spatial-class

proj4string: Object of class "CRS"; see CRS-class

Extends

Class "SpatiallLines”, directly. Class "Spatial”, by class "SpatiallLines".

Methods

Methods defined with class "SpatialLinesDataFrame" in the signature:
[signature(x = "SpatialLinesDataFrame"): subset rows or columns; in case of row subsetting,
the line sets are also subsetted; NAs are not permitted in the row index

coordinates signature(obj = "SpatiallLinesDataFrame"): retrieves a list with lists of coordi-
nate matrices

show signature(object = "SpatiallLinesDataFrame"): print method
plot signature(x = "SpatialLinesDataFrame"): plot points
lines signature(object = "SpatiallLinesDataFrame"): add lines to plot

rbind signature(object = "SpatiallLinesDataFrame"): rbind-like method

Note

rbind for SpatiallLinesDataFrame is only possible for objects with unique IDs. If you want to
rbind objects with duplicated IDs, seespChFIDs.

SpatialMultiPoints

Author(s)

71

Roger Bivand; Edzer Pebesma

See Also

SpatialLines-class

SpatialMultiPoints create objects of class SpatialMultiPoints or SpatialMultiPoints-

DataFrame

Description

create objects of class SpatialMultiPoints-class or SpatialMultiPointsDataFrame-class from coordi-
nates, and from coordinates and data. frames

Usage

SpatialMultiPoints(coords, proj4string=CRS(as.character(NA)), bbox = NULL)
SpatialMultiPointsDataFrame(coords, data,
proj4string = CRS(as.character(NA)), match.ID, bbox = NULL)

Arguments

coords

proj4string

bbox

data

match.ID

list with in each element a numeric matrix or data.frame with coordinates (each
row representing a point); in case of SpatialMultiPointsDataFrame an object of
class SpatialMultiPoints-class is also allowed

projection string of class CRS-class

bounding box matrix, usually NULL and constructed from the data, but may be
passed through for coercion purposes if clearly needed

object of class data. frame; the number of rows in data should equal the num-
ber of points in the coords object

logical or character; if missing, and coords and data both have row names,
and their order does not correspond, matching is done by these row names and
a warning is issued; this warning can be suppressed by setting match.ID to
TRUE. If TRUE AND coords has non-automatic rownames (i.e., coerced to a
matrix by as.matrix, dimnames(coords)[[1]] is not NULL), AND data has
row.names (i.e. is a data.frame), then the SpatialMultiPointsDataFrame ob-
ject is formed by matching the row names of both components, leaving the order
of the coordinates in tact. Checks are done to see whether both row names are
sufficiently unique, and all data are matched. If FALSE, coordinates and data are
simply "glued" together, ignoring row names. If character: indicates the column
in data with coordinates IDs to use for matching records. See examples below.

72 SpatialMultiPoints-class

Value

SpatialMultiPoints returns an object of class SpatialMultiPoints; SpatialMultiPointsDataFrame
returns an object of class SpatialMultiPointsDataFrame;

See Also

coordinates, SpatialMultiPoints-class, SpatialMultiPointsDataFrame-class

Examples

cll = cbind(rnorm(3, 10), rnorm(3, 10))
cl2 = cbind(rnorm(5, 10), rnorm(5, @))
cl3 = cbind(rnorm(7, @), rnorm(7, 10))

mp = SpatialMultiPoints(list(cl1, cl2, cl3))
mpx = rbind(mp, mp) # rbind method

plot(mp, col = 2, cex =1, pch = 1:3)

mp

mp[1:2]

print(mp, asWKT=TRUE, digits=3)

mpdf = SpatialMultiPointsDataFrame(list(cll, cl2, cl3), data.frame(a = 1:3))
mpdf
mpdfx = rbind(mpdf, mpdf) # rbind method

plot(mpdf, col = mpdf$a, cex = 1:3)
as(mpdf, "data.frame")
mpdf[1:2,]

SpatialMultiPoints-class
Class "SpatialMultiPoints"

Description

Class for (irregularly spaced) MultiPoints

Objects from the Class

Objects can be created by calls of the form SpatialPoints(x).

Slots

coords: Object of class "list”, containing the coordinates of point sets (each list element is a
matrix)

bbox: Object of class "matrix”, with bounding box

proj4string: Object of class "CRS", projection string

SpatialMultiPoints-class 73

Extends

Class "Spatial”, directly.

Methods

[signature(x = "SpatialMultiPoints"): subsets point sets
coerce signature(from= "SpatialPoints",to = "data.frame"): coerce to data.frame

coordinates signature(obj = "SpatialMultiPoints"): retrieves all the coordinates, as one sin-
gle matrix

plot signature(x = "SpatialPoints”,y = "missing"): plot points
summary signature(object = "SpatialPoints"): summarize object
points signature(x = "SpatialPoints"): add point symbols to plot
show signature(object = "SpatialPoints"): prints coordinates

rbind signature(object = "SpatialPoints"): rbind-like method

plot method arguments

The plot method for “SpatialPoints” objects takes the following arguments:

x object of class SpatialPoints

pch default 3; either an integer specifying a symbol or a single character to be used as the default
in plotting points

axes default FALSE; a logical value indicating whether both axes should be drawn

add default FALSE; add to existing plot

xlim default NULL,; the x limits (x1, x2) of the plot

ylim default NULL,; the y limits of the plot

... passed through

setParUsrBB default FALSE; set the par “usr” bounding box, see note in Spatial-class

cex default 1; numerical value giving the amount by which plotting text and symbols should be
magnified relative to the default

col default 1; default plotting color
Iwd default 1; line width

bg default 1; colour to be used for the background of the device region

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

See Also

SpatialMultiPointsDataFrame-class SpatialPoints-class

74 SpatialMultiPointsDataFrame-class

Examples

cl1 = cbind(rnorm(3, 10), rnorm(3, 10))
cl2 = cbind(rnorm(5, 10), rnorm(5, @))
cl3 = cbind(rnorm(7, @), rnorm(7, 10))

mp = SpatialMultiPoints(list(cll, cl2, cl3))
plot(mp, col = 2, cex =1, pch = 1:3)

mp

mp[1:2]

print(mp, asWKT=TRUE, digits=3)

SpatialMultiPointsDataFrame-class
Class "SpatialMultiPointsDataFrame"

Description

Class for spatial attributes that correspond to point sets

Usage

S4 method for signature 'SpatialMultiPointsDataFrame'
x[i, j, ..., drop = TRUE]

S4 method for signature 'SpatialMultiPointsDataFrame,data.frame’
coerce(from, to, strict=TRUE)

S4 method for signature 'SpatialMultiPointsDataFrame'
coordinates(obj)

S4 method for signature 'SpatialMultiPointsDataFrame'
show(object)

S4 method for signature 'SpatialMultiPointsDataFrame'
points(x)

Arguments

x, from,obj,object
SpatialMultiPointsDataFrame object

to class to which to coerce
strict see as

i row indices

j column indices

drop see Extract

indices passed through

SpatialPixels 75

Slots

data: Object of class data.frame containing the attribute data (may or may not contain the coordi-
nates in its columns)

coords: Object of class "1ist"; the list with coordinates matrices; points are rows in the matrix,
the list length equals the number of rows in the data slot

bbox: Object of class "matrix"”; bounding box

proj4string: Object of class "CRS"; projection string

Extends

Class "SpatialMultiPoints”, directly. Class "Spatial”, by class "SpatialMultiPoints"”.

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

See Also

coordinates, SpatialMultiPoints-class

Examples

create three sets of points:

cl1 = cbind(rnorm(3, 10), rnorm(3, 10))
cl2 = cbind(rnorm(5, 10), rnorm(5, @))
cl3 = cbind(rnorm(7, @), rnorm(7, 10))

mpdf = SpatialMultiPointsDataFrame(list(cll, cl2, cl3), data.frame(a = 1:3))
mpdf

plot(mpdf, col = mpdf$a, cex = 1:3)
as(mpdf, "data.frame")
mpdf[1:2,]

SpatialPixels define spatial grid

Description

defines spatial grid by offset, cell size and dimensions

76 SpatialPixels

Usage

GridTopology(cellcentre.offset, cellsize, cells.dim)
SpatialPixels(points, tolerance = sqrt(.Machine$double.eps),
proj4string = CRS(as.character(NA)), round = NULL, grid = NULL)
SpatialGrid(grid, proj4string = CRS(as.character(NA)))
coordinatevalues(obj)

points2grid(points, tolerance = sqrt(.Machine$double.eps), round=NULL)
getGridIndex(cc, grid, all.inside = TRUE)

getGridTopology(obj)

areaSpatialGrid(obj)

Arguments

cellcentre.offset
numeric; vector with the smallest centroid coordinates for each dimension; co-
ordinates refer to the cell centre

cellsize numeric; vector with the cell size in each dimension

cells.dim integer; vector with number of cells in each dimension

points coordinates, object of class SpatialPoints-class

grid grid topology; object of class GridTopology-class; for calls to SpatialPixels,
a value of NULL implies that this will be derived from the point coordinates

tolerance precision, used to which extent points are exactly on a grid

round default NULL, otherwise a value passed to as the digits argument to round for

setting cell size

proj4string object of class CRS-class

obj object of class or deriving from SpatialGrid-class
cc numeric matrix with coordinates
all.inside logical; if TRUE and cc points fall outside the grid area, an error message is

generated; if FALSE, NA values are generated for such points

Value
GridTopology returns a value of class GridTopology-class; SpatialGrid returns an object of class
SpatialGrid-class

coordinatevalues returns a list with the unique x-coordinates, the unique y-coordinate, etc. in-
stead of the coordinates of all grid cells

SpatialGrid returns an object of class SpatialGrid-class.
points2grid returns the GridTopology-class from a set of points.

getGridIndex finds the index of a set of point coordinates in a given grid topology, and depending
on all.inside setting, generates NA or an error message if points are outside the grid domain.

getGridTopology returns the slot of class GridTopology-class from obj.

areaSpatialGrid returns the spatial area of (the non-missing valued cells of) the grid. For objects of
class SpatialGridDataFrame-class the area refers to cells where any (one or more) of the attribute
columns are non-missing valued.

SpatialPixels 77

Note

SpatialGrid stores grid topology and may or may not store the coordinates of the actual points,
which may form a subset of the full grid. To find out or change this, see fullgrid.

points2grid tries to figure out the grid topology from points. It succeeds only if points on a grid
line have constant y column, and points on a grid column have constant x coordinate, etc. In other
cases, use signif on the raw coordinate matrices to make sure this is the case.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

SpatialGrid-class, SpatialGridDataFrame-class,

Examples

X = GridTopology(c(@,0), c(1,1), c(5,4))
class(x)
X
summary (x)
coordinates(x)
coordinates(GridTopology(c(0,0), c(1,1), c(5,4)))
coordinatevalues(x)
data(meuse.grid)
coordinates(meuse.grid) <- c("x", "y")
points2grid(meuse.grid)
data(meuse.grid)
set.seed(1)
meuse.grid$x <- meuse.grid$x + rnorm(length(meuse.grid$x), @, 0.002)
meuse.grid$y <- meuse.grid$y + rnorm(length(meuse.grid$y), 0, 0.002)
coordinates(meuse.grid) <- c("x", "y")
#EJP
points2grid(meuse.grid, tolerance=0.76, round=1)
data(meuse.grid)
<- which(meuse.grid$x == 180140)
<- which(meuse.grid$x == 180180)
<- which(meuse.grid$x == 179260)
which(meuse.grid$y == 332460)
<- which(meuse.grid$y == 332420)
<- which(meuse.grid$y == 330740)
meuse.grid <- meuse.grid[-c(a, b, c, d, e, f),]
coordinates(meuse.grid) <- c(”"x", "y")
points2grid(meuse.grid)
data(meuse.grid)
set.seed(1)
meuse.grid$x <- meuse.grid$x + rnorm(length(meuse.grid$x), @, 0.002)
meuse.grid$y <- meuse.grid$y + rnorm(length(meuse.grid$y), @, 0.002)
meuse.grid <- meuse.grid[-c(a, b, ¢, d, e, f),]
coordinates(meuse.grid) <- c("x", "y")
EJP

- ® QO O T O
N
|

78 SpatialPixels-class

points2grid(meuse.grid, tolerance=0.69, round=1)

SpatialPixels-class Class "SpatialPixels"

Description

class for defining a pixels, forming a possibly incomplete rectangular grid of arbitrary dimension

Objects from the Class

Objects are created by using e.g.
SpatialPixels(points)

with points of class SpatialPoints-class

Slots

grid object of class GridTopology-class, defining the grid topology (offset, cellsize, dim)
grid.index integer; index of points in full grid

coords coordinates of points, or bbox of grid

bbox: Object of class "matrix”; bounding box

proj4string: Object of class "CRS"; projection

Extends

Class "SpatialPoints” directly; Class "Spatial”, by class "SpatialPoints".

Methods

coordinates signature(x = "SpatialPixels"): calculates coordinates for each point on the grid;
coordinates are not stored in objects of class SpatialGrid

summary signature(object = "SpatialPixels"): summarize object

plot signature(x = "SpatialPixels"): plots cell centers

"[" signature(x = "SpatialPixels"): select pixel cells; the argument drop=FALSE (default)
does not recalculate grid topology for the selection, if drop=TRUE the grid topology is recom-
puted, and might change.

rbind signature(x = "SpatialPixels"): rbind-like method

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

See Also

SpatialPixelsDataFrame-class, SpatialGrid-class

SpatialPixelsDataFrame 79

Examples

data(meuse.grid)

pts = meuse.grid[c("x", "y")]

y = SpatialPixels(SpatialPoints(pts))
class(y)

y

summary (y)

plot(y) # plots grid

plot(y, grid = FALSE) # plots points

SpatialPixelsDataFrame
define spatial grid with attribute data

Description

defines spatial grid by offset, cell size and dimensions

Usage

SpatialPixelsDataFrame(points, data, tolerance = sqrt(.Machine$double.eps),
proj4string = CRS(as.character(NA)), round = NULL, grid = NULL)
SpatialGridDataFrame(grid, data, proj4string = CRS(as.character(NA)))

Arguments
points coordinates, either as numeric matrix or as object of class SpatialPoints-class
grid grid topology; object of class GridTopology-class; for calls to SpatialPixelsDataFrame
a value of NULL implies that this will be derived from the point coordinates
data data.frame; contains the attribute (actual grid) data
tolerance precision up to which extent points should be exactly on a grid
round default NULL, otherwise a value passed to as the digits argument to round for
setting cell size
proj4string object of class CRS-class in the first form only used when points does not
inherit from Spatial-class
Value

SpatialPixelsDataFrame returns an object of class SpatialPixelsDataFrame-class; SpatialGridDataFrame
returns an object of class SpatialGridDataFrame-class.

Note

SpatialPixels stores grid topology and coordinates of the actual points, which may be in the form of
a subset (set of pixels) of a full grid. To find out or change this, see fullgrid and SpatialGrid-class.

80 SpatialPixelsDataFrame-class

Author(s)

Edzer Pebesma

See Also

gridded, gridded<-, SpatialGrid, SpatialGrid-class

Examples

data(meuse.grid)

m = SpatialPixelsDataFrame(points = meuse.grid[c("x", "y")1, data = meuse.grid)
class(m)

summary (m)

SpatialPixelsDataFrame-class
Class "SpatialPixelsDataFrame"

Description

Class for spatial attributes that have spatial locations on a regular grid.

Objects from the Class

Objects can be created by calls of the form as(x, "SpatialPixelsDataFrame"), where x is of
class SpatialPointsDataFrame-class, or by importing through rgdal. Ordered full grids are stored
instead or unordered non-NA cells;

Slots

bbox: Object of class "matrix”; bounding box
proj4string: Object of class "CRS"; projection
coords: see SpatialPoints; points slot
coords.nrs see SpatialPointsDataFrame

grid: see GridTopology-class; grid parameters

grid.index: integer; index of points in the list to points in the full (ordered) grid. x cycles fastest;
all coordinates increase from low to hight except y, which decreases from high to low

data: Object of class data.frame, containing the attribute data

Extends

Class "SpatialPixels", directly. Class "Spatial”, by class "SpatialPixels".

SpatialPixelsDataFrame-class 81

Methods

coordinates signature(x = "SpatialPixelsDataFrame"): retrieves coordinates

[signature(x = "SpatialPixelsDataFrame"): selects row(s) and/or attribute(s), and returns an
object of class SpatialPixelsDataFrame; rows refer here to the pixel numbers, not grid lines.
For selecting a square block in a grid, coerce to a SpatialGridDataFrame-class first, and use [
on that object

as.matrix signature(x = "SpatialPixelsDataFrame"): coerce to matrix
rbind signature(x = "SpatialPixelsDataFrame"): rbind-like method

plot signature(x = "SpatialPixelsDataFrame”,y = "missing"”): see SpatialGridDataFrame-
class for details

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

See Also

SpatialPixels-class, which does not contain the attribute data

Examples

data(meuse.grid) # only the non-missing valued cells
coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame
gridded(meuse.grid) <- TRUE # promote to SpatialPixelsDataFrame
meuse.grid[["idist"]] = 1 - meuse.grid[["dist"]] # assigns new attribute
image(meuse.grid["idist"]) # note the single [

toy example:

df = data.frame(z = c(1:6,NA,8,9),
xc = c(1,1,1,2,2,2,3,3,3),
yc = c(rep(c(@, 1.5, 3),3)))

coordinates(df) = ~xctyc

gridded(df) = TRUE

image(df["z"])

draw labels to verify:

cc = coordinates(df)

z=df[["z"]]

zc=as.character(z)

zc[is.na(zc)J="NA"

text(cc[,1],cc[,2],zc)

82

SpatialPoints

SpatialPoints

create objects of class SpatialPoints or SpatialPointsDataFrame

Description

create objects of class SpatialPoints-class or SpatialPointsDataFrame-class from coordinates, and
from coordinates and data. frames

Usage

SpatialPoints(coords, proj4string=CRS(as.character(NA)), bbox = NULL)
SpatialPointsDataFrame(coords, data, coords.nrs = numeric(@),
proj4string = CRS(as.character(NA)), match.ID, bbox = NULL)

Arguments

coords

proj4string
bbox

data

coords.nrs

match.ID

Value

numeric matrix or data.frame with coordinates (each row is a point); in case of
SpatialPointsDataFrame an object of class SpatialPoints-class is also allowed

projection string of class CRS-class

bounding box matrix, usually NULL and constructed from the data, but may be
passed through for coercion purposes if clearly needed

object of class data. frame; the number of rows in data should equal the num-
ber of points in the coords object

numeric; if present, records the column positions where in data the coordinates
were taken from (used by coordinates<-)

logical or character; if missing, and coords and data both have row names,
and their order does not correspond, matching is done by these row names and
a warning is issued; this warning can be suppressed by setting match.ID to
TRUE. If TRUE AND coords has non-automatic rownames (i.e., coerced to a
matrix by as.matrix, dimnames(coords)[[1]] is not NULL), AND data has
row.names (i.e. is a data.frame), then the SpatialPointsDataFrame object is
formed by matching the row names of both components, leaving the order of
the coordinates in tact. Checks are done to see whether both row names are
sufficiently unique, and all data are matched. If FALSE, coordinates and data
are simply "glued" together, ignoring row names. If character: indicates the
column in data with coordinates IDs to use for matching records. See examples
below.

SpatialPoints returns an object of class SpatialPoints; SpatialPointsDataFrame returns an
object of class SpatialPointsDataFrame;

See Also

coordinates, SpatialPoints-class, SpatialPointsDataFrame-class

SpatialPoints-class 83

Examples

set.seed(1331)

pts = cbind(1:5, 1:5)
dimnames(pts)[[1]1] = letters[1:5]
df = data.frame(a = 1:5)
row.names(df) = letters[5:1]

library(sp)

options(warn=1) # show warnings where they occur
SpatialPointsDataFrame(pts, df) # warn
SpatialPointsDataFrame(pts, df, match.ID = TRUE) # don't warn
SpatialPointsDataFrame(pts, df, match.ID = FALSE) # don't warn
df$m = letters[5:1]

SpatialPointsDataFrame(pts, df, match.ID = "m") # don't warn

dimnames(pts)[[1]1] = letters[5:1]
SpatialPointsDataFrame(pts, df) # don't warn: ID matching doesn't reorder

SpatialPoints-class Class "SpatialPoints"

Description

Class for (irregularly spaced) points

Objects from the Class

Objects can be created by calls of the form SpatialPoints(x).

Slots
coords: Object of class "matrix”, containing the coordinates (each row is a point)
bbox: Object of class "matrix”, with bounding box

proj4string: Object of class "CRS", projection string

Extends

Class "Spatial”, directly.

Methods

[signature(x = "SpatialPoints"): subsets the points; only rows (points) can be subsetted
coerce signature(from= "SpatialPoints”,to= "data.frame"): retrieves the data part

coerce signature(from= "SpatialPoints”,to="SpatialPixels"): equivalent to assigning
gridded TRUE for a copy of the object

coerce signature(from="SpatialPointsDataFrame"”,to = "SpatialPixelsDataFrame"): equiv-
alent to assigning gridded TRUE for a copy of the object

84

SpatialPoints-class

coerce signature(from= "data.frame"”,to = "SpatialPoints"): sets coordinates, which may
be in a data frame

coerce signature(from="matrix",to = "SpatialPoints"): set coordinates, which may be in
a matrix

coordinates signature(obj = "SpatialPoints"): retrieves the coordinates, as matrix
plot signature(x = "SpatialPoints”,y = "missing"): plot points

summary signature(object = "SpatialPoints"): summarize object

points signature(x = "SpatialPoints"): add point symbols to plot

show signature(object = "SpatialPoints"): prints coordinates

rbind signature(object = "SpatialPoints"): rbind-like method

plot method arguments

The plot method for “SpatialPoints” objects takes the following arguments:

x object of class SpatialPoints

pch default 3; either an integer specifying a symbol or a single character to be used as the default
in plotting points

axes default FALSE; a logical value indicating whether both axes should be drawn

add default FALSE; add to existing plot

xlim default NULL,; the x limits (x1, x2) of the plot

ylim default NULL,; the y limits of the plot

... passed through

setParUsrBB default FALSE; set the par “usr” bounding box, see note in Spatial-class

cex default 1; numerical value giving the amount by which plotting text and symbols should be
magnified relative to the default

col default 1; default plotting color
Iwd default 1; line width
bg default 1; colour to be used for the background of the device region

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

SpatialPointsDataFrame-class

Examples

=c¢(1,2,3,4,5)

= ¢(3,2,5,1,4)

<- SpatialPoints(cbind(x,y))

<- SpatialPoints(list(x,y))

<- SpatialPoints(data.frame(x,y))

" unu unu on< X

plot(S)

SpatialPointsDataFrame-class 85

SpatialPointsDataFrame-class
Class "SpatialPointsDataFrame"

Description

Class for spatial attributes that have spatial point locations

Usage

S4 method for signature 'SpatialPointsDataFrame'
x[i, j, ..., drop = TRUE]

S4 method for signature 'SpatialPointsDataFrame,SpatialPoints'
coerce(from, to, strict=TRUE)

S4 method for signature 'SpatialPointsDataFrame,data.frame’
coerce(from, to, strict=TRUE)

S4 method for signature 'SpatialPointsDataFrame’
coordinates(obj)

S4 method for signature 'SpatialPointsDataFrame’
show(object)

S4 method for signature 'SpatialPointsDataFrame’
points(x)

S3 method for class 'SpatialPointsDataFrame’
rbind(...)

Arguments

x,from,obj,object
SpatialPointsDataFrame object

to class to which to coerce
strict see as

i row indices

j column indices

drop see Extract

indices passed through

Objects from the Class

Objects can be created by calls of the form coordinates(x) =c("x","y") . or of the form
coordinates(x) = xy; see coordinates.

86

Slots

SpatialPointsDataFrame-class

data: Object of class data.frame containing the attribute data (may or may not contain the coordi-
nates in its columns)

coords: Object of class "matrix"”; the coordinates matrix (points are rows in the matrix)

coords.nrs Object of class logical; if TRUE, when the object was created the coordinates were
retrieved from the data.frame, and hence stripped from it; after coercion to data.frame, e.g. by
as.data.frame(x), coordinates will again be added (as first few columns) to the data.frame

bbox: Object of class '

'matrix”; bounding box

proj4string: Object of class "CRS"; projection string

Extends

Class "SpatialPoints”, directly. Class "Spatial”, by class "SpatialPoints"”.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

See Also

coordinates, SpatialPoints-class

Examples
data(meuse)
xy = meuse[c("x", "y")] # retrieve coordinates as data.frame
class(meuse)
data(meuse) # reload data.frame
coordinates(meuse) = c("x", "y") # specify column names
class(meuse)
data(meuse) # reload data.frame
coordinates(meuse) = c(1, 2) # specify column names
class(meuse)
data(meuse) # reload data.frame
coordinates(meuse) = ~x+y # formula
class(meuse)
data(meuse) # reload data.frame
coordinates(meuse) = xy # as data frame
class(meuse)
data(meuse) # reload data.frame
coordinates(meuse) = as.matrix(xy) # as matrix

meuse$log.zn = log(meuse$zinc)

class(meuse)
dim(meuse)

SpatialPolygons

87

SpatialPolygons

create objects of class SpatialPolygons or SpatialPolygonsDataFrame

Description

create objects of class SpatialPolygons or SpatialPolygonsDataFrame from lists of Polygons
objects and data. frames

Usage

Polygon(coords, hole=as.logical(NA))

Polygons(srl, ID)

SpatialPolygons(Srl, pO, proj4string=CRS(as.character(NA)))
SpatialPolygonsDataFrame(Sr, data, match.ID = TRUE)
getSpatialPolygonsLabelPoints(SP)

Arguments

coords

hole

proj4string
srl

1D

Srl

pO

Sr

data

match.ID

SP

2-column numeric matrix with coordinates; first point (row) should equal last
coordinates (row); if the hole argument is not given, the status of the polygon as
a hole or an island will be taken from the ring direction, with clockwise meaning
island, and counter-clockwise meaning hole

logical value for setting polygon as hole or not; if the hole argument is not
given, the status of the polygon as a hole or an island will be taken from the ring
direction, with clockwise meaning island, and counter-clockwise meaning hole

projection string of class CRS-class

list with Polygon-class objects

character vector of length one with identifier

list with objects of class Polygons-class

integer vector; plotting order; if missing in reverse order of Polygons area
object of class SpatialPolygons-class

object of class data. frame; the number of rows in data should equal the num-
ber of Polygons-class objects in Sr

logical: (default TRUE): match SpatialPolygons member Polygons ID slot val-
ues with data frame row names, and re-order the data frame rows if necessary.
If character: indicates the column in data with Polygons IDs to match

object of class SpatialPolygons-class

88 SpatialPolygons-class

Details

In Polygon, if the hole argument is not given, the status of the polygon as a hole or an island will be
taken from the ring direction, with clockwise meaning island, and counter-clockwise meaning hole.
In Polygons, if all of the member Polygon objects are holes, the largest by area will be converted
to island status. Until 2010-04-17, version 0.9-61, the area of this converted object was erroneously
left at its hole value of zero. Thanks to Patrick Giraudoux for spotting the bug.

The class definitions used for polygons in sp do not accord with those of the simple features specifi-
cation of the Open Geospatial Consortium. The rgeos package, an interface to Geometry Engine —
Open Source (GEOS), uses this specification, in which each hole (interior ring) must be associated
with its containing exterior ring. In order to avoid introducing incompatible changes into the class
definition of Polygons objects, a comment has been added as a single character string to each such
object. Here we can trust the data source to assign the hole status correctly, and use the simple
function createSPComment to add such comments to each Polygons member of the polygons slot
of this SpatialPolygons object. Exterior rings are coded zero, while interior rings are coded with the
1-based index of the exterior ring to which they belong. SpatialPolygons objects created by reading
using readOGR from rgdal have the comments set on input, as OGR also uses SFS.

Refer to Bivand et al. (2013), pages 47-48 and 132-133 for a further discussion.

Value

Polygon returns an object of class Polygon; Polygons returns an object of class Polygons; SpatialPolygons
returns object of class SpatialPolygons; SpatialPolygonsDataFrame returns object of class
SpatialPolygonsDataFrame getSpatialPolygonsLabelPoints returns an object of class SpatialPoints
with label points.

References
Roger Bivand, Edzer Pebesma and Virgilio Gomez-Rubio, 2013. Applied spatial data analysis with
R, Second edition. Springer, NY. https://asdar-book.org/

See Also

SpatialPolygons-class, SpatialPolygonsDataFrame-class

SpatialPolygons-class Class "SpatialPolygons"

Description

class to hold polygon topology (without attributes)

Objects from the Class

Objects can be created by calls to the function SpatialPolygons

https://asdar-book.org/

SpatialPolygons-class 89

Slots

polygons: Object of class "1ist"; list elements are all of class Polygons-class

plotOrder: Object of class "integer"”; integer array giving the order in which objects should be
plotted

bbox: Object of class "matrix"; see Spatial-class

proj4string: Object of class "CRS"; see CRS-class

Extends

Class "Spatial”, directly.

Methods
Methods defined with class "SpatialPolygons" in the signature:
[signature(obj = "SpatialPolygons"): select subset of (sets of) polygons; NAs are not per-
mitted in the row index

plot signature(x = "SpatialPolygons”,y = "missing"): plot polygons in SpatialPolygons ob-
ject
summary signature(object = "SpatialPolygons”): summarize object

rbind signature(object = "SpatialPolygons"”): rbind-like method

plot method arguments
The plot method for spatial polygons takes the following arguments:

x a SpatialPolygons object

col a vector of colour values

border default par(”fg"); the colour to draw the border

add default FALSE; if TRUE, add to existing plot

xlim, ylim default NULL; ranges for the plotted ‘x” and ‘y’ values

xpd default NULL; controls clipping, see par

density default NULL; the density of shading lines, in lines per inch, see polygon

angle default 45; the slope of shading lines, given as an angle in degrees (counter-clockwise), see
polygon

pbg default NULL, set to par(”bg") by default “transparent”; the colour to paint holes

axes default FALSE; draw axes

Ity default par(”1ty"); border line type

.. other arguments passed through

setParUsrBB default FALSE; see Spatial-class for further details

usePolypath default NULL to set from option value; use polypath for hole-handling in plot

rule default NULL to set from option value; character value specifying the path fill mode, see
polypath

90 SpatialPolygons-class

The options for usePolypath and rule may be retrieved with get_Polypath (default TRUE on
package load) and get_PolypathRule (default “winding” on package load), and set with set_Polypath
and set_PolypathRule

The class definitions used for polygons in sp do not accord with those of the simple features specifi-
cation of the Open Geospatial Consortium. The rgeos package, an interface to Geometry Engine —
Open Source (GEOS), uses this specification, in which each hole (interior ring) must be associated
with its containing exterior ring. In order to avoid introducing incompatible changes into the class
definition of Polygons objects, a comment has been added as a single character string to each such
object. Here we can trust the data source to assign the hole status correctly, and use the simple
function createSPComment to add such comments to each Polygons member of the polygons slot
of this SpatialPolygons object. Exterior rings are coded zero, while interior rings are coded with the
1-based index of the exterior ring to which they belong. SpatialPolygons objects created by reading
using readOGR from rgdal have the comments set on input, as OGR also uses SFS.

Refer to Bivand et al. (2013), pages 47-48 and 132-133 for a further discussion.

Note

rbind calls the function SpatialPolygons, where it is checked that all IDs are unique. If rbind-ing
SpatialPolygons without unique IDs, it is possible to set the argument makeUniqueIDs = TRUE,
although it is preferred to change these explicitly with spChFIDs.

Author(s)

Roger Bivand

References
Roger Bivand, Edzer Pebesma and Virgilio Gomez-Rubio, 2013. Applied spatial data analysis with
R, Second edition. Springer, NY. https://asdar-book.org/

See Also

SpatialPolygons

Examples

simple example, from vignette("sp"):
Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2)))
Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2)))

Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5)))

Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE)
Srs1 = Polygons(list(Sr1), "s1")

Srs2 = Polygons(list(Sr2), "s2")

Srs3 = Polygons(list(Sr3, Sr4), "s3/4")
SpP = SpatialPolygons(list(Srs1,Srs2,Srs3), 1:3)
plot(SpP, col = 1:3, pbg="white")

grd <- GridTopology(c(1,1), c(1,1), c(10,10))
polys <- as(grd, "SpatialPolygons")

https://asdar-book.org/

SpatialPolygonsDataFrame-class 91

plot(polys)
text(coordinates(polys), labels=row.names(polys))

SpatialPolygonsDataFrame-class
Class "SpatialPolygonsDataFrame"

Description

class to hold polygons with attributes

Objects from the Class

Objects can be created by calls to the function SpatialPolygonsDataFrame

Slots

data: Object of class "data. frame”; attribute table

polygons: Object of class "1ist"; see SpatialPolygons-class
plotOrder: Object of class "integer"; see SpatialPolygons-class
bbox: Object of class "matrix”; see Spatial-class

proj4string: Object of class "CRS"; see CRS-class

Extends

Class "SpatialPolygons”, directly. Class "Spatial”, by class "SpatialPolygons”.

Methods
Methods defined with class "SpatialPolygonsDataFrame" in the signature:

[signature(x = "SpatialPolygonsDataFrame"”): select subset of (sets of) polygons; NAs are
not permitted in the row index

rbind signature(object = "SpatialPolygonsDataFrame"”): rbind-like method, see notes be-
low
Note

SpatialPolygonsDataFrame with default ID matching checks the data frame row names against
the Polygons ID slots. They must then agree with each other, and be unique (no Polygons objects
can share IDs); the data frame rows will be re-ordered if needed to match the Polygons IDs..

If you want to rbind objects with duplicated IDs, seespChFIDs.

Author(s)

Roger Bivand

92 spChFIDs-methods

See Also

SpatialPolygons-class

Examples

simple example, from scratch:
Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2)))
Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2)))

Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5)))
Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE)
Srs1 = Polygons(list(Sr1), "s1")

Srs2 = Polygons(list(Sr2), "s2")

Srs3 = Polygons(list(Sr3, Sr4), "s3/4")

SpP = SpatialPolygons(list(Srs1,Srs2,Srs3), 1:3)
plot(SpP, col = 1:3, pbg="white")

grd <- GridTopology(c(1,1), c(1,1), c(10,10))

polys <- as(grd, "SpatialPolygons")

centroids <- coordinates(polys)

x <- centroids[,1]

y <- centroids[,2]

z <= 1.4+ 0.1%x + 0.2%y + 0.002%x*x

ex_1.7 <- SpatialPolygonsDataFrame(polys,

data=data.frame(x=x, y=y, z=z, row.names=row.names(polys)))
brks <- quantile(z, seq(0,1,1/7))

cols <- grey((length(brks):2)/length(brks))

dens <- (2:length(brks))=3

plot(ex_1.7, col=cols[findInterval(z, brks, all.inside=TRUE)])
plot(ex_1.7, density=dens[findInterval(z, brks, all.inside=TRUE)])

spChFIDs-methods change feature IDs in spatial objects

Description

When the feature IDs need to be changed in SpatialLines* or SpatialPolygons* objects, these meth-
ods may be used. The new IDs should be a character vector of unique IDs of the correct length.

Methods

obj = ""SpatialLines', x = ""character' replace IDs in a SpatialLines object

obj = ""SpatialLinesDataFrame'', x = ""character' replace IDs in a SpatialLinesDataFrame ob-
ject

obj = ""SpatialPolygons'', x = ""character' replace IDs in a SpatialPolygons object

obj = ""SpatialPolygonsDataFrame'', x = ""character' replace IDs in a SpatialPolygonsDataFrame
object

spDistsN1 93

Note

It is usually sensible to keep a copy of the original feature IDs in the object, but this should be done
by the user.

Author(s)

Roger Bivand

See Also

spCbind-methods, spRbind-methods

Examples

Not run:

require(maptools)

xX <- readShapePoly(system.file("shapes/sids.shp"”, package="maptools")[1],
IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))

row.names(as(xx, "data.frame"))

xx1 <- spChFIDs(xx, as.character(xx$CNTY_ID))

row.names(as(xx1, "data.frame"))

End(Not run)

spDistsN1 Euclidean or Great Circle distance between points

Description

The function returns a vector of distances between a matrix of 2D points, first column longitude,
second column latitude, and a single 2D point, using Euclidean or Great Circle distance (WGS84
ellipsoid) methods.

Usage

spDistsN1(pts, pt, longlat = FALSE)
spDists(x, y = x, longlat = FALSE, segments = FALSE, diagonal = FALSE)

Arguments
pts A matrix of 2D points, first column x/longitude, second column y/latitude, or a
SpatialPoints or SpatialPointsDataFrame object
pt A single 2D point, first value x/longitude, second value y/latitude, or a Spatial-
Points or SpatialPointsDataFrame object with one point only
X A matrix of n-D points with row denoting points, first column x/longitude, sec-

ond column y/latitude, or a Spatial object that has a coordinates method

94 spDistsN1

y A matrix of n-D points with row denoting points, first column x/longitude, sec-
ond column y/latitude, or a Spatial object that has a coordinates method
longlat logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid)

distance; if x is a Spatial object, longlat should not be specified but will be
derived from is.projected (x)

segments logical; if TRUE, y must be missing; the vector of distances between consecutive
points in x is returned.

diagonal logical; if TRUE, y must be given and have the same number of points as x; the
vector with distances between points with identical index is returned.

Value

spDistsN1 returns a numeric vector of distances in the metric of the points if longlat=FALSE, or in
kilometers if longlat=TRUE.

spDists returns a full matrix of distances in the metric of the points if longlat=FALSE, or in
kilometers if longlat=TRUE,; it uses spDistsN1 in case points are two-dimensional. In case of
spDists(x,x), it will compute all n x n distances, not the sufficient n x (n-1).

Note

The function can also be used to find a local kilometer equivalent to a plot scaled in decimal degrees
in order to draw a scale bar.

Author(s)

Roger Bivand, Edzer Pebesma

References

http://www.abecedarical.com/javascript/script_greatcircle.html

See Also

is.projected

Examples

11 <- matrix(c(5, 6, 60, 60), ncol=2)

km <- spDistsN1(11l, 11[1,], longlat=TRUE)
zapsmall (km)

utm32 <- matrix(c(276.9799, 332.7052, 6658.1572, 6655.2055), ncol=2)
spDistsN1(utm32, utm32[1,1)

dg <- spDistsN1(11, 11[1,])

dg

dg[2]1/km[2]

data(meuse)

coordinates(meuse) <- c("x", "y")

res <- spDistsN1(meuse, meuse[1,])
summary(res)

spplot 95

p1 = SpatialPoints(cbind(1:3, 1:3))
spDists(p1)

spDists(pl, p1)

spDists(p1, pl1, diagonal = TRUE)
try(spDists(pl, p1, segments = TRUE))
spDists(p1, segments = TRUE)

p2 = SpatialPoints(cbind(5:2, 2:5))
spDists(pl, p2)

try(spDists(p1, p2, diagonal = TRUE)) # fails
try(spDists(pl, p2, segments = TRUE)) # fails

longlat points:

proj4string(pl) = "+proj=longlat +ellps=WGS84"
proj4string(p2) = "+proj=longlat +ellps=WGS84"
is.projected(pl)

is.projected(p2)

spDists(p1)

spDists(p1, p1)

spDists(p1, pl1, diagonal = TRUE)

spDists(pl, p2)

try(spDists(pl, p2, diagonal = TRUE)) # fails
spDists(pl, p2[1:length(p1),], diagonal = TRUE)
spDists(p1, segments = TRUE)
spDists(p1[0],p2[@],diagonal=TRUE)
spDists(p1[0])

p1 = SpatialPoints(cbind(1:3, 1:3, 1:3))
spDists(p1)

spDists(pl, pl1)

try(spDists(p1, p1, diagonal = TRUE))
try(spDists(pl, p1, segments = TRUE))
try(spDists(pl, segments = TRUE))

p2 = SpatialPoints(cbind(5:2, 2:5, 3:6))
spDists(pl, p2)
try(spDists(pl, p2, diagonal
try(spDists(pl, p2, segments

TRUE)) # fails
TRUE)) # fails

spplot Plot methods for spatial data with attributes

Description

Lattice (trellis) plot methods for spatial data with attributes

Usage

spplot(obj, ...)
spplot.grid(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE),
xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim),

96

panel = panel.gridplot, sp.layout = NULL, formula, xlim

spplot

bbox(obj)[1, 1,

ylim = bbox(obj)[2, 1, checkEmptyRC = TRUE, col.regions = get_col_regions())
spplot.polygons(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE),
xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim),

panel = panel.polygonsplot, sp.layout = NULL, formula, xlim = bbox(obj)[1, 1,
ylim = bbox(obj)[2,], col.regions = get_col_regions())

spplot.points(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE),
xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim),

panel = panel.pointsplot, sp.layout = NULL, identify = FALSE, formula,

xlim = bbexpand(bbox(obj)[1, 1, ©.04), ylim = bbexpand(bbox(obj)[2, 1, 0.04),
edge.col = "transparent”, colorkey = FALSE, col.regions = get_col_regions())
mapLegendGrob(obj, widths = unit(1, "cm"), heights = unit(1, "cm"),

fill = "black"”, just = "right")

sp.theme(set = FALSE, regions = list(col = bpy.colors(100)), ...)
layout.north.arrow(type = 1)

layout.scale.bar(height = 0.05)

spplot.locator(n = 512, type = "n", ...)

set_col_regions(value)

get_col_regions()

Arguments

obj
zcol
names.attr

scales

x1lab
ylab

aspect

panel

sp.layout
identify

formula

object of class extending Spatial-class
character; attribute name(s) or column number(s) in attribute table
names to use in panel, if different from zcol names

scales argument to be passed to Lattice plots; use 1ist(draw = TRUE) to draw
axes scales; see xyplot for full options

other arguments passed to levelplot (grids, polygons) or xyplot (points)
label for x-axis
label for y-axis

aspect ratio for spatial axes; defaults to "iso" (one unit on the x-axis equals one
unit on the y-axis) but may be set to more suitable values if the data are e.g. if
coordinates are latitude/longitude

depending on the class of obj, panel.polygonsplot (for polygons or lines), panel.gridplot
(grids) or panel.pointsplot (points) is used; for further control custom panel
functions can be supplied that call one of these panel functions, but do read
below how the argument sp. layout may help

NULL or list; see notes below

if not FALSE, identify plotted objects (currently only working for points plots).

Labels for identification are the row.names of the attribute table row.names(as.data. frame(obj)).
If TRUE, identify on panel (1, 1); for identifying on panel i, j, pass the value

c(i, i

optional; may be useful to plot a transformed value. Defaults to z~x+y for single

and z~x+y|name for multiple attributes; use e.g. exp(x)~x+y|name to plot the

exponent of the z-variable

spplot 97

xlim numeric; x-axis limits

ylim numeric; y-axis limits

edge.col color of symbol edge

colorkey if FALSE, use symbol key; if TRUE, use continuous, levelplot-like colorkey; if
list, follow syntax of argument colorkey in levelplot (see below for an example)

widths width of grob

heights heights of grob

fill fill color of grob

just grob placement justification

set logical; if TRUE, trellis.par.set is called, else a list is returned that can be passed

to trellis.par.set()

regions color ramp for the theme
height height of scale bar; width is 1.0
n see locator

type see locator

checkEmptyRC logical; if TRUE, a check is done to see if empty rows or columns are present,
and need to be taken care of. Setting to FALSE may improve speed.

col.regions vector with fill colours; in case the variable to be plotted is a factor, this vector
should have length equal to the number of factor levels

value vector with color values, default for col.regions

Value

spplot returns a lattice plot of class "trellis", if you fail to "see" it, explicitly call print (spplot(...)).
If identify is TRUE, the plot is plotted and the return value is a vector with row names of the se-
lected points.

spplot.locator returns a matrix with identified point locations; use trellis. focus first to focus
on a given panel.

get_col_regions returns the default value for col.regions

Methods

obj = ""SpatialPixelsDataFrame'' see spplot
obj = ""SpatialGridDataFrame'' see spplot

obj = ""SpatialPolygonsDataFrame'' see spplot
obj = ""SpatialLinesDataFrame' see spplot

obj = "SpatialPointsDataFrame'"' see spplot

98 spplot

Note

Missing values in the attributes are (currently) not allowed.

spplot.grid, spplot.polygons and spplot.points are S4 methods for spplot; see spplot-
methods.

Useful arguments that can be passed as . . . are:

layout integer; for the layout of panels (cols,rows)

pretty logical; choose colour breaks at pretty numbers?

at specify at which values colours change

as.table logical; start drawing panels upper-left instead of lower-left

page to add marks to each plotted page

for useful values see the appropriate documentation of xyplot (in case of points), and levelplot

(otherwise).

If obj is of SpatialPointsDataFrame, the following options are useful to pass:

key.space character: "bottom", "right", "left" or "right" to denote key location, or list: see argu-
ment key in the help for xyplot what the options are

legendEntries character; array with key legend (text) entries; suitable defaults obtained from data

cuts number of cuts, or, for objects of class SpatialPointsDataFrame only, the actual cuts to use

do.log logical; if TRUE use log-linear scale to divide range in equal cuts, else use a linear scale if
cuts is only number of cuts

pch integer; plotting character to use; defaults to 16 if fill is TRUE, else 1
cex numeric; character expansion, proportional to default value of 1

fill logical; use filled circles?

layout.north.arrow and layout.scale.bar can be used to set a north arrow or scale bar.

The sp.layout argument is either a single layout item, or a list with one or more layout items. A
layout item is one of

* alist with one or more Spatial# objects, along with style arguments like col, 1ty, pch, fill
etc.

* alist with its first argument the layout function or the name of the layout function to be called:
sp.points for SpatialPoints, sp.polygons for SpatialPolygons object, sp.lines for a Spa-
tialLines object, and sp. text for text to place. The second argument contains the object (or
text) to be plotted; remaining arguments are passed to the corresponding panel . * functions.

The order of items in sp.layout matters; objects are drawn in the order they appear. With respect
to obj, default plot order and precedence of sp.layout items is as follows: for points and lines,
sp.layout items are drawn over (after) obj; for grids and polygons, sp.layout items are drawn
behind (before) obj. Transparency may further help making multiple things visible. Adding a
first argument to a layout item overrides its default plotting order with respect to obj:

Special control elements of sp.layout items:

first logical; should the layout item be drawn before the obj (TRUE), or after (FALSE)? This
overrides the default order (points and lines in front, polygons and grids behind).

spplot 99

which integer; controls to which panel a layout item should be added. If which is present in the
main, top-level list it applies to all layout items; in sub-lists with layout items it denotes the
(set of) panel(s) in which the layout item should be drawn. Without a which item, layout items
are drawn in each panel.

sp. theme returns a lattice theme; use, after loading package lattice, the command trellis.par.set(sp.theme())
after a device is opened or changed to make this work. Currently, this only sets the colors to
bpy.colors.

If the attributes to be plotted are of type factor, spplot tries to create a legend that reflects this. In
this case, the color ramp passed needs to be of the same length as the number of factor levels. The
factor levels are derived from the first map; subsequent factors with different factor levels result in
an error.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

https://edzer.github.io/sp/

See Also

xyplot, levelplot, panel.identify to identify objects

Examples

library(lattice)

trellis.par.set(sp.theme()) # sets bpy.colors() ramp

demo(meuse, ask = FALSE, echo = FALSE)

12 = list("SpatialPolygonsRescale”, layout.north.arrow(), offset = c(181300,329800),
scale = 400)

13 = list("SpatialPolygonsRescale”, layout.scale.bar(), offset = c(180500,329800),
scale = 500, fill=c("transparent”,"black"))

14 = list("sp.text”, c(180500,329900), "0")

15 = list("sp.text", c(181000,329900), "500 m")

spplot(meuse, c("ffreq"”), sp.layout=1list(12,13,14,15), col.regions= "black"”,
pch=c(1,2,3), key.space=list(x=0.1,y=.95,corner=c(0,1)))

spplot(meuse, c("zinc", "lead"), sp.layout=list(12,13,14,15, which = 2),
key.space=1list(x=0.1,y=.95,corner=c(0,1)))

plotting factors:

meuse$f = factor(sample(letters[6:10], 155, replace=TRUE),levels=letters[1:10])
meuse$g = factor(sample(letters[1:5], 155, replace=TRUE),levels=letters[1:10])
spplot(meuse, c("f","g"), col.regions=bpy.colors(10))

if (require(RColorBrewer)) {
spplot(meuse, c("ffreq"”), sp.layout=list(12,13,14,15),
col.regions=brewer.pal(3, "Set1"))

}

https://edzer.github.io/sp/

100 spsample

meuse.grid$g = factor(sample(letters[1:5], 3103, replace=TRUE),
levels=letters[1:10])

meuse.grid$f = factor(sample(letters[6:10], 3103, replace=TRUE),
levels=letters[1:10])

spplot(meuse.grid, c("f","g"), col.regions=bpy.colors(10))

example modifying colorkey for points:

spplot(meuse["dist"”], colorkey = list(

right = list(# see ?levelplot in package trellis, argument colorkey:
fun = draw.colorkey,

args = list(
key = list(
at = seq(@, 1, .1), # colour breaks

col = bpy.colors(11), # colours

labels = list(

at = c(o, .2, .4, .6, .8, 1),

labels = c("ox", "20x", "40x", "60x", "80x", "100x")

)

)

)

)

))

16 = list(meuse.grid["dist"], col = grey(seq(.5,.9,length.out=10)))
spplot(meuse, c("zinc”, "lead"), sp.layout = 16)
spplot(meuse, c("zinc"”, "lead"),

sp.layout = list(meuse.grid, meuse.riv, col = 'grey'))

Custom legend placement, taken from
http://stackoverflow.com/questions/29344692/custom-placement-of-spplot-legend-in-the-map
s <- spplot(meuse.grid[, 'dist'], colorkey = list(space = "left", height = 0.4))

args <- s$legend$left$argss$key

Prepare list of arguments needed by ‘legend=" argument (as described in ?xyplot)
library(lattice) # draw.colorkey
legendArgs <- list(fun = draw.colorkey,

args = list(key = args),

corner = c(0.05,.75))

Call spplot() again, this time passing in to legend the arguments
needed to print a color key
spplot(meuse.grid[, 'dist'], colorkey = FALSE,

legend = list(inside = legendArgs))

spsample sample point locations in (or on) a spatial object

Description

sample point locations within a square area, a grid, a polygon, or on a spatial line, using regular
or random sampling methods; the methods used assume that the geometry used is not spherical, so

spsample 101
objects should be in planar coordinates

Usage

spsample(x, n, type, ...)
makegrid(x, n = 10000, nsig = 2, cellsize, offset = rep(0.5, nrow(bb)),
pretty = TRUE)

Arguments

X Spatial object; spsample(Xx, . . .) is a generic method for the existing sample. Xxx
functions

optional arguments, passed to the appropriate sample . Xxx functions; see NOTES
for nclusters and iter

n (approximate) sample size

type character; "random” for completely spatial random; "regular” for regular (sys-
tematically aligned) sampling; "stratified” for stratified random (one single
random location in each "cell"); "nonaligned” for nonaligned systematic sam-
pling (nx random y coordinates, ny random x coordinates); "hexagonal” for
sampling on a hexagonal lattice; "clustered” for clustered sampling; "Fibonacci”
for Fibonacci sampling on the sphere (see references).

bb bounding box of the sampled domain; setting this to a smaller value leads to
sub-region sampling

offset for square cell-based sampling types (regular, stratified, nonaligned, hexagonal):
the offset (position) of the regular grid; the default for spsample methods is a
random location in the unit cell [0,1] x [0,1], leading to a different grid after
each call; if this is set to c(@0.5,0.5), the returned grid is not random (but, in
Ripley’s wording, "centric systematic"). For line objects, a single offset value is
taken, where the value varies within the [0, 1] interval, and 0 is the beginning of
each Line object, and 1 its end

cellsize if missing, a cell size is derived from the sample size n; otherwise, this cell size
is used for all sampling methods except "random”

nsig for "pretty" cell size; spsample does not result in pretty grids

pretty logical; if TRUE, choose pretty (rounded) coordinates

Value

an object of class SpatialPoints-class. The number of points is only guaranteed to equal n when
sampling is done in a square box, i.e. (sample.Spatial). Otherwise, the obtained number of
points will have expected value n.

When x is of a class deriving from Spatial-class for which no spsample-methods exists, sampling is
done in the bounding box of the object, using spsample.Spatial. An overlay using over may be
necessary to select the features inside the geometry afterwards.

Sampling type "nonaligned” is not implemented for line objects.

Some methods may return NULL if no points could be successfully placed.

102 spsample

makegrid makes a regular grid that covers x; when cellsize is not given it derives one from the
number of grid points requested (approximating the number of cells). It tries to choose pretty cell
size and grid coordinates.

Methods

x = ""Spatial" sample in the bbox of x
x = "Line" sample on a line
x = ""Polygon" sample in a Polygon

x = ""Polygons'' sample in a Polygons object, consisting of possibly multiple Polygon objects
(holes must be correctly defined, use checkPolygonsHoles if need be)

x = "'SpatialPolygons'' sample in an SpatialPolygons object; sampling takes place over all Poly-
gons objects present, use subsetting to vary sampling intensity (density); holes must be cor-
rectly defined, use checkPolygonsHoles if need be

x = "SpatialGrid" sample in an SpatialGrid object

x = ""SpatialPixels" sample in an SpatialPixels object

Note

If an Polygon-class object has zero area (i.e. is a line), samples on this line element are returned. If
the area is very close to zero, the algorithm taken here (generating points in a square area, selecting
those inside the polygon) may be very resource intensive. When numbers of points per polygon are
small and type="random", the number searched for is inflated to ensure hits, and the points returned
sampled among these.

The following two arguments can be further specified:
nclusters Number of clusters (strata) to sample from.

iter(default = 4) number of times to try to place sample points in a polygon before giving up and
returning NULL - this may occur when trying to hit a small and awkwardly shaped polygon in a
large bounding box with a small number of points

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

Chapter 3 in B.D. Ripley, 1981. Spatial Statistics, Wiley

Fibonacci sampling: Alvaro Gonzalez, 2010. Measurement of Areas on a Sphere Using Fibonacci
and Latitude-Longitude Lattices. Mathematical Geosciences 42(1), p. 49-64

See Also

over, point.in.polygon, sample

spTransform 103

Examples

data(meuse.riv)
meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)), "x")))

plot(meuse.sr)

points(spsample(meuse.sr, n = 1000, "regular”), pch = 3)

plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "random"), pch = 3)

plot(meuse.sr)

points(spsample(meuse.sr, n = 1000, "stratified"”), pch = 3)
plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "nonaligned”), pch = 3)

plot(meuse.sr)
points(spsample(meuse.sr@olygons[[1]], n = 100, "stratified"), pch = 3, cex=.5)

data(meuse.grid)

gridded(meuse.grid) = ~x+y

image (meuse.grid)

points(spsample(meuse.grid,n=1000,type="random"), pch=3, cex=.5)
image (meuse.grid)
points(spsample(meuse.grid,n=1000,type="stratified"”), pch=3, cex=.5)
image(meuse.grid)

points(spsample(meuse.grid,n=1000, type="regular"”), pch=3, cex=.5)
image (meuse.grid)
points(spsample(meuse.grid,n=1000,type="nonaligned”), pch=3, cex=.5)

fullgrid(meuse.grid) = TRUE
image(meuse.grid)
points(spsample(meuse.grid,n=1000, type="stratified"”), pch=3,cex=.5)

spTransform spTransform for map projection and datum transformation

Description

spTransform for map projection and datum transformation

Usage

spTransform(x, CRSobj, ...)

104 stack

Arguments
X object to be transformed
CRSobj object of class CRS, or of class character in which case it is converted to CRS
further arguments (ignored)
Value

object with coordinates transformed to the new coordinate reference system.

Note

Package rgdal provides the methods doing actual transformation, see spTransform; when rgdal
cannot be loaded, an error message follows.

stack rearrange data in SpatialPointsDataFrame or SpatialGridDataFrame
for plotting with spplot (levelplot/xyplot wrapper)

Description

rearrange SpatialPointsDataFrame for plotting with spplot or levelplot

Usage

spmap.to.lev(data, zcol = 1:n, n = 2, names.attr)
S3 method for class 'SpatialPointsDataFrame'

stack(x, select, ...)
S3 method for class 'SpatialGridDataFrame'
stack(x, select, ...)
Arguments
data object of class (or extending) SpatialPointsDataFrame or SpatialGridDataFrame
zcol z-coordinate column name(s), or a column number (range) (after removing the

spatial coordinate columns: 1 refers to the first non-coordinate column, etc.)

names.attr names of the set of z-columns (these names will appear in the plot); if omitted,
column names of zcol

n number of columns to be stacked

X same as data

select same as zcol

ignored

surfaceArea 105

Value

spmap. to. lev returns a data frame with the following elements:

X x-coordinate for each row

y y-coordinate for each row

z column vector with each of the elements in columns zcol of data stacked
name factor; name of each of the stacked z columns

stackis an S3 method: it return a data.frame with a column values that has the stacked coordinates
and attributes, and a column ind that indicates the variable stacked; it also replicates the coordinates.

See Also

spplot, levelplot in package lattice, and stack

Examples
library(lattice)
data(meuse.grid) # data frame
coordinates(meuse.grid) = c("x", "y") # promotes to SpatialPointsDataFrame

meuse.grid[["idist”]] = 1 - meuse.grid[["dist"]] # add variable
the following is made much easier by spplot:
levelplot(z~x+y|name, spmap.to.lev(meuse.grid, z=c("dist”,"idist"), names.attr =
c("distance”, "inverse of distance”)), aspect = "iso")
levelplot(values~x+y|ind, as.data.frame(stack(meuse.grid)),aspect = "iso")
gridded(meuse.grid) = TRUE

levelplot(z~x+y|name, spmap.to.lev(meuse.grid, z=c("dist”,"idist"), names.attr

c("distance”, "inverse of distance”)), aspect = "iso")
levelplot(values~x+y|ind, as.data.frame(stack(meuse.grid)), asp = "iso")
surfaceArea Compute surface area of a digital elevation model.
Description

It is often said that if Wales was flattened out it would have an area bigger than England. This
function computes the surface area of a grid of heights taking into account the sloping nature of the
surface.

Usage

surfaceArea(m, ...)
surfaceArea.matrix(m, cellx = 1, celly = 1, byCell = FALSE)

106 surfaceArea

Arguments
m a matrix of height values, or an object of class SpatialPixelsDataFrame or Spa-
tialGridDataFrame.
cellx the size of the grid cells in the x-direction, in the same units as the height values.
celly the size of the grid cells in the y-direction, in the same units as the height values.
byCell return single value or matrix of values
ignored
Value

Either a single value of the total area if byCell=FALSE, or a matrix the same shape as m of individual
cell surface areas if byCell=TRUE. In this case, the sum of the returned matrix should be the same
value as that which is returned if byCell=FALSE.

Missing values (NA) in the input matrix are allowed. They will produce an NA in the output matrix
for byCell=TRUE, and contribute zero to the total area. They also have an effect on adjacent cells -
see code comments for details.

Methods

obj = "matrix"' takes a matrix as input, requires cellx and celly to be set

obj = ""SpatialGridDataFrame' takes an object of class SpatialGridDataFrame as input, and re-
trieves cellx and celly from this

obj = ""SpatialPixelsDataFrame'' takes an object of class SpatialPixelsDataFrame as input, and
retrieves cellx and celly from this

Author(s)

Barry Rowlingson <b.rowlingson @lancaster.ac.uk>, integration in sp Edzer Pebesma.

References

Calculating Landscape Surface Area from Digital Elevation Models, Jeff S. Jenness Wildlife Soci-
ety Bulletin, Vol. 32, No. 3 (Autumn, 2004), pp. 829-839

Examples

surfaceArea(volcano)
image (surfaceArea(volcano,byCell=TRUE))

data(meuse.grid)

gridded(meuse.grid) = ~xt+y
image(surfaceArea(meuse.grid["dist"”], byCell=TRUE))
surfaceArea(meuse.grid["dist"])

zerodist 107

zerodist find point pairs with equal spatial coordinates

Description

find point pairs with equal spatial coordinates

Usage

zerodist(obj, zero = 0.0, unique.ID = FALSE, memcmp = TRUE)
zerodist2(obj1, obj2, zero = 0.0, memcmp = TRUE)
remove.duplicates(obj, zero = 0.0, remove.second = TRUE, memcmp = TRUE)

Arguments

obj object of, or extending, class SpatialPoints

obj1 object of, or extending, class SpatialPoints

obj2 object of, or extending, class SpatialPoints

zero distance values less than or equal to this threshold value are considered to have
zero distance (default 0.0); units are those of the coordinates for projected data
or unknown projection, or km if coordinates are defined to be longitude/latitude

unique.ID logical; if TRUE, return an ID (integer) for each point that is different only when
two points do not share the same location

memcmp use memcmp to find exactly equal coordinates; see NOTE

remove.second logical; if TRUE, the second of each pair of duplicate points is removed, if
FALSE remove the first

Value

zerodist and zerodist2 return a two-column matrix with in each row pairs of row numbers with
identical coordinates; a matrix with zero rows is returned if no such pairs are found. For zerodist,
row number pairs refer to row pairs in obj. For zerodist2, row number pairs refer to rows in obj
and obj2, respectively. remove.duplicates removes duplicate observations if present, and else
returns obj.

Note

When using kriging, duplicate observations sharing identical spatial locations result in singular
covariance matrices. This function may help identify and remove spatial duplices. The full matrix
with all pair-wise distances is not stored; the double loop is done at the C level.

When unique.ID=TRUE is used, an integer index is returned. sp 1.0-14 returned the highest index,
sp 1.0-15 and later return the lowest index.

When zero is 0.0 and memcmp is not FALSE, zerodist uses memcmp to evaluate exact equality of
coordinates; there may be cases where this results in a different evaluation compared to doing the
double arithmetic of computing distances.

108 zerodist

Examples

data(meuse)

summary (meuse)

pick 10 rows

n <- 10

ran1@ <- sample(nrow(meuse), size = n, replace = TRUE)
meusedup <- rbind(meuse, meuse[rani@,])
coordinates(meusedup) <- c("x", "y")

zd <- zerodist(meusedup)
sum(abs(zd[1:n,1] - sort(rani@))) # 0!

remove the duplicate rows:

meusedup2 <- meusedup[-zd[,2], 1]

summary (meusedup?)

meusedup3 <- subset(meusedup, !(1:nrow(meusedup) %in% zd[,2]1))
summary (meusedup3)

coordinates(meuse) <- c("x", "y")

zerodist2(meuse, meuse[c(10:33,1,10),1)

Index

x classes

CRS-class, 18

DMS-class, 24

GridTopology-class, 31

Line, 37

Line-class, 38

Lines-class, 39

Polygon-class, 52

Polygons-class, 53

Spatial-class, 61

SpatialGrid-class, 63

SpatialGridDataFrame-class, 64

SpatiallLines-class, 68

SpatiallLinesDataFrame-class, 70

SpatialMultiPoints-class, 72

SpatialMultiPointsDataFrame-class,
74

SpatialPixels-class, 78

SpatialPixelsDataFrame-class, 80

SpatialPoints-class, 83

SpatialPointsDataFrame-class, 85

SpatialPolygons-class, 88

SpatialPolygonsDataFrame-class, 91

x color

bpy.colors, 11

x datasets

meuse, 42
meuse.grid, 43
meuse.grid_11, 44
meuse.riv, 45
Rlogo, 57

* dplot

bubble, 12
degAxis, 21
flip, 25
loadMeuse, 39
mapasp, 40
panel.spplot, 49
spplot, 95

stack, 104
zerodist, 107

* manip
coordinates, 16
gridIndex2nb, 28
point.in.polygon, 51
polygons, 53
sp-deprecated, 60
SpatiallLines, 67
SpatialMultiPoints, 71
SpatialPoints, 82
SpatialPolygons, 87
spsample, 100

+ methods
addAttrToGeom-methods, 4
aggregate, 5
bbox-methods, 10
coordinates-methods, 17
coordnames-methods, 18
dimensions-methods, 22
disaggregate-methods, 23
geometry-methods, 26
gridded-methods, 27
merge, 41
over-methods, 46
polygons-methods, 54
recenter-methods, 56
spChFIDs-methods, 92
spsample, 100
spTransform, 103

* misc
compassRose, 15

+ models
select.spatial, 58

* programming
read.asciigrid, 55

* spatial
as.SpatialPolygons.GridTopology, 7
as.SpatialPolygons.PolygonsList, 8

109

110

bbox-methods, 10
char2dms, 14
CRS-class, 18
DMS-class, 24
gridded-methods, 27
gridlines, 29
image.SpatialGridDataFrame, 33
is.projected, 35
merge, 41
polygons-methods, 54
sp, 59
SpatialPixels, 75
SpatialPixelsDataFrame, 79
spChFIDs-methods, 92
spDistsN1, 93
spTransform, 103
surfaceArea, 105
[,SpatialGrid-method
(SpatialGrid-class), 63
[,SpatialGridDataFrame-method
(SpatialGridDataFrame-class),
64
[,SpatialLines-method
(SpatiallLines-class), 68
[,SpatialLinesDataFrame-method
(SpatialLinesDataFrame-class),
70
[,SpatialMultiPoints-method
(SpatialMultiPoints-class), 72
[,SpatialMultiPointsDataFrame-method
(SpatialMultiPointsDataFrame-class),
74
[,SpatialPixels-method
(SpatialPixels-class), 78
[,SpatialPixelsDataFrame-method
(SpatialPixelsDataFrame-class),
80
[,SpatialPoints-method
(SpatialPoints-class), 83
[,SpatialPointsDataFrame-method
(SpatialPointsDataFrame-class),
85
[,SpatialPolygons-method
(SpatialPolygons-class), 88
[,SpatialPolygonsDataFrame-method
(SpatialPolygonsDataFrame-class),
91
[<-,Spatial-method (Spatial-class), 61

INDEX

[[,Spatial,ANY,missing-method
(Spatial-class), 61
[[<-,Spatial,ANY,missing-method
(Spatial-class), 61
$,Spatial-method (Spatial-class), 61
$,SpatialMultiPoints-method
(SpatialMultiPoints-class), 72
$,SpatialPoints-method
(SpatialPoints-class), 83
$<-,Spatial-method (Spatial-class), 61
$<-,SpatialMultiPoints,character-method
(SpatialMultiPoints-class), 72
$<-,SpatialPoints,character-method
(SpatialPoints-class), 83
%over% (over-methods), 46

addAttrToGeom (addAttrToGeom-methods), 4

addAttrToGeom, SpatialGrid,data.frame-method
(addAttrToGeom-methods), 4

addAttrToGeom, SpatiallLines,data.frame-method
(addAttrToGeom-methods), 4

addAttrToGeom,SpatialMultiPoints,data. frame-method
(addAttrToGeom-methods), 4

addAttrToGeom,SpatialPixels,data. frame-method
(addAttrToGeom-methods), 4

addAttrToGeom,SpatialPoints,data. frame-method
(addAttrToGeom-methods), 4

addAttrToGeom, SpatialPolygons,data. frame-method
(addAttrToGeom-methods), 4

addAttrToGeom-methods, 4

aggregate, 5

aggregate.data.frame, 5

areaSpatialGrid (SpatialPixels), 75

as, 74, 85

as.array.SpatialGridDataFrame
(SpatialGridDataFrame-class),
64

as.character.DMS (char2dms), 14

as.data.frame.SpatialGrid
(SpatialGrid-class), 63

as.data.frame.SpatialGridDataFrame
(SpatialGridDataFrame-class),
64

as.data.frame.SpatialMultiPoints
(SpatialMultiPoints-class), 72

as.data.frame.SpatialMultiPointsDataFrame
(SpatialMultiPointsDataFrame-class),
74

INDEX

as.data.frame.SpatialPixels
(SpatialPixels-class), 78

as.data.frame.SpatialPixelsDataFrame
(SpatialPixelsDataFrame-class),
80

as.data.frame.SpatialPoints
(SpatialPoints-class), 83

as.data.frame.SpatialPointsDataFrame
(SpatialPointsDataFrame-class),
85

as.data.frame.SpatialPolygons
(SpatialPolygons-class), 88

as.data.frame.SpatialPolygonsDataFrame
(SpatialPolygonsDataFrame-class),
91

as.double.DMS (DMS-class), 24

as.image.SpatialGridDataFrame, 55

as.image.SpatialGridDataFrame
(image.SpatialGridDataFrame),
33

as.numeric.DMS (DMS-class), 24

as.SpatiallLines.SLDF (SpatiallLines), 67

as.SpatialPoints.SpatialPointsDataFrame
(SpatialPointsDataFrame-class),
85

as.SpatialPolygons.GridTopology, 7

as.SpatialPolygons.PolygonsList, 8

as.SpatialPolygons.SpatialPixels
(as.SpatialPolygons.GridTopology),
7

as.SpatialPolygonsDataFrame.SpatialPolygons
(SpatialPolygons-class), 88

axis, 22, 65

axTicks, 22, 40

bbexpand (panel.spplot), 49

bbox (bbox-methods), 10

bbox, ANY-method (bbox-methods), 10
bbox,Line-method (bbox-methods), 10
bbox,Lines-method (bbox-methods), 10
bbox,Polygon-method (bbox-methods), 10
bbox,Polygons-method (bbox-methods), 10
bbox, Spatial-method (bbox-methods), 10
bbox-methods, 10

bpy.colors, 11, 99

bubble, 12

cbind.Spatial (Spatial-class), 61

111

cbind.SpatialGridDataFrame
(SpatialGridDataFrame-class),
64
char2dms, 14, 25
cm.colors, 12
coerce,deldir,SpatialLines-method
(Spatiallines-class), 68
coerce,deldir,SpatialPolygons-method
(SpatialPolygons-class), 88
coerce,DMS, character-method (char2dms),
14
coerce,DMS, numeric-method (char2dms), 14
coerce,DMS-method (DMS-class), 24
coerce,GridTopology,data. frame-method
(GridTopology-class), 31
coerce,GridTopology, SpatialPolygons-method
(as.SpatialPolygons.GridTopology),
7
coerce,im,SpatialGridDataFrame-method
(SpatialGridDataFrame-class),
64
coerce,Lines,SpatialMultiPoints-method
(SpatiallLines-class), 68
coerce,Lines,SpatialPoints-method
(SpatiallLines-class), 68
coerce,Polygons,Lines-method
(SpatialPolygons-class), 88
coerce, ppp, SpatialGridDataFrame-method
(SpatialGridDataFrame-class),
64
coerce, ppp,SpatialPoints-method
(SpatialPoints-class), 83
coerce, ppp, SpatialPointsDataFrame-method
(SpatialPointsDataFrame-class),
85
coerce,SpatialGrid,data. frame-method
(SpatialGrid-class), 63
coerce,SpatialGrid,GridTopology-method
(GridTopology-class), 31
coerce,SpatialGrid, SpatialPixels-method
(SpatialGrid-class), 63
coerce,SpatialGrid, SpatialPoints-method
(SpatialGrid-class), 63
coerce,SpatialGrid,SpatialPolygons-method
(SpatialGrid-class), 63
coerce,SpatialGridDataFrame,array-method
(SpatialGridDataFrame-class),
64

112 INDEX

coerce,SpatialGridDataFrame,data. frame-methodcoerce,SpatialPixels,SpatialPolygons-method

(SpatialGridDataFrame-class), (as.SpatialPolygons.GridTopology),
64 7
coerce,SpatialGridDataFrame,matrix-method coerce,SpatialPixelsDataFrame,array-method
(SpatialGridDataFrame-class), (SpatialPixelsDataFrame-class),
64 80
coerce,SpatialGridDataFrame, SpatialPixelsDataEoameepghdilalPixelsDataFrame,data. frame-method
(SpatialGridDataFrame-class), (SpatialPixelsDataFrame-class),
64 80
coerce,SpatialGridDataFrame, SpatialPointsDataEvemeemghbialPixelsDataFrame,matrix-method
(SpatialGridDataFrame-class), (SpatialPixelsDataFrame-class),
64 80
coerce,SpatialGridDataFrame, SpatialPolygonsDataéremeSpathatPixelsDataFrame, SpatialGridDataFrame-method
(SpatialGridDataFrame-class), (SpatialPixelsDataFrame-class),
64 80
coerce,SpatiallLines,SpatialMultiPoints-methodcoerce,SpatialPixelsDataFrame,SpatialPointsDataFrame-metho
(SpatiallLines-class), 68 (SpatialPixelsDataFrame-class),
coerce,SpatiallLines,SpatialPoints-method 80
(SpatiallLines-class), 68 coerce,SpatialPixelsDataFrame, SpatialPolygonsDataFrame-met
coerce,SpatiallLines,SpatialPointsDataFrame-method (SpatialPixelsDataFrame-class),
(SpatiallLines-class), 68 80
coerce,SpatiallLinesDataFrame,data.frame-methodoerce,SpatialPoints,data.frame-method
(SpatialLinesDataFrame-class), (SpatialPoints-class), 83
70 coerce,SpatialPoints,Line-method
coerce,SpatialLinesDataFrame,SpatialMultiPointsDataF rEmeetdRaints-class), 83
(SpatialLinesDataFrame-class), coerce,SpatialPoints,Lines-method
70 (SpatialPoints-class), 83
coerce,SpatialLinesDataFrame,SpatialPointsDatebenoe;SedahddlPoints, matrix-method
(SpatiallLinesDataFrame-class), (SpatialPoints-class), 83
70 coerce,SpatialPoints,SpatialLines-method
coerce,SpatialMultiPoints,data.frame-method (SpatialPoints-class), 83
(SpatialMultiPoints-class), 72 coerce,SpatialPoints,SpatialPixels-method
coerce,SpatialMultiPoints,matrix-method (SpatialPoints-class), 83
(SpatialMultiPoints-class), 72 coerce,SpatialPointsDataFrame,data. frame-method
coerce,SpatialMultiPoints,SpatialPoints-method (SpatialPointsDataFrame-class),
(SpatialMultiPoints-class), 72 85
coerce,SpatialMultiPointsDataFrame,data. frameecoetbedSpatialPointsDataFrame, SpatialPixelsDataFrame-metho
(SpatialMultiPointsDataFrame-class), (SpatialPoints-class), 83
74 coerce,SpatialPointsDataFrame,SpatialPoints-method
coerce,SpatialMultiPointsDataFrame, SpatialPointsDataFfSmeetieettonicht sDataFrame-class),
(SpatialMultiPointsDataFrame-class), 85
74 coerce,SpatialPolygons,SpatiallLines-method
coerce,SpatialPixels,data.frame-method (SpatialPolygons-class), 88
(SpatialPixels-class), 78 coerce, SpatialPolygons, SpatialPolygonsDataFrame-method
coerce,SpatialPixels,GridTopology-method (SpatialPolygons-class), 88
(GridTopology-class), 31 coerce, SpatialPolygonsDataFrame,data. frame-method
coerce,SpatialPixels,SpatialGrid-method (SpatialPolygonsDataFrame-class),

(SpatialPixels-class), 78 91

INDEX

113

coerce,SpatialPolygonsDataFrame, SpatiallinesDataFramefomtthichates-methods), 17

(SpatialPolygonsDataFrame-class),

91

coordinates, SpatialPolygonsDataFrame-method
(coordinates-methods), 17

coerce, SpatialPolygonsDataFrame, SpatialPolygooseméihates-methods, 17, 50

(SpatialPolygonsDataFrame-class),

91
compassRose, 15
contour.SpatialGridDataFrame

(image.SpatialGridDataFrame),

33
contour.SpatialPixelsDataFrame

(image.SpatialGridDataFrame),

33

coordinates, 12, 16, 17, 60, 72, 75, 76, 82,

85, 86, 93, 94
coordinates,data.frame-method
(coordinates-methods), 17
coordinates,GridTopology-method
(coordinates-methods), 17
coordinates,Line-method
(coordinates-methods), 17
coordinates,Lines-method
(coordinates-methods), 17
coordinates,list-method
(coordinates-methods), 17
coordinates,matrix-method
(coordinates-methods), 17
coordinates,SpatialGrid-method
(coordinates-methods), 17

coordinates,SpatialGridDataFrame-method

(coordinates-methods), 17
coordinates,SpatialLines-method
(coordinates-methods), 17

coordinates,SpatialMultiPoints-method

(coordinates-methods), 17

coordinates,SpatialMultiPointsDataFrame-method
(SpatialMultiPointsDataFrame-class),

74
coordinates,SpatialPixels-method
(coordinates-methods), 17

coordinates, SpatialPixelsDataFrame-method

(coordinates-methods), 17
coordinates,SpatialPoints-method
(coordinates-methods), 17

coordinates,SpatialPointsDataFrame-method
(SpatialPointsDataFrame-class),

85
coordinates, SpatialPolygons-method

coordinates<-, §2
coordinates<- (coordinates), 16
coordinates<-,data.frame-method
(coordinates-methods), 17
coordinates<-,Spatial-method
(Spatial-class), 61
coordinatevalues (SpatialPixels), 75
coordnames (coordnames-methods), 18
coordnames,Line-method
(coordnames-methods), 18
coordnames,Lines-method
(coordnames-methods), 18
coordnames,Polygon-method
(coordnames-methods), 18
coordnames,Polygons-method
(coordnames-methods), 18
coordnames, SpatialGrid-method
(SpatialGrid-class), 63
coordnames, SpatialLines-method
(coordnames-methods), 18
coordnames, SpatialMultiPoints-method
(coordnames-methods), 18
coordnames,SpatialPoints-method
(coordnames-methods), 18
coordnames, SpatialPolygons-method
(coordnames-methods), 18
coordnames-methods, 18
coordnames<- (coordnames-methods), 18
coordnames<-,GridTopology, character-method
(coordnames-methods), 18
coordnames<-,Line,character-method
(coordnames-methods), 18
coordnames<-,Lines,character-method
(coordnames-methods), 18
coordnames<-,SpatialGrid, character-method
(coordnames-methods), 18
coordnames<-,SpatiallLines, character-method
(coordnames-methods), 18
coordnames<-,SpatialMultiPoints, character-method
(coordnames-methods), 18
coordnames<-,SpatialPixels, character-method
(coordnames-methods), 18
coordnames<-,SpatialPoints, character-method
(coordnames-methods), 18

114

INDEX

coordnames<-,SpatialPolygons, character-methodExtract, 74, 85

(coordnames-methods), 18
createSPComment, 88, 90
CRS, 19, 37,104
CRS (CRS-class), 18
CRS-class, 7, 18, 68, 70, 71, 76, 79, 82, 87,
89, 91
CRSargs (CRS-class), 18

data.frame, 70

dd2dms, 25

dd2dms (char2dms), 14

degAxis, 21

degreelabelsEW (mapasp), 40

degreelabelsNS (mapasp), 40

dim.SpatialGridDataFrame
(SpatialGridDataFrame-class),
64

dim.SpatiallLinesDataFrame
(SpatialLinesDataFrame-class),
70

dim.SpatialMultiPointsDataFrame
(SpatialMultiPointsDataFrame-class),
74

dim.SpatialPixelsDataFrame
(SpatialPixelsDataFrame-class),
80

dim.SpatialPointsDataFrame
(SpatialPointsDataFrame-class),
85

dim.SpatialPolygonsDataFrame
(SpatialPolygonsDataFrame-class),
91

dimensions (dimensions-methods), 22

dimensions,Spatial-method
(dimensions-methods), 22

dimensions-methods, 22

disaggregate (disaggregate-methods), 23

disaggregate,SpatiallLines-method
(disaggregate-methods), 23

disaggregate,SpatiallLinesDataFrame-method
(disaggregate-methods), 23

disaggregate,SpatialPolygons-method
(disaggregate-methods), 23

disaggregate,SpatialPolygonsDataFrame-method
(disaggregate-methods), 23

disaggregate-methods, 23

dist, 28

DMS-class, 24

filled.contour, 34

flip, 25

flipHorizontal (flip), 25

flipVertical (flip), 25

fullgrid, 77,79

fullgrid (gridded-methods), 27

fullgrid, Spatial-method
(gridded-methods), 27

fullgrid<- (gridded-methods), 27

fullgrid<-,Spatial, ANY-method
(gridded-methods), 27

fullgrid<-,SpatialGrid,logical-method
(gridded-methods), 27

fullgrid<-,SpatialGridDataFrame,logical-method
(gridded-methods), 27

fullgrid<-,SpatialPixels,logical-method
(gridded-methods), 27

fullgrid<-,SpatialPixelsDataFrame,logical-method
(gridded-methods), 27

geometry (geometry-methods), 26
geometry, Spatial-method
(geometry-methods), 26
geometry,SpatialGridDataFrame-method
(geometry-methods), 26
geometry,SpatiallLinesDataFrame-method
(geometry-methods), 26
geometry,SpatialMultiPointsDataFrame-method
(geometry-methods), 26
geometry,SpatialPixelsDataFrame-method
(geometry-methods), 26
geometry,SpatialPointsDataFrame-method
(geometry-methods), 26
geometry,SpatialPolygonsDataFrame-method
(geometry-methods), 26
geometry-methods, 26
geometry<- (geometry-methods), 26
geometry<-,data.frame,Spatial-method
(geometry-methods), 26
get_col_regions (spplot), 95
get_11_TOL (is.projected), 35
get_11_warn (is.projected), 35
get_Polypath (SpatialPolygons-class), 88
get_PolypathRule
(SpatialPolygons-class), 88
get_ReplCRS_warn (is.projected), 35
getGridIndex (SpatialPixels), 75

INDEX

getGridTopology (SpatialPixels), 75
getlLinesIDSlot (sp-deprecated), 60
getlinesLinesSlot (sp-deprecated), 60
getParUsrBB (Spatial-class), 61
getPolygonAreaSlot (sp-deprecated), 60
getPolygonCoordsSlot (sp-deprecated), 60
getPolygonHoleSlot (sp-deprecated), 60
getPolygonLabptSlot (sp-deprecated), 60
getPolygonsIDSlot (sp-deprecated), 60
getPolygonsLabptSlot (sp-deprecated), 60
getPolygonsplotOrderSlot
(sp-deprecated), 60
getPolygonsPolygonsSlot
(sp-deprecated), 60
getSLLinesIDSlots (sp-deprecated), 60
getSL1linesSlot (sp-deprecated), 60
getSpatialLinesMidPoints
(SpatiallLines), 67
getSpatialPolygonsLabelPoints
(SpatialPolygons), 87
getSpPnHoles (sp-deprecated), 60
getSpPnParts (sp-deprecated), 60
getSpPplotOrderSlot (sp-deprecated), 60
getSpPPolygonsIDSlots (sp-deprecated),
60
getSpPPolygonsLabptSlots
(sp-deprecated), 60
getSpPpolygonsSlot (sp-deprecated), 60
glntersection, 5
glntersects, 48
gRelate, 47
gridat (gridlines), 29
gridded, 80
gridded (gridded-methods), 27
gridded, Spatial-method
(gridded-methods), 27
gridded-methods, 27
gridded<-, 80
gridded<- (gridded-methods), 27
gridded<-,data.frame,character-method
(gridded-methods), 27
gridded<-,data.frame, formula-method
(gridded-methods), 27

gridded<-,data.frame,GridTopology-method

(gridded-methods), 27
gridded<-,SpatialGrid, logical-method
(gridded-methods), 27

115

(gridded-methods), 27

gridded<-,SpatialPixels,logical-method
(gridded-methods), 27

gridded<-,SpatialPixelsDataFrame,logical-method
(gridded-methods), 27

gridded<-,SpatialPoints,list-method
(gridded-methods), 27

gridded<-,SpatialPoints,logical-method
(gridded-methods), 27

gridded<-,SpatialPointsDataFrame,list-method
(gridded-methods), 27

gridded<-,SpatialPointsDataFrame,logical-method
(gridded-methods), 27

gridIndex2nb, 28

gridlines, 29

gridparameters (gridded-methods), 27

GridsDatums, 20

GridTopology, 8

GridTopology (SpatialPixels), 75

GridTopology-class, 31, 63, 65, 76, 78-80

gt (Rlogo), 57

head.Spatial (Spatial-class), 61

HexPoints2SpatialPolygons
(as.SpatialPolygons.GridTopology),
7

identicalCRS (CRS-class), 18

identify, 13

IDvaluesGridTopology
(as.SpatialPolygons.GridTopology),
7

IDvaluesSpatialPixels
(as.SpatialPolygons.GridTopology),
7

im-class (Spatial-class), 61

image, 34, 55

image.default, 34

image.SpatialGridDataFrame, 33, 65

image.SpatialPixels
(image.SpatialGridDataFrame),
33

image.SpatialPixelsDataFrame
(image.SpatialGridDataFrame),
33

image2Grid
(image.SpatialGridDataFrame),

gridded<-,SpatialGridDataFrame,logical-method 33

116

imageScale

(image.SpatialGridDataFrame),

33
is.projected, 35, 94

is.projected,CRS-method (CRS-class), 18

is.projected,Spatial-method
(is.projected), 35

labels (gridlines), 29
layout.north.arrow (spplot), 95
layout.scale.bar (spplot), 95
lcm, 66
levelplot, 34, 40, 96-99, 105
Line, 23,37, 38, 39
Line-class, 37, 38, 39, 50, 69
LineLength (SpatiallLines), 67
Lines, 23

Lines (Line), 37
Lines-class, 37-39, 39, 50, 6769
LinesLength (SpatiallLines), 67
loadMeuse, 39

locator, 58

longlat.scales (panel.spplot), 49

make_EPSG, 20

makegrid (spsample), 100

mapasp, 13, 40

mapLegendGrob (spplot), 95

match, 41

mean, 5

merge, 41, 41

merge,Spatial,ANY-method (merge), 41

merge,Spatial,data.frame-method
(merge), 41

meuse, 40, 42, 43—45

meuse.area (meuse.riv), 45

meuse.grid, 40, 42, 43,45

meuse.grid_11, 44

meuse.riv, 45

over, 4, 5, 60, 101, 102

over (over-methods), 46

over,Spatial,Spatial-method
(over-methods), 46

over,SpatialGrid,SpatialGrid-method

(over-methods), 46

over,SpatialGrid, SpatialGridDataFrame-method

(over-methods), 46

INDEX

over,SpatialGrid, SpatialPixels-method
(over-methods), 46

over,SpatialGrid, SpatialPixelsDataFrame-method
(over-methods), 46

over,SpatialGrid, SpatialPoints-method
(over-methods), 46

over,SpatialGrid,SpatialPointsDataFrame-method
(over-methods), 46

over,SpatialGrid, SpatialPolygons-method
(over-methods), 46

over,SpatialGrid, SpatialPolygonsDataFrame-method
(over-methods), 46

over,SpatialGridDataFrame,SpatialPoints-method
(over-methods), 46

over,SpatialGridDataFrame,SpatialPolygonsDataFrame-method
(over-methods), 46

over,SpatialPixels,SpatialPoints-method
(over-methods), 46

over,SpatialPixelsDataFrame, SpatialPoints-method
(over-methods), 46

over,SpatialPoints,SpatialGrid-method
(over-methods), 46

over,SpatialPoints,SpatialGridDataFrame-method
(over-methods), 46

over,SpatialPoints,SpatialPixels-method
(over-methods), 46

over,SpatialPoints,SpatialPixelsDataFrame-method
(over-methods), 46

over,SpatialPoints,SpatialPoints-method
(over-methods), 46

over,SpatialPoints,SpatialPointsDataFrame-method
(over-methods), 46

over,SpatialPoints,SpatialPolygons-method
(over-methods), 46

over,SpatialPoints, SpatialPolygonsDataFrame-method
(over-methods), 46

over,SpatialPolygons,SpatialGrid-method
(over-methods), 46

over,SpatialPolygons,SpatialGridDataFrame-method
(over-methods), 46

over,SpatialPolygons,SpatialPoints-method
(over-methods), 46

over,SpatialPolygons,SpatialPointsDataFrame-method
(over-methods), 46

over-methods, 46

overDF_for_rgeos (over-methods), 46

owin-class (Spatial-class), 61

panel.ggmap (spplot), 95

INDEX

panel.gridplot, 96

panel.gridplot (panel.spplot), 49

panel.identify, 99

panel.pointsplot, 96

panel.pointsplot (panel.spplot), 49

panel.polygonsplot, 96

panel.polygonsplot (panel.spplot), 49

panel.RgoogleMaps (spplot), 95

panel.spplot, 49

par, 65, 89

plot,Spatial,missing-method
(Spatial-class), 61

plot,SpatialGrid,missing-method
(SpatialGrid-class), 63

plot,SpatialGridDataFrame,missing-method
(SpatialGridDataFrame-class),
64

plot,SpatialLines,missing-method
(SpatiallLines-class), 68

plot,SpatialMultiPoints,missing-method
(SpatialMultiPoints-class), 72

plot,SpatialPixels,missing-method
(SpatialPixels-class), 78

plot,SpatialPixelsDataFrame,missing-method
(SpatialPixelsDataFrame-class),
80

plot,SpatialPoints,missing-method
(SpatialPoints-class), 83

plot,SpatialPolygons,missing-method
(SpatialPolygons-class), 88

plot.SpatialGrid (SpatialPixels), 75

plot.SpatialGridDataFrame
(SpatialGridDataFrame-class),
64

plot.SpatialPixelsDataFrame
(SpatialPixelsDataFrame-class),
80

point.in.polygon, 48, 51, 58, 102

points,SpatialMultiPointsDataFrame-method
(SpatialMultiPointsDataFrame-class),
74

points,SpatialPointsDataFrame-method
(SpatialPointsDataFrame-class),
85

points2grid (SpatialPixels), 75

Polygon, 23

Polygon (SpatialPolygons), 87

polygon, 89

117

Polygon-class, 52, 54, 87, 102
Polygons, 23
Polygons (SpatialPolygons), 87
polygons, 53
polygons,Spatial-method
(polygons-methods), 54
polygons,SpatialPolygons-method
(polygons-methods), 54
Polygons-class, 52, 53, 87, 89
polygons-methods, 54
polygons<- (polygons), 53
polygons<-,data.frame,SpatialPolygons-method
(polygons-methods), 54
polypath, 89
ppp-class (Spatial-class), 61
pretty, 65
print.CRS (CRS-class), 18
print.DMS (DMS-class), 24
print.SpatialMultiPoints
(SpatialMultiPoints-class), 72
SpatialMultiPointsDataFrame
(SpatialMultiPointsDataFrame-class),
74
SpatialPoints
(SpatialPoints-class), 83
SpatialPointsDataFrame
(SpatialPointsDataFrame-class),
85
summary.GridTopology
(GridTopology-class), 31
summary.Spatial (Spatial-class),
61
summary.SpatialGrid
(SpatialGrid-class), 63
summary.SpatialGridDataFrame
(SpatialGridDataFrame-class),
64
summary.SpatialPixels
(SpatialPixels-class), 78
print.summary.SpatialPixelsDataFrame
(SpatialPixelsDataFrame-class),
80
proj4string, 19
proj4string (is.projected), 35
proj4string,Spatial-method
(is.projected), 35
proj4string<- (is.projected), 35
proj4string<-,Spatial,character-method

print.

print.

print.

print.
print.
print.

print.

print.

118

(is.projected), 35
proj4string<-,Spatial,CRS-method
(is.projected), 35

psp-class (Spatial-class), 61

rainbow, /12
rasterImage, 34
rbind.Spatiallines
(SpatiallLines-class), 68
rbind.SpatiallLinesDataFrame
(SpatialLinesDataFrame-class),
70
SpatialMultiPoints
(SpatialMultiPoints-class), 72
SpatialMultiPointsDataFrame
(SpatialMultiPointsDataFrame-class),
74
SpatialPixels
(SpatialPixels-class), 78
SpatialPixelsDataFrame
(SpatialPixelsDataFrame-class),
80
SpatialPoints
(SpatialPoints-class), 83
SpatialPointsDataFrame
(SpatialPointsDataFrame-class),
85
SpatialPolygons
(SpatialPolygons-class), 88
rbind.SpatialPolygonsDataFrame
(SpatialPolygonsDataFrame-class),
91
read.asciigrid, 55
readOGR, 88, 90
rebuild_CRS (CRS-class), 18
rebuild_CRS,CRS-method (CRS-class), 18
rebuild_CRS,Spatial-method
(Spatial-class), 61
recenter (recenter-methods), 56
recenter,Line-method
(recenter-methods), 56
recenter,Lines-method
(recenter-methods), 56
recenter,Polygon-method
(recenter-methods), 56
recenter,Polygons-method
(recenter-methods), 56
recenter,SpatialLines-method
(recenter-methods), 56

rbind.

rbind.

rbind.

rbind.

rbind.

rbind.

rbind.

INDEX

recenter,SpatialPolygons-method
(recenter-methods), 56

recenter-methods, 56

remove.duplicates (zerodist), 107

Rlogo, 57

row.names.SpatiallLines
(Spatiallines-class), 68

names.SpatiallLinesDataFrame
(SpatiallLinesDataFrame-class),
70

names.SpatialMultiPoints
(SpatialMultiPoints-class), 72

names.SpatialMultiPointsDataFrame
(SpatialMultiPointsDataFrame-class),
74

names.SpatialPoints
(SpatialPoints-class), 83

names.SpatialPointsDataFrame
(SpatialPointsDataFrame-class),
85

names.SpatialPolygons
(SpatialPolygons-class), 88

names.SpatialPolygonsDataFrame
(SpatialPolygonsDataFrame-class),
91

row.

row.

row.

row.

row.

row.

row.

sample, 102

select.spatial, 58

set_col_regions (spplot), 95

set_11_TOL, 61

set_11_TOL (is.projected), 35

set_l11_warn, 61

set_l1_warn (is.projected), 35

set_Polypath (SpatialPolygons-class), 88

set_PolypathRule
(SpatialPolygons-class), 88

set_ReplCRS_warn (is.projected), 35

setParUsrBB (Spatial-class), 61

show, CRS-method (CRS-class), 18

show,DMS-method (DMS-class), 24

show,GridTopology-method
(GridTopology-class), 31

show, SpatialGrid-method
(SpatialGrid-class), 63

show, SpatialGridDataFrame-method
(SpatialGridDataFrame-class),
64

show, SpatialMultiPoints-method
(SpatialMultiPoints-class), 72

INDEX

show, SpatialMultiPointsDataFrame-method

(SpatialMultiPointsDataFrame-class),

74

show, SpatialPixels-method
(SpatialPixels-class), 78

show, SpatialPixelsDataFrame-method
(SpatialPixelsDataFrame-class),
80

show, SpatialPoints-method
(SpatialPoints-class), 83

show, SpatialPointsDataFrame-method
(SpatialPointsDataFrame-class),
85

show, summary.GridTopology-method
(GridTopology-class), 31

showEPSG, 20

ShowSpatialPointsDataFrame
(SpatialPointsDataFrame-class),
85

sp, 59

sp-deprecated, 60

sp.grid (panel.spplot), 49

sp.lines (panel.spplot), 49

sp.panel.layout (panel.spplot), 49

sp.points (panel.spplot), 49

sp.polygons (panel.spplot), 49

sp.text (panel.spplot), 49

sp.theme (spplot), 95

Spatial, 5, 19, 41

Spatial (Spatial-class), 61

Spatial-class, 29, 36, 61, 68-70, 73, 79, 84,
89,91, 96, 101

SpatialGrid, 28, 32, 64, 80

SpatialGrid (SpatialPixels), 75

SpatialGrid-class, 27, 63, 76, 77, 79, 80

SpatialGridDataFrame, 33, 55, 65, 106

SpatialGridDataFrame
(SpatialPixelsDataFrame), 79

SpatialGridDataFrame-class, 27, 34, 55,
64,76, 77,79, 81

SpatiallLines, 23, 67, 69

SpatiallLines-class, 30, 37-39, 50, 67, 68,
68, 70, 71

SpatiallLinesDataFrame, 70

SpatiallLinesDataFrame (SpatiallLines), 67

SpatiallLinesDataFrame-class, 70

SpatiallLineslLengths (SpatiallLines), 67

SpatialMultiPoints, 71

119

SpatialMultiPoints-class, 71, 72,72

SpatialMultiPointsDataFrame
(SpatialMultiPoints), 71

SpatialMultiPointsDataFrame-class, 71,
72,74

SpatialPixels, 8, 28, 75

SpatialPixels-class, 78

SpatialPixelsDataFrame, 65, 79, 106

SpatialPixelsDataFrame-class, 64, 79, 80

SpatialPoints, 80, 82, 107

SpatialPoints-class, 58, 76, 78, 79, 82, 83,
101

SpatialPointsDataFrame, 12, 80, 98

SpatialPointsDataFrame (SpatialPoints),
82

SpatialPointsDataFrame-class, 17, 30, 58,
80, 82, 85

SpatialPolygons, 8, 23, 87, 88, 90

SpatialPolygons-class, 50, 52, 87, 88, 88,
91, 92

SpatialPolygonsDataFrame, 91

SpatialPolygonsDataFrame
(SpatialPolygons), 87

SpatialPolygonsDataFrame-class, 54, 88,
91

SpatialPolygonsRescale (panel.spplot),
49

spChFIDs, 69, 70, 90, 91

spChFIDs (spChFIDs-methods), 92

spChFIDs,SpatiallLines,character-method
(spChFIDs-methods), 92

spChFIDs,SpatiallLinesDataFrame,character-method
(spChFIDs-methods), 92

spChFIDs,SpatialPolygons,character-method
(spChFIDs-methods), 92

spChFIDs,SpatialPolygonsDataFrame, character-method
(spChFIDs-methods), 92

spChFIDs-methods, 92

spChFIDs<- (spChFIDs-methods), 92

spChFIDs<-,Spatial-method
(spChFIDs-methods), 92

spDists (spDistsN1), 93

spDistsN1, 93

spmap.to.lev (stack), 104

sppanel (spplot), 95

sppanel, character-method (spplot), 95

sppanel,Line-method (spplot), 95

sppanel,Lines-method (spplot), 95

120

sppanel,list-method (spplot), 95
sppanel,NULL-method (spplot), 95
sppanel, SpatialGrid-method (spplot), 95
sppanel,SpatiallLines-method (spplot), 95
sppanel,SpatialPixels-method (spplot),
95
sppanel,SpatialPoints-method (spplot),
95
sppanel,SpatialPolygons-method
(spplot), 95
sppanel-methods (spplot), 95
spplot, 13, 50, 51, 95, 97, 105
spplot,SpatialGridDataFrame-method
(spplot), 95
spplot,SpatialLinesDataFrame-method
(spplot), 95
spplot,SpatialMultiPointsDataFrame-method
(spplot), 95
spplot,SpatialPixelsDataFrame-method
(spplot), 95
spplot,SpatialPointsDataFrame-method
(spplot), 95
spplot,SpatialPolygonsDataFrame-method
(spplot), 95
spplot-methods, 51, 98
spplot-methods (spplot), 95
spplot.grid (spplot), 95
spplot.key (panel.spplot), 49
spplot.locator (spplot), 95
spplot.points (spplot), 95
spplot.polygons (spplot), 95
spsample, 8, 100
spsample,Line-method (spsample), 100
spsample,Lines-method (spsample), 100
spsample,Polygon-method (spsample), 100
spsample,Polygons-method (spsample), 100
spsample, Spatial-method (spsample), 100
spsample, SpatialGrid-method (spsample),
100
spsample, SpatiallLines-method
(spsample), 100
spsample, SpatialPixels-method
(spsample), 100
spsample, SpatialPolygons-method
(spsample), 100
spsample-methods, 101
spsample-methods (spsample), 100
spTransform, 30, 103, 104

INDEX

spTransform, Spatial, ANY-method
(spTransform), 103
spTransform,Spatial,character-method
(spTransform), 103
spTransform,Spatial,CRS-method
(spTransform), 103
spTransform-methods (spTransform), 103
stack, 104, 105
stack.SpatialGridDataFrame (stack), 104
stack.SpatialPointsDataFrame (stack),
104
subset.data.frame, 6/
subset.Spatial (Spatial-class), 61
sum, 5
summary,GridTopology-method
(GridTopology-class), 31
summary,Spatial-method (Spatial-class),
61
summary, SpatialGrid-method
(SpatialGrid-class), 63
summary, SpatiallLines-method
(Spatiallines-class), 68
summary, SpatialMultiPoints-method
(SpatialMultiPoints-class), 72
summary, SpatialPixels-method
(SpatialPixels-class), 78
summary, SpatialPoints-method
(SpatialPoints-class), 83
summary, SpatialPolygons-method
(SpatialPolygons-class), 88
summary.SpatialMultiPoints
(SpatialMultiPoints-class), 72
summary.SpatialPoints
(SpatialPoints-class), 83
surfaceArea, 105
surfaceArea,matrix-method
(surfaceArea), 105
surfaceArea, SpatialGridDataFrame-method
(surfaceArea), 105
surfaceArea, SpatialPixelsDataFrame-method
(surfaceArea), 105
surfaceArea.matrix (surfaceArea), 105

tail.Spatial (Spatial-class), 61
text, 29, 30
text (gridlines), 29

wkt (is.projected), 35
wkt,CRS-method (CRS-class), 18

INDEX

wkt,Spatial-method (is.projected), 35
write.asciigrid (read.asciigrid), 55
write.table, 55

xyplot, 13, 96, 98, 99

zerodist, 107
zerodist2 (zerodist), 107

121

	addAttrToGeom-methods
	aggregate
	as.SpatialPolygons.GridTopology
	as.SpatialPolygons.PolygonsList
	bbox-methods
	bpy.colors
	bubble
	char2dms
	compassRose
	coordinates
	coordinates-methods
	coordnames-methods
	CRS-class
	degAxis
	dimensions-methods
	disaggregate-methods
	DMS-class
	flip
	geometry-methods
	gridded-methods
	gridIndex2nb
	gridlines
	GridTopology-class
	image.SpatialGridDataFrame
	is.projected
	Line
	Line-class
	Lines-class
	loadMeuse
	mapasp
	merge
	meuse
	meuse.grid
	meuse.grid_ll
	meuse.riv
	over-methods
	panel.spplot
	point.in.polygon
	Polygon-class
	polygons
	Polygons-class
	polygons-methods
	read.asciigrid
	recenter-methods
	Rlogo
	select.spatial
	sp
	sp-deprecated
	Spatial-class
	SpatialGrid-class
	SpatialGridDataFrame-class
	SpatialLines
	SpatialLines-class
	SpatialLinesDataFrame-class
	SpatialMultiPoints
	SpatialMultiPoints-class
	SpatialMultiPointsDataFrame-class
	SpatialPixels
	SpatialPixels-class
	SpatialPixelsDataFrame
	SpatialPixelsDataFrame-class
	SpatialPoints
	SpatialPoints-class
	SpatialPointsDataFrame-class
	SpatialPolygons
	SpatialPolygons-class
	SpatialPolygonsDataFrame-class
	spChFIDs-methods
	spDistsN1
	spplot
	spsample
	spTransform
	stack
	surfaceArea
	zerodist
	Index

