Introduction to spant

Reading raw data and plotting

Load the spant package:

library(spant)

Get the path to a data file included with spant:

fname <- system.file("extdata", "philips_spar_sdat_WS.SDAT", package = "spant")

Read the file and save to the workspace as mrs_data:

mrs_data <- read_mrs(fname, format = "spar_sdat")

Output some basic information about the data:

print(mrs_data)
#> MRS Data Parameters
#> ----------------------------------
#> Trans. freq (MHz)       : 127.7861
#> FID data points         : 1024
#> X,Y,Z dimensions        : 1x1x1
#> Dynamics                : 1
#> Coils                   : 1
#> Voxel resolution (mm)   : 20x20x20
#> Sampling frequency (Hz) : 2000
#> Reference freq. (ppm)   : 4.65
#> Nucleus                 : 1H
#> Spectral domain         : FALSE

Plot the spectral region between 5 and 0.5 ppm:

plot(mrs_data, xlim = c(5, 0.5))

Basic preprocessing

Apply a HSVD filter to the residual water region and align the spectrum to the tNAA resonance at 2.01 ppm:

mrs_proc <- hsvd_filt(mrs_data)
mrs_proc <- align(mrs_proc, 2.01)
plot(mrs_proc, xlim = c(5, 0.5))

Basis simulation

Simulate a typical basis set for short TE brain analysis, print some basic information and plot:

basis <- sim_basis_1h_brain_press(mrs_proc)
print(basis)
#> Basis set parameters
#> -------------------------------
#> Trans. freq (MHz)       : 127.786142
#> Data points             : 1024
#> Sampling frequency (Hz) : 2000
#> Elements                : 27
#> 
#> Names
#> -------------------------------
#> -CrCH2,Ala,Asp,Cr,GABA,Glc,Gln,
#> GSH,Glu,GPC,Ins,Lac,Lip09,
#> Lip13a,Lip13b,Lip20,MM09,MM12,
#> MM14,MM17,MM20,NAA,NAAG,PCh,
#> PCr,sIns,Tau
stackplot(basis, xlim = c(4, 0.5), labels = basis$names, y_offset = 5)

Perform ABfit analysis of the processed data (mrs_proc):

fit_res <- fit_mrs(mrs_proc, basis)

Plot the fit result:

plot(fit_res)

Extract the estimated amplitudes from fit_res and print as a ratio to total-creatine in column format:

amps <- fit_amps(fit_res)
print(t(amps / amps$tCr))
#>               [,1]
#> X.CrCH2 0.00000000
#> Ala     0.15614827
#> Asp     0.54809326
#> Cr      0.66327583
#> GABA    0.28180988
#> Glc     0.06746507
#> Gln     0.07452946
#> GSH     0.35689231
#> Glu     1.10359839
#> GPC     0.26459013
#> Ins     0.99276784
#> Lac     0.09734879
#> Lip09   0.37880127
#> Lip13a  0.04545685
#> Lip13b  0.00000000
#> Lip20   0.00000000
#> MM09    0.17194515
#> MM12    0.11370654
#> MM14    0.44454033
#> MM17    0.42554626
#> MM20    1.53642870
#> NAA     0.97179789
#> NAAG    0.27434657
#> PCh     0.00000000
#> PCr     0.33672417
#> sIns    0.10883945
#> Tau     0.00000000
#> tNAA    1.24614446
#> tCr     1.00000000
#> tCho    0.26459013
#> Glx     1.17812785
#> tLM09   0.55074642
#> tLM13   0.60370372
#> tLM20   1.53642870

Unscaled amplitudes, CRLB error estimates and other fitting diagnostics, such as SNR, are given in the results table:

fit_res$res_tab
#>   X Y Z Dynamic Coil X.CrCH2          Ala          Asp           Cr
#> 1 1 1 1       1    1       0 9.497403e-06 3.333667e-05 4.034241e-05
#>           GABA          Glc          Gln          GSH          Glu          GPC
#> 1 1.714052e-05 4.103427e-06 4.533104e-06 2.170725e-05 6.712414e-05 1.609316e-05
#>           Ins          Lac        Lip09       Lip13a Lip13b Lip20         MM09
#> 1 6.03831e-05 5.921044e-06 2.303982e-05 2.764821e-06      0     0 1.045822e-05
#>           MM12         MM14         MM17         MM20          NAA         NAAG
#> 1 6.915971e-06 2.703827e-05 2.588299e-05 9.345017e-05 5.910764e-05 1.668658e-05
#>   PCh          PCr        sIns Tau         tNAA          tCr         tCho
#> 1   0 2.048057e-05 6.61994e-06   0 7.579422e-05 6.082298e-05 1.609316e-05
#>            Glx        tLM09        tLM13        tLM20   X.CrCH2.sd       Ala.sd
#> 1 7.165725e-05 3.349804e-05 3.671906e-05 9.345017e-05 2.353862e-06 4.359105e-06
#>         Asp.sd        Cr.sd      GABA.sd       Glc.sd       Gln.sd       GSH.sd
#> 1 8.967175e-06 3.769567e-06 4.496036e-06 4.330375e-06 4.891686e-06 2.019976e-06
#>        Glu.sd       GPC.sd       Ins.sd       Lac.sd     Lip09.sd    Lip13a.sd
#> 1 4.91104e-06 2.340561e-06 2.023096e-06 5.343971e-06 4.067371e-06 1.338191e-05
#>      Lip13b.sd     Lip20.sd      MM09.sd      MM12.sd      MM14.sd      MM17.sd
#> 1 6.502035e-06 7.383157e-06 3.767182e-06 4.507067e-06 7.122517e-06 3.579249e-06
#>        MM20.sd       NAA.sd      NAAG.sd      PCh.sd      PCr.sd      sIns.sd
#> 1 8.280709e-06 1.021342e-06 1.289272e-06 1.99876e-06 3.16282e-06 7.079371e-07
#>         Tau.sd     tNAA.sd      tCr.sd      tCho.sd       Glx.sd     tLM09.sd
#> 1 3.741979e-06 7.13756e-07 5.84487e-07 2.125818e-07 2.883711e-06 9.731158e-07
#>       tLM13.sd     tLM20.sd    phase       lw        shift      asym
#> 1 1.520083e-06 2.886552e-06 10.83969 5.024144 -0.002971689 0.1771382
#>   res.deviance res.niter res.info
#> 1 7.455757e-05        27        2
#>                                                        res.message bl_ed_pppm
#> 1 Relative error between `par' and the solution is at most `ptol'.   1.969325
#>   max_bl_flex_used     full_res fit_pts ppm_range      SNR      SRR      FQN
#> 1            FALSE 8.202627e-05     497       3.8 63.23665 51.27884 1.520762
#>      tNAA_lw    tCr_lw    tCho_lw auto_bl_crit_7 auto_bl_crit_5.901
#> 1 0.04585125 0.0516791 0.05460794      -8.872611          -8.918514
#>   auto_bl_crit_4.942 auto_bl_crit_4.12 auto_bl_crit_3.425 auto_bl_crit_2.844
#> 1          -8.954323         -8.980263           -8.99748          -9.009404
#>   auto_bl_crit_2.364 auto_bl_crit_1.969 auto_bl_crit_1.647 auto_bl_crit_1.384
#> 1          -9.017235           -9.02016          -9.008892          -8.957936
#>   auto_bl_crit_1.17 auto_bl_crit_0.997 auto_bl_crit_0.856 auto_bl_crit_0.743
#> 1         -8.841034          -8.684534          -8.555253          -8.478498
#>   auto_bl_crit_0.654 auto_bl_crit_0.593 auto_bl_crit_0.558 auto_bl_crit_0.54
#> 1          -8.441088          -8.424843          -8.418121         -8.415343
#>   auto_bl_crit_0.532 auto_bl_crit_0.529
#> 1          -8.414182          -8.413692

Spectral SNR:

fit_res$res_tab$SNR
#> [1] 63.23665

Linewidth of the tNAA resonance in PPM:

fit_res$res_tab$tNAA_lw
#> [1] 0.04585125