
Package ‘sparklyr’
February 2, 2022

Type Package

Title R Interface to Apache Spark

Version 1.7.5

Maintainer Edgar Ruiz <edgar@rstudio.com>

Description R interface to Apache Spark, a fast and general
engine for big data processing, see <https://spark.apache.org/>. This
package supports connecting to local and remote Apache Spark clusters,
provides a 'dplyr' compatible back-end, and provides an interface to
Spark's built-in machine learning algorithms.

License Apache License 2.0 | file LICENSE

URL https://spark.rstudio.com/

BugReports https://github.com/sparklyr/sparklyr/issues

Depends R (>= 3.2)

Imports assertthat, base64enc, blob, config (>= 0.2), DBI (>= 0.6-1),
dbplyr (>= 1.1.0), digest, dplyr (>= 0.7.2), ellipsis (>=
0.1.0), forge, generics, globals, glue, httr (>= 1.2.1),
jsonlite (>= 1.4), lifecycle, methods, openssl (>= 0.8), purrr,
r2d3, rappdirs, rlang (>= 0.1.4), rprojroot, rstudioapi (>=
0.10), stringr, tibble, tidyr (>= 1.2.0), tidyselect, uuid,
vctrs, withr, xml2

Suggests arrow (>= 0.14.0), broom, diffobj, foreach, ggplot2,
iterators, janeaustenr, Lahman, mlbench, nnet, nycflights13,
R6, RCurl, reshape2, shiny (>= 1.0.1), testthat

Encoding UTF-8

RoxygenNote 7.1.2

SystemRequirements Spark: 1.6.x, 2.x, or 3.x

Collate 'spark_data_build_types.R' 'arrow_data.R' 'spark_invoke.R'
'browse_url.R' 'spark_connection.R' 'avro_utils.R'
'config_settings.R' 'config_spark.R' 'connection_instances.R'
'connection_progress.R' 'connection_shinyapp.R'
'spark_version.R' 'connection_spark.R' 'connection_viewer.R'

1

https://spark.apache.org/
https://spark.rstudio.com/
https://github.com/sparklyr/sparklyr/issues

2

'core_arrow.R' 'core_config.R' 'core_connection.R'
'core_deserialize.R' 'core_gateway.R' 'core_invoke.R'
'core_jobj.R' 'core_serialize.R' 'core_utils.R'
'core_worker_config.R' 'utils.R' 'sql_utils.R' 'data_copy.R'
'data_csv.R' 'spark_schema_from_rdd.R' 'spark_apply_bundle.R'
'spark_apply.R' 'tables_spark.R' 'tbl_spark.R' 'spark_sql.R'
'spark_dataframe.R' 'dplyr_spark.R' 'sdf_interface.R'
'data_interface.R' 'databricks_connection.R'
'dbi_spark_connection.R' 'dbi_spark_result.R'
'dbi_spark_table.R' 'dbi_spark_transactions.R' 'dbplyr_utils.R'
'do_spark.R' 'dplyr_do.R' 'dplyr_hof.R' 'dplyr_join.R'
'partial_eval.R' 'dplyr_spark_connection.R'
'dplyr_spark_data.R' 'prng_utils.R'
'ml_feature_sql_transformer_utils.R' 'dplyr_spark_table.R'
'stratified_sample.R' 'sdf_sql.R' 'dplyr_sql.R' 'imports.R'
'install_spark.R' 'install_spark_versions.R'
'install_spark_windows.R' 'install_tools.R' 'java.R'
'jobs_api.R' 'kubernetes_config.R' 'shell_connection.R'
'livy_connection.R' 'livy_install.R' 'livy_invoke.R'
'livy_service.R' 'ml_clustering.R'
'ml_classification_decision_tree_classifier.R'
'ml_classification_gbt_classifier.R'
'ml_classification_linear_svc.R'
'ml_classification_logistic_regression.R'
'ml_classification_multilayer_perceptron_classifier.R'
'ml_classification_naive_bayes.R'
'ml_classification_one_vs_rest.R'
'ml_classification_random_forest_classifier.R'
'ml_model_helpers.R' 'ml_clustering_bisecting_kmeans.R'
'ml_clustering_gaussian_mixture.R' 'ml_clustering_kmeans.R'
'ml_clustering_lda.R' 'ml_clustering_power_iteration.R'
'ml_constructor_utils.R' 'ml_evaluate.R'
'ml_evaluation_clustering.R' 'ml_evaluation_prediction.R'
'ml_evaluator.R' 'ml_feature_binarizer.R'
'ml_feature_bucketed_random_projection_lsh.R'
'ml_feature_bucketizer.R' 'ml_feature_chisq_selector.R'
'ml_feature_count_vectorizer.R' 'ml_feature_dct.R'
'ml_feature_sql_transformer.R' 'ml_feature_dplyr_transformer.R'
'ml_feature_elementwise_product.R'
'ml_feature_feature_hasher.R' 'ml_feature_hashing_tf.R'
'ml_feature_idf.R' 'ml_feature_imputer.R'
'ml_feature_index_to_string.R' 'ml_feature_interaction.R'
'ml_feature_lsh_utils.R' 'ml_feature_max_abs_scaler.R'
'ml_feature_min_max_scaler.R' 'ml_feature_minhash_lsh.R'
'ml_feature_ngram.R' 'ml_feature_normalizer.R'
'ml_feature_one_hot_encoder.R'
'ml_feature_one_hot_encoder_estimator.R' 'ml_feature_pca.R'
'ml_feature_polynomial_expansion.R'

3

'ml_feature_quantile_discretizer.R' 'ml_feature_r_formula.R'
'ml_feature_regex_tokenizer.R' 'ml_feature_robust_scaler.R'
'ml_feature_standard_scaler.R'
'ml_feature_stop_words_remover.R' 'ml_feature_string_indexer.R'
'ml_feature_string_indexer_model.R' 'ml_feature_tokenizer.R'
'ml_feature_vector_assembler.R' 'ml_feature_vector_indexer.R'
'ml_feature_vector_slicer.R' 'ml_feature_word2vec.R'
'ml_fpm_fpgrowth.R' 'ml_fpm_prefixspan.R' 'ml_helpers.R'
'ml_mapping_tables.R' 'ml_model_aft_survival_regression.R'
'ml_model_als.R' 'ml_model_bisecting_kmeans.R'
'ml_model_constructors.R' 'ml_model_decision_tree.R'
'ml_model_gaussian_mixture.R'
'ml_model_generalized_linear_regression.R'
'ml_model_gradient_boosted_trees.R'
'ml_model_isotonic_regression.R' 'ml_model_kmeans.R'
'ml_model_lda.R' 'ml_model_linear_regression.R'
'ml_model_linear_svc.R' 'ml_model_logistic_regression.R'
'ml_model_naive_bayes.R' 'ml_model_one_vs_rest.R'
'ml_model_random_forest.R' 'ml_model_utils.R'
'ml_param_utils.R' 'ml_persistence.R' 'ml_pipeline.R'
'ml_pipeline_utils.R' 'ml_print_utils.R'
'ml_recommendation_als.R'
'ml_regression_aft_survival_regression.R'
'ml_regression_decision_tree_regressor.R'
'ml_regression_gbt_regressor.R'
'ml_regression_generalized_linear_regression.R'
'ml_regression_isotonic_regression.R'
'ml_regression_linear_regression.R'
'ml_regression_random_forest_regressor.R' 'ml_stat.R'
'ml_summary.R' 'ml_transformation_methods.R'
'ml_transformer_and_estimator.R' 'ml_tuning.R'
'ml_tuning_cross_validator.R'
'ml_tuning_train_validation_split.R' 'ml_utils.R'
'ml_validator_utils.R' 'mutation.R' 'na_actions.R'
'new_model_multilayer_perceptron.R' 'precondition.R'
'project_template.R' 'qubole_connection.R' 'reexports.R'
'sdf_dim.R' 'sdf_distinct.R' 'sdf_ml.R' 'sdf_saveload.R'
'sdf_sequence.R' 'sdf_stat.R' 'sdf_streaming.R' 'tidyr_utils.R'
'sdf_unnest_longer.R' 'sdf_wrapper.R' 'sdf_unnest_wider.R'
'sdf_utils.R' 'spark_compile.R' 'spark_context_config.R'
'spark_extensions.R' 'spark_gateway.R'
'spark_gen_embedded_sources.R' 'spark_globals.R' 'spark_hive.R'
'spark_home.R' 'spark_submit.R'
'spark_update_embedded_sources.R' 'spark_utils.R'
'spark_verify_embedded_sources.R' 'stream_data.R'
'stream_job.R' 'stream_operations.R' 'stream_shiny.R'
'stream_view.R' 'test_connection.R'
'tidiers_ml_aft_survival_regression.R' 'tidiers_ml_als.R'

4 R topics documented:

'tidiers_ml_isotonic_regression.R' 'tidiers_ml_lda.R'
'tidiers_ml_linear_models.R' 'tidiers_ml_logistic_regression.R'
'tidiers_ml_multilayer_perceptron.R' 'tidiers_ml_naive_bayes.R'
'tidiers_ml_svc_models.R' 'tidiers_ml_tree_models.R'
'tidiers_ml_unsupervised_models.R' 'tidiers_pca.R'
'tidiers_utils.R' 'tidyr_fill.R' 'tidyr_nest.R'
'tidyr_pivot_utils.R' 'tidyr_pivot_longer.R'
'tidyr_pivot_wider.R' 'tidyr_separate.R' 'tidyr_unite.R'
'tidyr_unnest.R' 'worker_apply.R' 'worker_connect.R'
'worker_connection.R' 'worker_invoke.R' 'worker_log.R'
'worker_main.R' 'yarn_cluster.R' 'yarn_config.R' 'yarn_ui.R'
'zzz.R'

NeedsCompilation no

Author Javier Luraschi [aut],
Kevin Kuo [aut] (<https://orcid.org/0000-0001-7803-7901>),
Kevin Ushey [aut],
JJ Allaire [aut],
Samuel Macedo [ctb],
Hossein Falaki [aut],
Lu Wang [aut],
Andy Zhang [aut],
Yitao Li [aut] (<https://orcid.org/0000-0002-1261-905X>),
Jozef Hajnala [ctb],
Maciej Szymkiewicz [ctb] (<https://orcid.org/0000-0003-1469-9396>),
Wil Davis [ctb],
Edgar Ruiz [aut, cre],
RStudio [cph],
The Apache Software Foundation [aut, cph]

Repository CRAN

Date/Publication 2022-02-02 14:30:02 UTC

R topics documented:
checkpoint_directory . 11
collect_from_rds . 11
compile_package_jars . 12
connection_config . 12
copy_to.spark_connection . 13
distinct . 13
download_scalac . 14
dplyr_hof . 14
ensure . 14
fill . 15
filter . 15
find_scalac . 15
ft_binarizer . 16

https://orcid.org/0000-0001-7803-7901
https://orcid.org/0000-0002-1261-905X
https://orcid.org/0000-0003-1469-9396

R topics documented: 5

ft_bucketizer . 17
ft_chisq_selector . 19
ft_count_vectorizer . 21
ft_dct . 23
ft_elementwise_product . 24
ft_feature_hasher . 25
ft_hashing_tf . 27
ft_idf . 28
ft_imputer . 30
ft_index_to_string . 31
ft_interaction . 32
ft_lsh . 33
ft_lsh_utils . 35
ft_max_abs_scaler . 36
ft_min_max_scaler . 38
ft_ngram . 39
ft_normalizer . 41
ft_one_hot_encoder . 42
ft_one_hot_encoder_estimator . 43
ft_pca . 45
ft_polynomial_expansion . 46
ft_quantile_discretizer . 48
ft_regex_tokenizer . 50
ft_robust_scaler . 51
ft_r_formula . 53
ft_sql_transformer . 55
ft_standard_scaler . 56
ft_stop_words_remover . 58
ft_string_indexer . 59
ft_tokenizer . 61
ft_vector_assembler . 62
ft_vector_indexer . 63
ft_vector_slicer . 64
ft_word2vec . 65
full_join . 67
generic_call_interface . 67
get_spark_sql_catalog_implementation . 68
hive_context_config . 68
hof_aggregate . 69
hof_array_sort . 70
hof_exists . 71
hof_filter . 71
hof_forall . 72
hof_map_filter . 73
hof_map_zip_with . 74
hof_transform . 75
hof_transform_keys . 76
hof_transform_values . 76

6 R topics documented:

hof_zip_with . 77
inner_join . 78
invoke . 78
jarray . 79
jfloat . 80
jfloat_array . 80
join.tbl_spark . 81
j_invoke . 83
left_join . 83
list_sparklyr_jars . 84
livy_config . 84
livy_service_start . 85
ml-params . 86
ml-persistence . 87
ml-transform-methods . 88
ml-tuning . 89
ml_aft_survival_regression . 91
ml_als . 94
ml_als_tidiers . 97
ml_bisecting_kmeans . 98
ml_chisquare_test . 99
ml_clustering_evaluator . 100
ml_corr . 102
ml_decision_tree_classifier . 102
ml_default_stop_words . 107
ml_evaluate . 108
ml_evaluator . 109
ml_feature_importances . 111
ml_fpgrowth . 112
ml_gaussian_mixture . 113
ml_gbt_classifier . 115
ml_generalized_linear_regression . 119
ml_glm_tidiers . 123
ml_isotonic_regression . 124
ml_isotonic_regression_tidiers . 126
ml_kmeans . 126
ml_kmeans_cluster_eval . 129
ml_lda . 129
ml_lda_tidiers . 134
ml_linear_regression . 134
ml_linear_svc . 137
ml_linear_svc_tidiers . 139
ml_logistic_regression . 140
ml_logistic_regression_tidiers . 143
ml_model_data . 143
ml_multilayer_perceptron_classifier . 144
ml_multilayer_perceptron_tidiers . 147
ml_naive_bayes . 148

R topics documented: 7

ml_naive_bayes_tidiers . 150
ml_one_vs_rest . 151
ml_pca_tidiers . 152
ml_pipeline . 153
ml_power_iteration . 153
ml_prefixspan . 156
ml_random_forest_classifier . 157
ml_stage . 162
ml_summary . 162
ml_survival_regression_tidiers . 163
ml_tree_tidiers . 163
ml_uid . 165
ml_unsupervised_tidiers . 165
mutate . 166
na.replace . 166
nest . 166
pivot_longer . 167
pivot_wider . 167
random_string . 167
reactiveSpark . 168
registerDoSpark . 168
register_extension . 169
replace_na . 169
right_join . 169
sdf-saveload . 170
sdf-transform-methods . 170
sdf_along . 171
sdf_bind . 171
sdf_broadcast . 172
sdf_checkpoint . 173
sdf_coalesce . 173
sdf_collect . 174
sdf_copy_to . 174
sdf_crosstab . 175
sdf_debug_string . 176
sdf_describe . 176
sdf_dim . 177
sdf_distinct . 177
sdf_drop_duplicates . 178
sdf_expand_grid . 178
sdf_from_avro . 179
sdf_is_streaming . 180
sdf_last_index . 180
sdf_len . 181
sdf_num_partitions . 181
sdf_partition_sizes . 182
sdf_persist . 182
sdf_pivot . 183

8 R topics documented:

sdf_project . 184
sdf_quantile . 185
sdf_random_split . 185
sdf_rbeta . 187
sdf_rbinom . 188
sdf_rcauchy . 189
sdf_rchisq . 190
sdf_read_column . 190
sdf_register . 191
sdf_repartition . 191
sdf_residuals.ml_model_generalized_linear_regression 192
sdf_rexp . 192
sdf_rgamma . 193
sdf_rgeom . 194
sdf_rhyper . 195
sdf_rlnorm . 196
sdf_rnorm . 197
sdf_rpois . 198
sdf_rt . 198
sdf_runif . 199
sdf_rweibull . 200
sdf_sample . 201
sdf_schema . 201
sdf_separate_column . 202
sdf_seq . 203
sdf_sort . 203
sdf_sql . 204
sdf_to_avro . 204
sdf_unnest_longer . 205
sdf_unnest_wider . 206
sdf_weighted_sample . 207
sdf_with_sequential_id . 208
sdf_with_unique_id . 209
select . 209
separate . 209
spark-api . 210
spark-connections . 211
sparklyr_get_backend_port . 213
spark_adaptive_query_execution . 213
spark_advisory_shuffle_partition_size . 214
spark_apply . 214
spark_apply_bundle . 217
spark_apply_log . 217
spark_auto_broadcast_join_threshold . 218
spark_coalesce_initial_num_partitions . 218
spark_coalesce_min_num_partitions . 219
spark_coalesce_shuffle_partitions . 219
spark_compilation_spec . 220

R topics documented: 9

spark_config . 221
spark_config_kubernetes . 222
spark_config_packages . 223
spark_config_settings . 223
spark_connection . 224
spark_connection-class . 224
spark_connection_find . 224
spark_context_config . 225
spark_dataframe . 225
spark_default_compilation_spec . 226
spark_dependency . 226
spark_dependency_fallback . 227
spark_extension . 228
spark_home_set . 228
spark_install . 229
spark_jobj . 230
spark_jobj-class . 230
spark_load_table . 231
spark_log . 232
spark_read . 232
spark_read_avro . 233
spark_read_binary . 234
spark_read_csv . 236
spark_read_delta . 237
spark_read_image . 238
spark_read_jdbc . 240
spark_read_json . 241
spark_read_libsvm . 242
spark_read_orc . 243
spark_read_parquet . 245
spark_read_source . 246
spark_read_table . 247
spark_read_text . 248
spark_save_table . 249
spark_session_config . 250
spark_statistical_routines . 251
spark_table_name . 251
spark_version . 252
spark_version_from_home . 252
spark_web . 253
spark_write . 253
spark_write_avro . 254
spark_write_csv . 255
spark_write_delta . 256
spark_write_jdbc . 257
spark_write_json . 259
spark_write_orc . 260
spark_write_parquet . 261

10 R topics documented:

spark_write_rds . 262
spark_write_source . 263
spark_write_table . 264
spark_write_text . 265
src_databases . 266
stream_find . 266
stream_generate_test . 267
stream_id . 267
stream_lag . 268
stream_name . 269
stream_read_csv . 269
stream_read_delta . 271
stream_read_json . 272
stream_read_kafka . 273
stream_read_orc . 274
stream_read_parquet . 275
stream_read_socket . 276
stream_read_text . 277
stream_render . 278
stream_stats . 279
stream_stop . 279
stream_trigger_continuous . 280
stream_trigger_interval . 280
stream_view . 281
stream_watermark . 281
stream_write_console . 282
stream_write_csv . 283
stream_write_delta . 285
stream_write_json . 286
stream_write_kafka . 287
stream_write_memory . 289
stream_write_orc . 290
stream_write_parquet . 291
stream_write_text . 292
tbl_cache . 294
tbl_change_db . 294
tbl_uncache . 295
transform_sdf . 295
unite . 295
unnest . 296
[.tbl_spark . 296
%->% . 297

Index 298

checkpoint_directory 11

checkpoint_directory Set/Get Spark checkpoint directory

Description

Set/Get Spark checkpoint directory

Usage

spark_set_checkpoint_dir(sc, dir)

spark_get_checkpoint_dir(sc)

Arguments

sc A spark_connection.

dir checkpoint directory, must be HDFS path of running on cluster

collect_from_rds Collect Spark data serialized in RDS format into R

Description

Deserialize Spark data that is serialized using ‘spark_write_rds()‘ into a R dataframe.

Usage

collect_from_rds(path)

Arguments

path Path to a local RDS file that is produced by ‘spark_write_rds()‘ (RDS files stored
in HDFS will need to be downloaded to local filesystem first (e.g., by running
‘hadoop fs -copyToLocal ...‘ or similar)

See Also

Other Spark serialization routines: spark_load_table(), spark_read_avro(), spark_read_binary(),
spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

12 connection_config

compile_package_jars Compile Scala sources into a Java Archive (jar)

Description

Compile the scala source files contained within an R package into a Java Archive (jar) file that
can be loaded and used within a Spark environment.

Usage

compile_package_jars(..., spec = NULL)

Arguments

... Optional compilation specifications, as generated by spark_compilation_spec.
When no arguments are passed, spark_default_compilation_spec is used
instead.

spec An optional list of compilation specifications. When set, this option takes prece-
dence over arguments passed to

connection_config Read configuration values for a connection

Description

Read configuration values for a connection

Usage

connection_config(sc, prefix, not_prefix = list())

Arguments

sc spark_connection

prefix Prefix to read parameters for (e.g. spark.context., spark.sql., etc.)

not_prefix Prefix to not include.

Value

Named list of config parameters (note that if a prefix was specified then the names will not include
the prefix)

copy_to.spark_connection 13

copy_to.spark_connection

Copy an R Data Frame to Spark

Description

Copy an R data.frame to Spark, and return a reference to the generated Spark DataFrame as a
tbl_spark. The returned object will act as a dplyr-compatible interface to the underlying Spark
table.

Usage

S3 method for class 'spark_connection'
copy_to(
dest,
df,
name = spark_table_name(substitute(df)),
overwrite = FALSE,
memory = TRUE,
repartition = 0L,
...

)

Arguments

dest A spark_connection.

df An R data.frame.

name The name to assign to the copied table in Spark.

overwrite Boolean; overwrite a pre-existing table with the name name if one already exists?

memory Boolean; should the table be cached into memory?

repartition The number of partitions to use when distributing the table across the Spark
cluster. The default (0) can be used to avoid partitioning.

... Optional arguments; currently unused.

Value

A tbl_spark, representing a dplyr-compatible interface to a Spark DataFrame.

distinct Distinct

Description

See distinct for more details.

14 ensure

download_scalac Downloads default Scala Compilers

Description

compile_package_jars requires several versions of the scala compiler to work, this is to match
Spark scala versions. To help setup your environment, this function will download the required
compilers under the default search path.

Usage

download_scalac(dest_path = NULL)

Arguments

dest_path The destination path where scalac will be downloaded to.

Details

See find_scalac for a list of paths searched and used by this function to install the required com-
pilers.

dplyr_hof dplyr wrappers for Apache Spark higher order functions

Description

These methods implement dplyr grammars for Apache Spark higher order functions

ensure Enforce Specific Structure for R Objects

Description

These routines are useful when preparing to pass objects to a Spark routine, as it is often necessary
to ensure certain parameters are scalar integers, or scalar doubles, and so on.

Arguments

object An R object.
allow.na Are NA values permitted for this object?
allow.null Are NULL values permitted for this object?
default If object is NULL, what value should be used in its place? If default is speci-

fied, allow.null is ignored (and assumed to be TRUE).

fill 15

fill Fill

Description

See fill for more details.

filter Filter

Description

See filter for more details.

find_scalac Discover the Scala Compiler

Description

Find the scalac compiler for a particular version of scala, by scanning some common directories
containing scala installations.

Usage

find_scalac(version, locations = NULL)

Arguments

version The scala version to search for. Versions of the form major.minor will be
matched against the scalac installation with version major.minor.patch; if
multiple compilers are discovered the most recent one will be used.

locations Additional locations to scan. By default, the directories /opt/scala and /usr/local/scala
will be scanned.

16 ft_binarizer

ft_binarizer Feature Transformation – Binarizer (Transformer)

Description

Apply thresholding to a column, such that values less than or equal to the threshold are assigned
the value 0.0, and values greater than the threshold are assigned the value 1.0. Column output is
numeric for compatibility with other modeling functions.

Usage

ft_binarizer(
x,
input_col,
output_col,
threshold = 0,
uid = random_string("binarizer_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

threshold Threshold used to binarize continuous features.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ft_bucketizer 17

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

Examples

Not run:
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

iris_tbl %>%
ft_binarizer(
input_col = "Sepal_Length",
output_col = "Sepal_Length_bin",
threshold = 5

) %>%
select(Sepal_Length, Sepal_Length_bin, Species)

End(Not run)

ft_bucketizer Feature Transformation – Bucketizer (Transformer)

Description

Similar to R’s cut function, this transforms a numeric column into a discretized column, with
breaks specified through the splits parameter.

Usage

ft_bucketizer(
x,
input_col = NULL,
output_col = NULL,
splits = NULL,
input_cols = NULL,
output_cols = NULL,

https://spark.apache.org/docs/latest/ml-features.html

18 ft_bucketizer

splits_array = NULL,
handle_invalid = "error",
uid = random_string("bucketizer_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

splits A numeric vector of cutpoints, indicating the bucket boundaries.

input_cols Names of input columns.

output_cols Names of output columns.

splits_array Parameter for specifying multiple splits parameters. Each element in this array
can be used to map continuous features into buckets.

handle_invalid (Spark 2.1.0+) Param for how to handle invalid entries. Options are ’skip’ (filter
out rows with invalid values), ’error’ (throw an error), or ’keep’ (keep invalid
values in a special additional bucket). Default: "error"

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

ft_chisq_selector 19

Examples

Not run:
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

iris_tbl %>%
ft_bucketizer(
input_col = "Sepal_Length",
output_col = "Sepal_Length_bucket",
splits = c(0, 4.5, 5, 8)

) %>%
select(Sepal_Length, Sepal_Length_bucket, Species)

End(Not run)

ft_chisq_selector Feature Transformation – ChiSqSelector (Estimator)

Description

Chi-Squared feature selection, which selects categorical features to use for predicting a categorical
label

Usage

ft_chisq_selector(
x,
features_col = "features",
output_col = NULL,
label_col = "label",
selector_type = "numTopFeatures",
fdr = 0.05,
fpr = 0.05,
fwe = 0.05,
num_top_features = 50,
percentile = 0.1,
uid = random_string("chisq_selector_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

20 ft_chisq_selector

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

output_col The name of the output column.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

selector_type (Spark 2.1.0+) The selector type of the ChisqSelector. Supported options: "num-
TopFeatures" (default), "percentile", "fpr", "fdr", "fwe".

fdr (Spark 2.2.0+) The upper bound of the expected false discovery rate. Only ap-
plicable when selector_type = "fdr". Default value is 0.05.

fpr (Spark 2.1.0+) The highest p-value for features to be kept. Only applicable when
selector_type= "fpr". Default value is 0.05.

fwe (Spark 2.2.0+) The upper bound of the expected family-wise error rate. Only
applicable when selector_type = "fwe". Default value is 0.05.

num_top_features

Number of features that selector will select, ordered by ascending p-value. If
the number of features is less than num_top_features, then this will select all
features. Only applicable when selector_type = "numTopFeatures". The default
value of num_top_features is 50.

percentile (Spark 2.1.0+) Percentile of features that selector will select, ordered by statis-
tics value descending. Only applicable when selector_type = "percentile". De-
fault value is 0.1.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ft_count_vectorizer 21

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_count_vectorizer(), ft_dct(),
ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(),
ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_count_vectorizer Feature Transformation – CountVectorizer (Estimator)

Description

Extracts a vocabulary from document collections.

Usage

ft_count_vectorizer(
x,
input_col = NULL,
output_col = NULL,
binary = FALSE,
min_df = 1,
min_tf = 1,
vocab_size = 2^18,
uid = random_string("count_vectorizer_"),
...

)

ml_vocabulary(model)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

binary Binary toggle to control the output vector values. If TRUE, all nonzero counts
(after min_tf filter applied) are set to 1. This is useful for discrete probabilistic
models that model binary events rather than integer counts. Default: FALSE

https://spark.apache.org/docs/latest/ml-features.html

22 ft_count_vectorizer

min_df Specifies the minimum number of different documents a term must appear in to
be included in the vocabulary. If this is an integer greater than or equal to 1, this
specifies the number of documents the term must appear in; if this is a double in
[0,1), then this specifies the fraction of documents. Default: 1.

min_tf Filter to ignore rare words in a document. For each document, terms with fre-
quency/count less than the given threshold are ignored. If this is an integer
greater than or equal to 1, then this specifies a count (of times the term must
appear in the document); if this is a double in [0,1), then this specifies a fraction
(out of the document’s token count). Default: 1.

vocab_size Build a vocabulary that only considers the top vocab_size terms ordered by
term frequency across the corpus. Default: 2^18.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

model A ml_count_vectorizer_model.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ml_vocabulary() returns a vector of vocabulary built.

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_dct(),
ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(),
ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

ft_dct 23

ft_dct Feature Transformation – Discrete Cosine Transform (DCT) (Trans-
former)

Description

A feature transformer that takes the 1D discrete cosine transform of a real vector. No zero padding
is performed on the input vector. It returns a real vector of the same length representing the DCT.
The return vector is scaled such that the transform matrix is unitary (aka scaled DCT-II).

Usage

ft_dct(
x,
input_col = NULL,
output_col = NULL,
inverse = FALSE,
uid = random_string("dct_"),
...

)

ft_discrete_cosine_transform(
x,
input_col,
output_col,
inverse = FALSE,
uid = random_string("dct_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

inverse Indicates whether to perform the inverse DCT (TRUE) or forward DCT (FALSE).

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

ft_discrete_cosine_transform() is an alias for ft_dct for backwards compatibility.

24 ft_elementwise_product

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(),
ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_elementwise_product

Feature Transformation – ElementwiseProduct (Transformer)

Description

Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a provided
"weight" vector. In other words, it scales each column of the dataset by a scalar multiplier.

Usage

ft_elementwise_product(
x,
input_col = NULL,
output_col = NULL,
scaling_vec = NULL,
uid = random_string("elementwise_product_"),
...

)

https://spark.apache.org/docs/latest/ml-features.html

ft_feature_hasher 25

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

scaling_vec the vector to multiply with input vectors

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(),
ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(),
ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(),
ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_feature_hasher Feature Transformation – FeatureHasher (Transformer)

Description

Feature Transformation – FeatureHasher (Transformer)

https://spark.apache.org/docs/latest/ml-features.html

26 ft_feature_hasher

Usage

ft_feature_hasher(
x,
input_cols = NULL,
output_col = NULL,
num_features = 2^18,
categorical_cols = NULL,
uid = random_string("feature_hasher_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_cols Names of input columns.

output_col Name of output column.

num_features Number of features. Defaults to 218.
categorical_cols

Numeric columns to treat as categorical features. By default only string and
boolean columns are treated as categorical, so this param can be used to explic-
itly specify the numerical columns to treat as categorical.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

Feature hashing projects a set of categorical or numerical features into a feature vector of specified
dimension (typically substantially smaller than that of the original feature space). This is done
using the hashing trick https://en.wikipedia.org/wiki/Feature_hashing to map features to
indices in the feature vector.

The FeatureHasher transformer operates on multiple columns. Each column may contain either nu-
meric or categorical features. Behavior and handling of column data types is as follows: -Numeric
columns: For numeric features, the hash value of the column name is used to map the feature value
to its index in the feature vector. By default, numeric features are not treated as categorical (even
when they are integers). To treat them as categorical, specify the relevant columns in categorical-
Cols. -String columns: For categorical features, the hash value of the string "column_name=value"
is used to map to the vector index, with an indicator value of 1.0. Thus, categorical features are
"one-hot" encoded (similarly to using OneHotEncoder with drop_last=FALSE). -Boolean columns:
Boolean values are treated in the same way as string columns. That is, boolean features are repre-
sented as "column_name=true" or "column_name=false", with an indicator value of 1.0.

Null (missing) values are ignored (implicitly zero in the resulting feature vector).

The hash function used here is also the MurmurHash 3 used in HashingTF. Since a simple modulo
on the hashed value is used to determine the vector index, it is advisable to use a power of two as
the num_features parameter; otherwise the features will not be mapped evenly to the vector indices.

https://en.wikipedia.org/wiki/Feature_hashing

ft_hashing_tf 27

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(),
ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(),
ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(),
ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_hashing_tf Feature Transformation – HashingTF (Transformer)

Description

Maps a sequence of terms to their term frequencies using the hashing trick.

Usage

ft_hashing_tf(
x,
input_col = NULL,
output_col = NULL,
binary = FALSE,
num_features = 2^18,
uid = random_string("hashing_tf_"),
...

)

https://spark.apache.org/docs/latest/ml-features.html

28 ft_idf

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

binary Binary toggle to control term frequency counts. If true, all non-zero counts are
set to 1. This is useful for discrete probabilistic models that model binary events
rather than integer counts. (default = FALSE)

num_features Number of features. Should be greater than 0. (default = 2^18)

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_idf(), ft_imputer(), ft_index_to_string(),
ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(),
ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(),
ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_idf Feature Transformation – IDF (Estimator)

Description

Compute the Inverse Document Frequency (IDF) given a collection of documents.

https://spark.apache.org/docs/latest/ml-features.html

ft_idf 29

Usage

ft_idf(
x,
input_col = NULL,
output_col = NULL,
min_doc_freq = 0,
uid = random_string("idf_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
input_col The name of the input column.
output_col The name of the output column.
min_doc_freq The minimum number of documents in which a term should appear. Default: 0
uid A character string used to uniquely identify the feature transformer.
... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_imputer(),
ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

30 ft_imputer

ft_imputer Feature Transformation – Imputer (Estimator)

Description

Imputation estimator for completing missing values, either using the mean or the median of the
columns in which the missing values are located. The input columns should be of numeric type.
This function requires Spark 2.2.0+.

Usage

ft_imputer(
x,
input_cols = NULL,
output_cols = NULL,
missing_value = NULL,
strategy = "mean",
uid = random_string("imputer_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
input_cols The names of the input columns
output_cols The names of the output columns.
missing_value The placeholder for the missing values. All occurrences of missing_value will

be imputed. Note that null values are always treated as missing.
strategy The imputation strategy. Currently only "mean" and "median" are supported.

If "mean", then replace missing values using the mean value of the feature. If
"median", then replace missing values using the approximate median value of
the feature. Default: mean

uid A character string used to uniquely identify the feature transformer.
... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

ft_index_to_string 31

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_index_to_string Feature Transformation – IndexToString (Transformer)

Description

A Transformer that maps a column of indices back to a new column of corresponding string val-
ues. The index-string mapping is either from the ML attributes of the input column, or from
user-supplied labels (which take precedence over ML attributes). This function is the inverse of
ft_string_indexer.

Usage

ft_index_to_string(
x,
input_col = NULL,
output_col = NULL,
labels = NULL,
uid = random_string("index_to_string_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
input_col The name of the input column.
output_col The name of the output column.
labels Optional param for array of labels specifying index-string mapping.
uid A character string used to uniquely identify the feature transformer.
... Optional arguments; currently unused.

https://spark.apache.org/docs/latest/ml-features.html

32 ft_interaction

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

ft_string_indexer

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(),
ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(),
ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_interaction Feature Transformation – Interaction (Transformer)

Description

Implements the feature interaction transform. This transformer takes in Double and Vector type
columns and outputs a flattened vector of their feature interactions. To handle interaction, we first
one-hot encode any nominal features. Then, a vector of the feature cross-products is produced.

Usage

ft_interaction(
x,
input_cols = NULL,
output_col = NULL,
uid = random_string("interaction_"),
...

)

https://spark.apache.org/docs/latest/ml-features.html

ft_lsh 33

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_cols The names of the input columns

output_col The name of the output column.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_lsh Feature Transformation – LSH (Estimator)

Description

Locality Sensitive Hashing functions for Euclidean distance (Bucketed Random Projection) and
Jaccard distance (MinHash).

https://spark.apache.org/docs/latest/ml-features.html

34 ft_lsh

Usage

ft_bucketed_random_projection_lsh(
x,
input_col = NULL,
output_col = NULL,
bucket_length = NULL,
num_hash_tables = 1,
seed = NULL,
uid = random_string("bucketed_random_projection_lsh_"),
...

)

ft_minhash_lsh(
x,
input_col = NULL,
output_col = NULL,
num_hash_tables = 1L,
seed = NULL,
uid = random_string("minhash_lsh_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

bucket_length The length of each hash bucket, a larger bucket lowers the false negative rate.
The number of buckets will be (max L2 norm of input vectors) / bucketLength.

num_hash_tables

Number of hash tables used in LSH OR-amplification. LSH OR-amplification
can be used to reduce the false negative rate. Higher values for this param lead to
a reduced false negative rate, at the expense of added computational complexity.

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

ft_lsh_utils 35

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

ft_lsh_utils

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_max_abs_scaler(), ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_lsh_utils Utility functions for LSH models

Description

Utility functions for LSH models

Usage

ml_approx_nearest_neighbors(
model,
dataset,
key,
num_nearest_neighbors,
dist_col = "distCol"

)

ml_approx_similarity_join(
model,
dataset_a,
dataset_b,
threshold,
dist_col = "distCol"

)

https://spark.apache.org/docs/latest/ml-features.html

36 ft_max_abs_scaler

Arguments

model A fitted LSH model, returned by either ft_minhash_lsh() or ft_bucketed_random_projection_lsh().

dataset The dataset to search for nearest neighbors of the key.

key Feature vector representing the item to search for.
num_nearest_neighbors

The maximum number of nearest neighbors.

dist_col Output column for storing the distance between each result row and the key.

dataset_a One of the datasets to join.

dataset_b Another dataset to join.

threshold The threshold for the distance of row pairs.

ft_max_abs_scaler Feature Transformation – MaxAbsScaler (Estimator)

Description

Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute
value in each feature. It does not shift/center the data, and thus does not destroy any sparsity.

Usage

ft_max_abs_scaler(
x,
input_col = NULL,
output_col = NULL,
uid = random_string("max_abs_scaler_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

ft_max_abs_scaler 37

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_min_max_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

features <- c("Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width")

iris_tbl %>%
ft_vector_assembler(
input_col = features,
output_col = "features_temp"

) %>%
ft_max_abs_scaler(

input_col = "features_temp",
output_col = "features"

)

End(Not run)

https://spark.apache.org/docs/latest/ml-features.html

38 ft_min_max_scaler

ft_min_max_scaler Feature Transformation – MinMaxScaler (Estimator)

Description

Rescale each feature individually to a common range [min, max] linearly using column summary
statistics, which is also known as min-max normalization or Rescaling

Usage

ft_min_max_scaler(
x,
input_col = NULL,
output_col = NULL,
min = 0,
max = 1,
uid = random_string("min_max_scaler_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

min Lower bound after transformation, shared by all features Default: 0.0

max Upper bound after transformation, shared by all features Default: 1.0

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ft_ngram 39

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

features <- c("Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width")

iris_tbl %>%
ft_vector_assembler(
input_col = features,
output_col = "features_temp"

) %>%
ft_min_max_scaler(

input_col = "features_temp",
output_col = "features"

)

End(Not run)

ft_ngram Feature Transformation – NGram (Transformer)

Description

A feature transformer that converts the input array of strings into an array of n-grams. Null values
in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a
space-separated string of words.

Usage

ft_ngram(
x,
input_col = NULL,
output_col = NULL,

https://spark.apache.org/docs/latest/ml-features.html

40 ft_ngram

n = 2,
uid = random_string("ngram_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

n Minimum n-gram length, greater than or equal to 1. Default: 2, bigram features

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

When the input is empty, an empty array is returned. When the input array length is less than n
(number of elements per n-gram), no n-grams are returned.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

ft_normalizer 41

ft_normalizer Feature Transformation – Normalizer (Transformer)

Description

Normalize a vector to have unit norm using the given p-norm.

Usage

ft_normalizer(
x,
input_col = NULL,
output_col = NULL,
p = 2,
uid = random_string("normalizer_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

p Normalization in L^p space. Must be >= 1. Defaults to 2.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),

https://spark.apache.org/docs/latest/ml-features.html

42 ft_one_hot_encoder

ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_one_hot_encoder Feature Transformation – OneHotEncoder (Transformer)

Description

One-hot encoding maps a column of label indices to a column of binary vectors, with at most
a single one-value. This encoding allows algorithms which expect continuous features, such as
Logistic Regression, to use categorical features. Typically, used with ft_string_indexer() to
index a column first.

Usage

ft_one_hot_encoder(
x,
input_cols = NULL,
output_cols = NULL,
handle_invalid = NULL,
drop_last = TRUE,
uid = random_string("one_hot_encoder_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_cols The name of the input columns.

output_cols The name of the output columns.

handle_invalid (Spark 2.1.0+) Param for how to handle invalid entries. Options are ’skip’ (filter
out rows with invalid values), ’error’ (throw an error), or ’keep’ (keep invalid
values in a special additional bucket). Default: "error"

drop_last Whether to drop the last category. Defaults to TRUE.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

ft_one_hot_encoder_estimator 43

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_pca(),
ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_one_hot_encoder_estimator

Feature Transformation – OneHotEncoderEstimator (Estimator)

Description

A one-hot encoder that maps a column of category indices to a column of binary vectors, with
at most a single one-value per row that indicates the input category index. For example with 5
categories, an input value of 2.0 would map to an output vector of [0.0, 0.0, 1.0, 0.0]. The last
category is not included by default (configurable via dropLast), because it makes the vector entries
sum up to one, and hence linearly dependent. So an input value of 4.0 maps to [0.0, 0.0, 0.0, 0.0].

Usage

ft_one_hot_encoder_estimator(
x,
input_cols = NULL,
output_cols = NULL,
handle_invalid = "error",
drop_last = TRUE,
uid = random_string("one_hot_encoder_estimator_"),
...

)

https://spark.apache.org/docs/latest/ml-features.html

44 ft_one_hot_encoder_estimator

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_cols Names of input columns.

output_cols Names of output columns.

handle_invalid (Spark 2.1.0+) Param for how to handle invalid entries. Options are ’skip’ (filter
out rows with invalid values), ’error’ (throw an error), or ’keep’ (keep invalid
values in a special additional bucket). Default: "error"

drop_last Whether to drop the last category. Defaults to TRUE.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(),
ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

ft_pca 45

ft_pca Feature Transformation – PCA (Estimator)

Description

PCA trains a model to project vectors to a lower dimensional space of the top k principal compo-
nents.

Usage

ft_pca(
x,
input_col = NULL,
output_col = NULL,
k = NULL,
uid = random_string("pca_"),
...

)

ml_pca(x, features = tbl_vars(x), k = length(features), pc_prefix = "PC", ...)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

k The number of principal components

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

features The columns to use in the principal components analysis. Defaults to all columns
in x.

pc_prefix Length-one character vector used to prepend names of components.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

ml_pca() is a wrapper around ft_pca() that returns a ml_model.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

46 ft_polynomial_expansion

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

Examples

Not run:
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

iris_tbl %>%
select(-Species) %>%
ml_pca(k = 2)

End(Not run)

ft_polynomial_expansion

Feature Transformation – PolynomialExpansion (Transformer)

Description

Perform feature expansion in a polynomial space. E.g. take a 2-variable feature vector as an exam-
ple: (x, y), if we want to expand it with degree 2, then we get (x, x * x, y, x * y, y * y).

Usage

ft_polynomial_expansion(
x,
input_col = NULL,
output_col = NULL,

https://spark.apache.org/docs/latest/ml-features.html

ft_polynomial_expansion 47

degree = 2,
uid = random_string("polynomial_expansion_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

degree The polynomial degree to expand, which should be greater than equal to 1. A
value of 1 means no expansion. Default: 2

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

48 ft_quantile_discretizer

ft_quantile_discretizer

Feature Transformation – QuantileDiscretizer (Estimator)

Description

ft_quantile_discretizer takes a column with continuous features and outputs a column with
binned categorical features. The number of bins can be set using the num_buckets parameter. It is
possible that the number of buckets used will be smaller than this value, for example, if there are
too few distinct values of the input to create enough distinct quantiles.

Usage

ft_quantile_discretizer(
x,
input_col = NULL,
output_col = NULL,
num_buckets = 2,
input_cols = NULL,
output_cols = NULL,
num_buckets_array = NULL,
handle_invalid = "error",
relative_error = 0.001,
uid = random_string("quantile_discretizer_"),
weight_column = NULL,
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

num_buckets Number of buckets (quantiles, or categories) into which data points are grouped.
Must be greater than or equal to 2.

input_cols Names of input columns.

output_cols Names of output columns.
num_buckets_array

Array of number of buckets (quantiles, or categories) into which data points are
grouped. Each value must be greater than or equal to 2.

handle_invalid (Spark 2.1.0+) Param for how to handle invalid entries. Options are ’skip’ (filter
out rows with invalid values), ’error’ (throw an error), or ’keep’ (keep invalid
values in a special additional bucket). Default: "error"

relative_error (Spark 2.0.0+) Relative error (see documentation for org.apache.spark.sql.DataFrameStatFunctions.approxQuantile
here for description). Must be in the range [0, 1]. default: 0.001

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameStatFunctions

ft_quantile_discretizer 49

uid A character string used to uniquely identify the feature transformer.

weight_column If not NULL, then a generalized version of the Greenwald-Khanna algorithm
will be run to compute weighted percentiles, with each input having a relative
weight specified by the corresponding value in ‘weight_column‘. The weights
can be considered as relative frequencies of sample inputs.

... Optional arguments; currently unused.

Details

NaN handling: null and NaN values will be ignored from the column during QuantileDiscretizer
fitting. This will produce a Bucketizer model for making predictions. During the transformation,
Bucketizer will raise an error when it finds NaN values in the dataset, but the user can also choose
to either keep or remove NaN values within the dataset by setting handle_invalid If the user
chooses to keep NaN values, they will be handled specially and placed into their own bucket, for
example, if 4 buckets are used, then non-NaN data will be put into buckets[0-3], but NaNs will be
counted in a special bucket[4].

Algorithm: The bin ranges are chosen using an approximate algorithm (see the documentation for
org.apache.spark.sql.DataFrameStatFunctions.approxQuantile here for a detailed description). The
precision of the approximation can be controlled with the relative_error parameter. The lower
and upper bin bounds will be -Infinity and +Infinity, covering all real values.

Note that the result may be different every time you run it, since the sample strategy behind it is
non-deterministic.

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

ft_bucketizer

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(),

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameStatFunctions
https://spark.apache.org/docs/latest/ml-features.html

50 ft_regex_tokenizer

ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_regex_tokenizer Feature Transformation – RegexTokenizer (Transformer)

Description

A regex based tokenizer that extracts tokens either by using the provided regex pattern to split the
text (default) or repeatedly matching the regex (if gaps is false). Optional parameters also allow
filtering tokens using a minimal length. It returns an array of strings that can be empty.

Usage

ft_regex_tokenizer(
x,
input_col = NULL,
output_col = NULL,
gaps = TRUE,
min_token_length = 1,
pattern = "\\s+",
to_lower_case = TRUE,
uid = random_string("regex_tokenizer_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

gaps Indicates whether regex splits on gaps (TRUE) or matches tokens (FALSE).
min_token_length

Minimum token length, greater than or equal to 0.

pattern The regular expression pattern to be used.

to_lower_case Indicates whether to convert all characters to lowercase before tokenizing.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

ft_robust_scaler 51

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_robust_scaler(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_robust_scaler Feature Transformation – RobustScaler (Estimator)

Description

RobustScaler removes the median and scales the data according to the quantile range. The quan-
tile range is by default IQR (Interquartile Range, quantile range between the 1st quartile = 25th
quantile and the 3rd quartile = 75th quantile) but can be configured. Centering and scaling happen
independently on each feature by computing the relevant statistics on the samples in the training
set. Median and quantile range are then stored to be used on later data using the transform method.
Note that missing values are ignored in the computation of medians and ranges.

Usage

ft_robust_scaler(
x,
input_col = NULL,
output_col = NULL,
lower = 0.25,
upper = 0.75,
with_centering = TRUE,
with_scaling = TRUE,
relative_error = 0.001,
uid = random_string("ft_robust_scaler_"),
...

)

https://spark.apache.org/docs/latest/ml-features.html

52 ft_robust_scaler

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

lower Lower quantile to calculate quantile range.

upper Upper quantile to calculate quantile range.

with_centering Whether to center data with median.

with_scaling Whether to scale the data to quantile range.

relative_error The target relative error for quantile computation.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

ft_r_formula 53

ft_r_formula Feature Transformation – RFormula (Estimator)

Description

Implements the transforms required for fitting a dataset against an R model formula. Currently we
support a limited subset of the R operators, including ~, ., :, +, and -. Also see the R formula docs
here: http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html

Usage

ft_r_formula(
x,
formula = NULL,
features_col = "features",
label_col = "label",
force_index_label = FALSE,
uid = random_string("r_formula_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula R formula as a character string or a formula. Formula objects are converted to
character strings directly and the environment is not captured.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

force_index_label

(Spark 2.1.0+) Force to index label whether it is numeric or string type. Usually
we index label only when it is string type. If the formula was used by classifi-
cation algorithms, we can force to index label even it is numeric type by setting
this param with true. Default: FALSE.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Details

The basic operators in the formula are:

• ~ separate target and terms

• + concat terms, "+ 0" means removing intercept

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html

54 ft_r_formula

• - remove a term, "- 1" means removing intercept

• : interaction (multiplication for numeric values, or binarized categorical values)

• . all columns except target

Suppose a and b are double columns, we use the following simple examples to illustrate the effect
of RFormula:

• y ~ a + b means model y ~ w0 + w1 * a + w2 * b where w0 is the intercept and w1,w2 are coef-
ficients.

• y ~ a + b + a:b -1 means model y ~ w1 * a + w2 * b + w3 * a * b where w1,w2,w3 are coeffi-
cients.

RFormula produces a vector column of features and a double or string column of label. Like when
formulas are used in R for linear regression, string input columns will be one-hot encoded, and
numeric columns will be cast to doubles. If the label column is of type string, it will be first
transformed to double with StringIndexer. If the label column does not exist in the DataFrame, the
output label column will be created from the specified response variable in the formula.

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

ft_sql_transformer 55

ft_sql_transformer Feature Transformation – SQLTransformer

Description

Implements the transformations which are defined by SQL statement. Currently we only support
SQL syntax like ’SELECT ... FROM __THIS__ ...’ where ’__THIS__’ represents the underlying
table of the input dataset. The select clause specifies the fields, constants, and expressions to display
in the output, it can be any select clause that Spark SQL supports. Users can also use Spark SQL
built-in function and UDFs to operate on these selected columns.

Usage

ft_sql_transformer(
x,
statement = NULL,
uid = random_string("sql_transformer_"),
...

)

ft_dplyr_transformer(x, tbl, uid = random_string("dplyr_transformer_"), ...)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
statement A SQL statement.
uid A character string used to uniquely identify the feature transformer.
... Optional arguments; currently unused.
tbl A tbl_spark generated using dplyr transformations.

Details

ft_dplyr_transformer() is mostly a wrapper around ft_sql_transformer() that takes a tbl_spark
instead of a SQL statement. Internally, the ft_dplyr_transformer() extracts the dplyr transfor-
mations used to generate tbl as a SQL statement or a sampling operation. Note that only single-
table dplyr verbs are supported and that the sdf_ family of functions are not.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

56 ft_standard_scaler

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_standard_scaler Feature Transformation – StandardScaler (Estimator)

Description

Standardizes features by removing the mean and scaling to unit variance using column summary
statistics on the samples in the training set. The "unit std" is computed using the corrected sample
standard deviation, which is computed as the square root of the unbiased sample variance.

Usage

ft_standard_scaler(
x,
input_col = NULL,
output_col = NULL,
with_mean = FALSE,
with_std = TRUE,
uid = random_string("standard_scaler_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

with_mean Whether to center the data with mean before scaling. It will build a dense output,
so take care when applying to sparse input. Default: FALSE

with_std Whether to scale the data to unit standard deviation. Default: TRUE

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

https://spark.apache.org/docs/latest/ml-features.html

ft_standard_scaler 57

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_stop_words_remover(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

features <- c("Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width")

iris_tbl %>%
ft_vector_assembler(
input_col = features,
output_col = "features_temp"

) %>%
ft_standard_scaler(

input_col = "features_temp",
output_col = "features",
with_mean = TRUE

)

End(Not run)

https://spark.apache.org/docs/latest/ml-features.html

58 ft_stop_words_remover

ft_stop_words_remover Feature Transformation – StopWordsRemover (Transformer)

Description

A feature transformer that filters out stop words from input.

Usage

ft_stop_words_remover(
x,
input_col = NULL,
output_col = NULL,
case_sensitive = FALSE,
stop_words = ml_default_stop_words(spark_connection(x), "english"),
uid = random_string("stop_words_remover_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

case_sensitive Whether to do a case sensitive comparison over the stop words.

stop_words The words to be filtered out.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ft_string_indexer 59

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

ml_default_stop_words

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_string_indexer(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_string_indexer Feature Transformation – StringIndexer (Estimator)

Description

A label indexer that maps a string column of labels to an ML column of label indices. If the
input column is numeric, we cast it to string and index the string values. The indices are in
[0,numLabels), ordered by label frequencies. So the most frequent label gets index 0. This func-
tion is the inverse of ft_index_to_string.

Usage

ft_string_indexer(
x,
input_col = NULL,
output_col = NULL,
handle_invalid = "error",
string_order_type = "frequencyDesc",
uid = random_string("string_indexer_"),
...

)

ml_labels(model)

ft_string_indexer_model(
x,
input_col = NULL,
output_col = NULL,
labels,
handle_invalid = "error",
uid = random_string("string_indexer_model_"),
...

)

https://spark.apache.org/docs/latest/ml-features.html

60 ft_string_indexer

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
input_col The name of the input column.
output_col The name of the output column.
handle_invalid (Spark 2.1.0+) Param for how to handle invalid entries. Options are ’skip’ (filter

out rows with invalid values), ’error’ (throw an error), or ’keep’ (keep invalid
values in a special additional bucket). Default: "error"

string_order_type

(Spark 2.3+)How to order labels of string column. The first label after ordering
is assigned an index of 0. Options are "frequencyDesc", "frequencyAsc",
"alphabetDesc", and "alphabetAsc". Defaults to "frequencyDesc".

uid A character string used to uniquely identify the feature transformer.
... Optional arguments; currently unused.
model A fitted StringIndexer model returned by ft_string_indexer()

labels Vector of labels, corresponding to indices to be assigned.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ml_labels() returns a vector of labels, corresponding to indices to be assigned.

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

ft_index_to_string

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

https://spark.apache.org/docs/latest/ml-features.html

ft_tokenizer 61

ft_tokenizer Feature Transformation – Tokenizer (Transformer)

Description

A tokenizer that converts the input string to lowercase and then splits it by white spaces.

Usage

ft_tokenizer(
x,
input_col = NULL,
output_col = NULL,
uid = random_string("tokenizer_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),

https://spark.apache.org/docs/latest/ml-features.html

62 ft_vector_assembler

ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(),
ft_word2vec()

ft_vector_assembler Feature Transformation – VectorAssembler (Transformer)

Description

Combine multiple vectors into a single row-vector; that is, where each row element of the newly
generated column is a vector formed by concatenating each row element from the specified input
columns.

Usage

ft_vector_assembler(
x,
input_cols = NULL,
output_col = NULL,
uid = random_string("vector_assembler_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_cols The names of the input columns

output_col The name of the output column.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ft_vector_indexer 63

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()

ft_vector_indexer Feature Transformation – VectorIndexer (Estimator)

Description

Indexing categorical feature columns in a dataset of Vector.

Usage

ft_vector_indexer(
x,
input_col = NULL,
output_col = NULL,
handle_invalid = "error",
max_categories = 20,
uid = random_string("vector_indexer_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

handle_invalid (Spark 2.1.0+) Param for how to handle invalid entries. Options are ’skip’ (filter
out rows with invalid values), ’error’ (throw an error), or ’keep’ (keep invalid
values in a special additional bucket). Default: "error"

max_categories Threshold for the number of values a categorical feature can take. If a feature is
found to have > max_categories values, then it is declared continuous. Must
be greater than or equal to 2. Defaults to 20.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

https://spark.apache.org/docs/latest/ml-features.html

64 ft_vector_slicer

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_slicer(), ft_word2vec()

ft_vector_slicer Feature Transformation – VectorSlicer (Transformer)

Description

Takes a feature vector and outputs a new feature vector with a subarray of the original features.

Usage

ft_vector_slicer(
x,
input_col = NULL,
output_col = NULL,
indices = NULL,
uid = random_string("vector_slicer_"),
...

)

https://spark.apache.org/docs/latest/ml-features.html

ft_word2vec 65

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

indices An vector of indices to select features from a vector column. Note that the
indices are 0-based.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_word2vec()

ft_word2vec Feature Transformation – Word2Vec (Estimator)

Description

Word2Vec transforms a word into a code for further natural language processing or machine learn-
ing process.

https://spark.apache.org/docs/latest/ml-features.html

66 ft_word2vec

Usage

ft_word2vec(
x,
input_col = NULL,
output_col = NULL,
vector_size = 100,
min_count = 5,
max_sentence_length = 1000,
num_partitions = 1,
step_size = 0.025,
max_iter = 1,
seed = NULL,
uid = random_string("word2vec_"),
...

)

ml_find_synonyms(model, word, num)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

input_col The name of the input column.

output_col The name of the output column.

vector_size The dimension of the code that you want to transform from words. Default: 100

min_count The minimum number of times a token must appear to be included in the word2vec
model’s vocabulary. Default: 5

max_sentence_length

(Spark 2.0.0+) Sets the maximum length (in words) of each sentence in the input
data. Any sentence longer than this threshold will be divided into chunks of up
to max_sentence_length size. Default: 1000

num_partitions Number of partitions for sentences of words. Default: 1

step_size Param for Step size to be used for each iteration of optimization (> 0).

max_iter The maximum number of iterations to use.

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

uid A character string used to uniquely identify the feature transformer.

... Optional arguments; currently unused.

model A fitted Word2Vec model, returned by ft_word2vec().

word A word, as a length-one character vector.

num Number of words closest in similarity to the given word to find.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is
then immediately used to transform x, returning a tbl_spark.

full_join 67

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer
or Estimator object and can be used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the trans-
former or estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied
to the input tbl_spark, returning a tbl_spark

ml_find_synonyms() returns a DataFrame of synonyms and cosine similarities

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the
set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(),
ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(),
ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(),
ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(),
ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(),
ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(),
ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer()

full_join Full join

Description

See full_join for more details.

generic_call_interface

Generic Call Interface

Description

Generic Call Interface

https://spark.apache.org/docs/latest/ml-features.html

68 hive_context_config

Arguments

sc spark_connection

static Is this a static method call (including a constructor). If so then the object
parameter should be the name of a class (otherwise it should be a spark_jobj
instance).

object Object instance or name of class (for static)

method Name of method

... Call parameters

get_spark_sql_catalog_implementation

Retrieve the Spark connection’s SQL catalog implementation property

Description

Retrieve the Spark connection’s SQL catalog implementation property

Usage

get_spark_sql_catalog_implementation(sc)

Arguments

sc spark_connection

Value

spark.sql.catalogImplementation property from the connection’s runtime configuration

hive_context_config Runtime configuration interface for Hive

Description

Retrieves the runtime configuration interface for Hive.

Usage

hive_context_config(sc)

Arguments

sc A spark_connection.

hof_aggregate 69

hof_aggregate Apply Aggregate Function to Array Column

Description

Apply an element-wise aggregation function to an array column (this is essentially a dplyr wrapper
for the aggregate(array<T>,A,function<A,T,A>[,function<A,R>]): R built-in Spark SQL func-
tions)

Usage

hof_aggregate(
x,
start,
merge,
finish = NULL,
expr = NULL,
dest_col = NULL,
...

)

Arguments

x The Spark data frame to run aggregation on

start The starting value of the aggregation

merge The aggregation function

finish Optional param specifying a transformation to apply on the final value of the
aggregation

expr The array being aggregated, could be any SQL expression evaluating to an array
(default: the last column of the Spark data frame)

dest_col Column to store the aggregated result (default: expr)

... Additional params to dplyr::mutate

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local")
concatenates all numbers of each array in `array_column` and add parentheses
around the resulting string
copy_to(sc, tibble::tibble(array_column = list(1:5, 21:25))) %>%

hof_aggregate(
start = "",
merge = ~ CONCAT(.y, .x),
finish = ~ CONCAT("(", .x, ")")

70 hof_array_sort

)

End(Not run)

hof_array_sort Sorts array using a custom comparator

Description

Applies a custom comparator function to sort an array (this is essentially a dplyr wrapper to the
‘array_sort(expr, func)‘ higher- order function, which is supported since Spark 3.0)

Usage

hof_array_sort(x, func, expr = NULL, dest_col = NULL, ...)

Arguments

x The Spark data frame to be processed

func The comparator function to apply (it should take 2 array elements as arguments
and return an integer, with a return value of -1 indicating the first element is less
than the second, 0 indicating equality, or 1 indicating the first element is greater
than the second)

expr The array being sorted, could be any SQL expression evaluating to an array
(default: the last column of the Spark data frame)

dest_col Column to store the sorted result (default: expr)

... Additional params to dplyr::mutate

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "3.0.0")
copy_to(

sc,
tibble::tibble(

x contains 2 arrays each having elements in ascending order
x = list(1:5, 6:10)

)
) %>%

now each array from x gets sorted in descending order
hof_array_sort(~ as.integer(sign(.y - .x)))

End(Not run)

hof_exists 71

hof_exists Determine Whether Some Element Exists in an Array Column

Description

Determines whether an element satisfying the given predicate exists in each array from an array
column (this is essentially a dplyr wrapper for the exists(array<T>,function<T,Boolean>):
Boolean built-in Spark SQL function)

Usage

hof_exists(x, pred, expr = NULL, dest_col = NULL, ...)

Arguments

x The Spark data frame to search

pred A boolean predicate

expr The array being searched (could be any SQL expression evaluating to an array)

dest_col Column to store the search result

... Additional params to dplyr::mutate

hof_filter Filter Array Column

Description

Apply an element-wise filtering function to an array column (this is essentially a dplyr wrapper for
the filter(array<T>,function<T,Boolean>): array<T> built-in Spark SQL functions)

Usage

hof_filter(x, func, expr = NULL, dest_col = NULL, ...)

Arguments

x The Spark data frame to filter

func The filtering function

expr The array being filtered, could be any SQL expression evaluating to an array
(default: the last column of the Spark data frame)

dest_col Column to store the filtered result (default: expr)

... Additional params to dplyr::mutate

72 hof_forall

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local")
only keep odd elements in each array in `array_column`
copy_to(sc, tibble::tibble(array_column = list(1:5, 21:25))) %>%

hof_filter(~ .x %% 2 == 1)

End(Not run)

hof_forall Checks whether all elements in an array satisfy a predicate

Description

Checks whether the predicate specified holds for all elements in an array (this is essentially a dplyr
wrapper to the ‘forall(expr, pred)‘ higher- order function, which is supported since Spark 3.0)

Usage

hof_forall(x, pred, expr = NULL, dest_col = NULL, ...)

Arguments

x The Spark data frame to be processed

pred The predicate to test (it should take an array element as argument and return a
boolean value)

expr The array being tested, could be any SQL expression evaluating to an array
(default: the last column of the Spark data frame)

dest_col Column to store the boolean result (default: expr)

... Additional params to dplyr::mutate

Examples

Not run:

sc <- spark_connect(master = "local", version = "3.0.0")
df <- tibble::tibble(

x = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),
y = list(c(1, 4, 2, 8, 5), c(7, 1, 4, 2, 8)),

)
sdf <- sdf_copy_to(sc, df, overwrite = TRUE)

all_positive_tbl <- sdf %>%
hof_forall(pred = ~ .x > 0, expr = y, dest_col = all_positive) %>%

hof_map_filter 73

dplyr::select(all_positive)

End(Not run)

hof_map_filter Filters a map

Description

Filters entries in a map using the function specified (this is essentially a dplyr wrapper to the
‘map_filter(expr, func)‘ higher- order function, which is supported since Spark 3.0)

Usage

hof_map_filter(x, func, expr = NULL, dest_col = NULL, ...)

Arguments

x The Spark data frame to be processed

func The filter function to apply (it should take (key, value) as arguments and return
a boolean value, with FALSE indicating the key-value pair should be discarded
and TRUE otherwise)

expr The map being filtered, could be any SQL expression evaluating to a map (de-
fault: the last column of the Spark data frame)

dest_col Column to store the filtered result (default: expr)

... Additional params to dplyr::mutate

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "3.0.0")
sdf <- sdf_len(sc, 1) %>% dplyr::mutate(m = map(1, 0, 2, 2, 3, -1))
filtered_sdf <- sdf %>% hof_map_filter(~ .x > .y)

End(Not run)

74 hof_map_zip_with

hof_map_zip_with Merges two maps into one

Description

Merges two maps into a single map by applying the function specified to pairs of values with the
same key (this is essentially a dplyr wrapper to the ‘map_zip_with(map1, map2, func)‘ higher-
order function, which is supported since Spark 3.0)

Usage

hof_map_zip_with(x, func, dest_col = NULL, map1 = NULL, map2 = NULL, ...)

Arguments

x The Spark data frame to be processed

func The function to apply (it should take (key, value1, value2) as arguments, where
(key, value1) is a key-value pair present in map1, (key, value2) is a key-value
pair present in map2, and return a transformed value associated with key in the
resulting map

dest_col Column to store the query result (default: the last column of the Spark data
frame)

map1 The first map being merged, could be any SQL expression evaluating to a map
(default: the first column of the Spark data frame)

map2 The second map being merged, could be any SQL expression evaluating to a
map (default: the second column of the Spark data frame)

... Additional params to dplyr::mutate

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "3.0.0")

create a Spark dataframe with 2 columns of type MAP<STRING, INT>
two_maps_tbl <- sdf_copy_to(

sc,
tibble::tibble(

m1 = c("{\"1\":2,\"3\":4,\"5\":6}", "{\"2\":1,\"4\":3,\"6\":5}"),
m2 = c("{\"1\":1,\"3\":3,\"5\":5}", "{\"2\":2,\"4\":4,\"6\":6}")

),
overwrite = TRUE

) %>%
dplyr::mutate(m1 = from_json(m1, "MAP<STRING, INT>"),

m2 = from_json(m2, "MAP<STRING, INT>"))

hof_transform 75

create a 3rd column containing MAP<STRING, INT> values derived from the
first 2 columns

transformed_two_maps_tbl <- two_maps_tbl %>%
hof_map_zip_with(
func = .(k, v1, v2) %->% (CONCAT(k, "_", v1, "_", v2)),
dest_col = m3

)

End(Not run)

hof_transform Transform Array Column

Description

Apply an element-wise transformation function to an array column (this is essentially a dplyr wrap-
per for the transform(array<T>,function<T,U>): array<U> and the transform(array<T>,function<T,Int,U>):
array<U> built-in Spark SQL functions)

Usage

hof_transform(x, func, expr = NULL, dest_col = NULL, ...)

Arguments

x The Spark data frame to transform

func The transformation to apply

expr The array being transformed, could be any SQL expression evaluating to an
array (default: the last column of the Spark data frame)

dest_col Column to store the transformed result (default: expr)

... Additional params to dplyr::mutate

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local")
applies the (x -> x * x) transformation to elements of all arrays
copy_to(sc, tibble::tibble(arr = list(1:5, 21:25))) %>%

hof_transform(~ .x * .x)

End(Not run)

76 hof_transform_values

hof_transform_keys Transforms keys of a map

Description

Applies the transformation function specified to all keys of a map (this is essentially a dplyr wrapper
to the ‘transform_keys(expr, func)‘ higher- order function, which is supported since Spark 3.0)

Usage

hof_transform_keys(x, func, expr = NULL, dest_col = NULL, ...)

Arguments

x The Spark data frame to be processed

func The transformation function to apply (it should take (key, value) as arguments
and return a transformed key)

expr The map being transformed, could be any SQL expression evaluating to a map
(default: the last column of the Spark data frame)

dest_col Column to store the transformed result (default: expr)

... Additional params to dplyr::mutate

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "3.0.0")
sdf <- sdf_len(sc, 1) %>% dplyr::mutate(m = map("a", 0L, "b", 2L, "c", -1L))
transformed_sdf <- sdf %>% hof_transform_keys(~ CONCAT(.x, " == ", .y))

End(Not run)

hof_transform_values Transforms values of a map

Description

Applies the transformation function specified to all values of a map (this is essentially a dplyr wrap-
per to the ‘transform_values(expr, func)‘ higher- order function, which is supported since Spark
3.0)

Usage

hof_transform_values(x, func, expr = NULL, dest_col = NULL, ...)

hof_zip_with 77

Arguments

x The Spark data frame to be processed

func The transformation function to apply (it should take (key, value) as arguments
and return a transformed value)

expr The map being transformed, could be any SQL expression evaluating to a map
(default: the last column of the Spark data frame)

dest_col Column to store the transformed result (default: expr)

... Additional params to dplyr::mutate

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "3.0.0")
sdf <- sdf_len(sc, 1) %>% dplyr::mutate(m = map("a", 0L, "b", 2L, "c", -1L))
transformed_sdf <- sdf %>% hof_transform_values(~ CONCAT(.x, " == ", .y))

End(Not run)

hof_zip_with Combines 2 Array Columns

Description

Applies an element-wise function to combine elements from 2 array columns (this is essentially
a dplyr wrapper for the zip_with(array<T>,array<U>,function<T,U,R>): array<R> built-in
function in Spark SQL)

Usage

hof_zip_with(x, func, dest_col = NULL, left = NULL, right = NULL, ...)

Arguments

x The Spark data frame to process

func Element-wise combining function to be applied

dest_col Column to store the query result (default: the last column of the Spark data
frame)

left Any expression evaluating to an array (default: the first column of the Spark
data frame)

right Any expression evaluating to an array (default: the second column of the Spark
data frame)

... Additional params to dplyr::mutate

78 invoke

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local")
compute element-wise products of 2 arrays from each row of `left` and `right`
and store the resuling array in `res`
copy_to(

sc,
tibble::tibble(
left = list(1:5, 21:25),
right = list(6:10, 16:20),
res = c(0, 0)

)
) %>%

hof_zip_with(~ .x * .y)

End(Not run)

inner_join Inner join

Description

See inner_join for more details.

invoke Invoke a Method on a JVM Object

Description

Invoke methods on Java object references. These functions provide a mechanism for invoking
various Java object methods directly from R.

Usage

invoke(jobj, method, ...)

invoke_static(sc, class, method, ...)

invoke_new(sc, class, ...)

jarray 79

Arguments

jobj An R object acting as a Java object reference (typically, a spark_jobj).

method The name of the method to be invoked.

... Optional arguments, currently unused.

sc A spark_connection.

class The name of the Java class whose methods should be invoked.

Details

Use each of these functions in the following scenarios:

invoke Execute a method on a Java object reference (typically, a spark_jobj).
invoke_static Execute a static method associated with a Java class.
invoke_new Invoke a constructor associated with a Java class.

Examples

sc <- spark_connect(master = "spark://HOST:PORT")
spark_context(sc) %>%

invoke("textFile", "file.csv", 1L) %>%
invoke("count")

jarray Instantiate a Java array with a specific element type.

Description

Given a list of Java object references, instantiate an Array[T] containing the same list of references,
where T is a non-primitive type that is more specific than java.lang.Object.

Usage

jarray(sc, x, element_type)

Arguments

sc A spark_connection.

x A list of Java object references.

element_type A valid Java class name representing the generic type parameter of the Java
array to be instantiated. Each element of x must refer to a Java object that is
assignable to element_type.

80 jfloat_array

Examples

sc <- spark_connect(master = "spark://HOST:PORT")

string_arr <- jarray(sc, letters, element_type = "java.lang.String")
string_arr is now a reference to an array of type String[]

jfloat Instantiate a Java float type.

Description

Instantiate a java.lang.Float object with the value specified. NOTE: this method is useful when
one has to invoke a Java/Scala method requiring a float (instead of double) type for at least one of
its parameters.

Usage

jfloat(sc, x)

Arguments

sc A spark_connection.

x A numeric value in R.

Examples

sc <- spark_connect(master = "spark://HOST:PORT")

jflt <- jfloat(sc, 1.23e-8)
jflt is now a reference to a java.lang.Float object

jfloat_array Instantiate an Array[Float].

Description

Instantiate an Array[Float] object with the value specified. NOTE: this method is useful when
one has to invoke a Java/Scala method requiring an Array[Float] as one of its parameters.

Usage

jfloat_array(sc, x)

join.tbl_spark 81

Arguments

sc A spark_connection.

x A numeric vector in R.

Examples

sc <- spark_connect(master = "spark://HOST:PORT")

jflt_arr <- jfloat_array(sc, c(-1.23e-8, 0, -1.23e-8))
jflt_arr is now a reference an array of java.lang.Float

join.tbl_spark Join Spark tbls.

Description

These functions are wrappers around their ‘dplyr‘ equivalents that set Spark SQL-compliant values
for the ‘suffix‘ argument by replacing dots (‘.‘) with underscores (‘_‘). See [join] for a description
of the general purpose of the functions.

Usage

S3 method for class 'tbl_spark'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c("_x", "_y"),
auto_index = FALSE,
...,
sql_on = NULL

)

S3 method for class 'tbl_spark'
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c("_x", "_y"),
auto_index = FALSE,
...,
sql_on = NULL

)

82 join.tbl_spark

S3 method for class 'tbl_spark'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c("_x", "_y"),
auto_index = FALSE,
...,
sql_on = NULL

)

S3 method for class 'tbl_spark'
full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c("_x", "_y"),
auto_index = FALSE,
...,
sql_on = NULL

)

Arguments

x A pair of lazy data frames backed by database queries.

y A pair of lazy data frames backed by database queries.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables in
common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by =
c("a","b") will match x$a to y$a and x$b to y$b. Use a named vector to match
different variables in x and y. For example, by = c("a" = "b","c" = "d") will
match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into a temporary table in same database as x. *_join() will automatically
run ANALYZE on the created table in the hope that this will make you queries as
efficient as possible by giving more data to the query planner.
This allows you to join tables across srcs, but it’s potentially expensive operation
so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

j_invoke 83

auto_index if copy is TRUE, automatically create indices for the variables in by. This may
speed up the join if there are matching indexes in x.

... Other parameters passed onto methods.

sql_on A custom join predicate as an SQL expression. Usually joins use column equal-
ity, but you can perform more complex queries by supply sql_on which should
be a SQL expression that uses LHS and RHS aliases to refer to the left-hand side
or right-hand side of the join respectively.

j_invoke Invoke a Java function.

Description

Invoke a Java function and force return value of the call to be retrieved as a Java object reference.

Usage

j_invoke(jobj, method, ...)

j_invoke_static(sc, class, method, ...)

j_invoke_new(sc, class, ...)

Arguments

jobj An R object acting as a Java object reference (typically, a spark_jobj).

method The name of the method to be invoked.

... Optional arguments, currently unused.

sc A spark_connection.

class The name of the Java class whose methods should be invoked.

left_join Left join

Description

See left_join for more details.

84 livy_config

list_sparklyr_jars list all sparklyr-*.jar files that have been built

Description

list all sparklyr-*.jar files that have been built

Usage

list_sparklyr_jars()

livy_config Create a Spark Configuration for Livy

Description

Create a Spark Configuration for Livy

Usage

livy_config(
config = spark_config(),
username = NULL,
password = NULL,
negotiate = FALSE,
custom_headers = list(`X-Requested-By` = "sparklyr"),
proxy = NULL,
curl_opts = NULL,
...

)

Arguments

config Optional base configuration

username The username to use in the Authorization header

password The password to use in the Authorization header

negotiate Whether to use gssnegotiate method or not

custom_headers List of custom headers to append to http requests. Defaults to list("X-Requested-By"
= "sparklyr").

proxy Either NULL or a proxy specified by httr::use_proxy(). Defaults to NULL.

curl_opts List of CURL options (e.g., verbose, connecttimeout, dns_cache_timeout, etc,
see httr::httr_options() for a list of valid options) – NOTE: these configurations
are for libcurl only and separate from HTTP headers or Livy session parameters.

... additional Livy session parameters

livy_service_start 85

Details

Extends a Spark spark_config() configuration with settings for Livy. For instance, username and
password define the basic authentication settings for a Livy session.

The default value of "custom_headers" is set to list("X-Requested-By" = "sparklyr") in or-
der to facilitate connection to Livy servers with CSRF protection enabled.

Additional parameters for Livy sessions are:

proxy_user User to impersonate when starting the session

jars jars to be used in this session

py_files Python files to be used in this session

files files to be used in this session

driver_memory Amount of memory to use for the driver process

driver_cores Number of cores to use for the driver process

executor_memory Amount of memory to use per executor process

executor_cores Number of cores to use for each executor

num_executors Number of executors to launch for this session

archives Archives to be used in this session

queue The name of the YARN queue to which submitted

name The name of this session

heartbeat_timeout Timeout in seconds to which session be orphaned

conf Spark configuration properties (Map of key=value)

Note that queue is supported only by version 0.4.0 of Livy or newer. If you are using the older one,
specify queue via config (e.g. config = spark_config(spark.yarn.queue = "my_queue")).

Value

Named list with configuration data

livy_service_start Start Livy

Description

Starts the livy service.

Stops the running instances of the livy service.

86 ml-params

Usage

livy_service_start(
version = NULL,
spark_version = NULL,
stdout = "",
stderr = "",
...

)

livy_service_stop()

Arguments

version The version of ‘livy’ to use.

spark_version The version of ‘spark’ to connect to.

stdout, stderr where output to ’stdout’ or ’stderr’ should be sent. Same options as system2.

... Optional arguments; currently unused.

ml-params Spark ML – ML Params

Description

Helper methods for working with parameters for ML objects.

Usage

ml_is_set(x, param, ...)

ml_param_map(x, ...)

ml_param(x, param, allow_null = FALSE, ...)

ml_params(x, params = NULL, allow_null = FALSE, ...)

Arguments

x A Spark ML object, either a pipeline stage or an evaluator.

param The parameter to extract or set.

... Optional arguments; currently unused.

allow_null Whether to allow NULL results when extracting parameters. If FALSE, an error
will be thrown if the specified parameter is not found. Defaults to FALSE.

params A vector of parameters to extract.

ml-persistence 87

ml-persistence Spark ML – Model Persistence

Description

Save/load Spark ML objects

Usage

ml_save(x, path, overwrite = FALSE, ...)

S3 method for class 'ml_model'
ml_save(
x,
path,
overwrite = FALSE,
type = c("pipeline_model", "pipeline"),
...

)

ml_load(sc, path)

Arguments

x A ML object, which could be a ml_pipeline_stage or a ml_model

path The path where the object is to be serialized/deserialized.

overwrite Whether to overwrite the existing path, defaults to FALSE.

... Optional arguments; currently unused.

type Whether to save the pipeline model or the pipeline.

sc A Spark connection.

Value

ml_save() serializes a Spark object into a format that can be read back into sparklyr or by the
Scala or PySpark APIs. When called on ml_model objects, i.e. those that were created via the
tbl_spark -formula signature, the associated pipeline model is serialized. In other words, the
saved model contains both the data processing (RFormulaModel) stage and the machine learning
stage.

ml_load() reads a saved Spark object into sparklyr. It calls the correct Scala load method based
on parsing the saved metadata. Note that a PipelineModel object saved from a sparklyr ml_model
via ml_save() will be read back in as an ml_pipeline_model, rather than the ml_model object.

88 ml-transform-methods

ml-transform-methods Spark ML – Transform, fit, and predict methods (ml_ interface)

Description

Methods for transformation, fit, and prediction. These are mirrors of the corresponding sdf-transform-
methods.

Usage

is_ml_transformer(x)

is_ml_estimator(x)

ml_fit(x, dataset, ...)

ml_transform(x, dataset, ...)

ml_fit_and_transform(x, dataset, ...)

ml_predict(x, dataset, ...)

S3 method for class 'ml_model_classification'
ml_predict(x, dataset, probability_prefix = "probability_", ...)

Arguments

x A ml_estimator, ml_transformer (or a list thereof), or ml_model object.

dataset A tbl_spark.

... Optional arguments; currently unused.
probability_prefix

String used to prepend the class probability output columns.

Details

These methods are

Value

When x is an estimator, ml_fit() returns a transformer whereas ml_fit_and_transform() returns
a transformed dataset. When x is a transformer, ml_transform() and ml_predict() return a
transformed dataset. When ml_predict() is called on a ml_model object, additional columns (e.g.
probabilities in case of classification models) are appended to the transformed output for the user’s
convenience.

ml-tuning 89

ml-tuning Spark ML – Tuning

Description

Perform hyper-parameter tuning using either K-fold cross validation or train-validation split.

Usage

ml_sub_models(model)

ml_validation_metrics(model)

ml_cross_validator(
x,
estimator = NULL,
estimator_param_maps = NULL,
evaluator = NULL,
num_folds = 3,
collect_sub_models = FALSE,
parallelism = 1,
seed = NULL,
uid = random_string("cross_validator_"),
...

)

ml_train_validation_split(
x,
estimator = NULL,
estimator_param_maps = NULL,
evaluator = NULL,
train_ratio = 0.75,
collect_sub_models = FALSE,
parallelism = 1,
seed = NULL,
uid = random_string("train_validation_split_"),
...

)

Arguments

model A cross validation or train-validation-split model.

x A spark_connection, ml_pipeline, or a tbl_spark.

estimator A ml_estimator object.
estimator_param_maps

A named list of stages and hyper-parameter sets to tune. See details.

90 ml-tuning

evaluator A ml_evaluator object, see ml_evaluator.

num_folds Number of folds for cross validation. Must be >= 2. Default: 3
collect_sub_models

Whether to collect a list of sub-models trained during tuning. If set to FALSE,
then only the single best sub-model will be available after fitting. If set to true,
then all sub-models will be available. Warning: For large models, collecting all
sub-models can cause OOMs on the Spark driver.

parallelism The number of threads to use when running parallel algorithms. Default is 1 for
serial execution.

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; currently unused.

train_ratio Ratio between train and validation data. Must be between 0 and 1. Default: 0.75

Details

ml_cross_validator() performs k-fold cross validation while ml_train_validation_split()
performs tuning on one pair of train and validation datasets.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_cross_validator or ml_traing_validation_split object.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the tuning
estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a tuning estimator is constructed then immediately fit
with the input tbl_spark, returning a ml_cross_validation_model or a ml_train_validation_split_model
object.

For cross validation, ml_sub_models() returns a nested list of models, where the first layer repre-
sents fold indices and the second layer represents param maps. For train-validation split, ml_sub_models()
returns a list of models, corresponding to the order of the estimator param maps.

ml_validation_metrics() returns a data frame of performance metrics and hyperparameter com-
binations.

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

Create a pipeline
pipeline <- ml_pipeline(sc) %>%

ft_r_formula(Species ~ .) %>%

ml_aft_survival_regression 91

ml_random_forest_classifier()

Specify hyperparameter grid
grid <- list(

random_forest = list(
num_trees = c(5, 10),
max_depth = c(5, 10),
impurity = c("entropy", "gini")

)
)

Create the cross validator object
cv <- ml_cross_validator(

sc,
estimator = pipeline, estimator_param_maps = grid,
evaluator = ml_multiclass_classification_evaluator(sc),
num_folds = 3,
parallelism = 4

)

Train the models
cv_model <- ml_fit(cv, iris_tbl)

Print the metrics
ml_validation_metrics(cv_model)

End(Not run)

ml_aft_survival_regression

Spark ML – Survival Regression

Description

Fit a parametric survival regression model named accelerated failure time (AFT) model (see Accel-
erated failure time model (Wikipedia)) based on the Weibull distribution of the survival time.

Usage

ml_aft_survival_regression(
x,
formula = NULL,
censor_col = "censor",
quantile_probabilities = c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99),
fit_intercept = TRUE,
max_iter = 100L,
tol = 1e-06,
aggregation_depth = 2,

https://en.wikipedia.org/wiki/Accelerated_failure_time_model
https://en.wikipedia.org/wiki/Accelerated_failure_time_model

92 ml_aft_survival_regression

quantiles_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("aft_survival_regression_"),
...

)

ml_survival_regression(
x,
formula = NULL,
censor_col = "censor",
quantile_probabilities = c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99),
fit_intercept = TRUE,
max_iter = 100L,
tol = 1e-06,
aggregation_depth = 2,
quantiles_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("aft_survival_regression_"),
response = NULL,
features = NULL,
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

censor_col Censor column name. The value of this column could be 0 or 1. If the value is
1, it means the event has occurred i.e. uncensored; otherwise censored.

quantile_probabilities

Quantile probabilities array. Values of the quantile probabilities array should be
in the range (0, 1) and the array should be non-empty.

fit_intercept Boolean; should the model be fit with an intercept term?

max_iter The maximum number of iterations to use.

tol Param for the convergence tolerance for iterative algorithms.

aggregation_depth

(Spark 2.1.0+) Suggested depth for treeAggregate (>= 2).

quantiles_col Quantiles column name. This column will output quantiles of corresponding
quantileProbabilities if it is set.

ml_aft_survival_regression 93

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

response (Deprecated) The name of the response column (as a length-one character vec-
tor.)

features (Deprecated) The name of features (terms) to use for the model fit.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

ml_survival_regression() is an alias for ml_aft_survival_regression() for backwards com-
patibility.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_decision_tree_classifier(), ml_gbt_classifier(), ml_generalized_linear_regression(),
ml_isotonic_regression(), ml_linear_regression(), ml_linear_svc(), ml_logistic_regression(),
ml_multilayer_perceptron_classifier(), ml_naive_bayes(), ml_one_vs_rest(), ml_random_forest_classifier()

https://spark.apache.org/docs/latest/ml-classification-regression.html

94 ml_als

Examples

Not run:

library(survival)
library(sparklyr)

sc <- spark_connect(master = "local")
ovarian_tbl <- sdf_copy_to(sc, ovarian, name = "ovarian_tbl", overwrite = TRUE)

partitions <- ovarian_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

ovarian_training <- partitions$training
ovarian_test <- partitions$test

sur_reg <- ovarian_training %>%
ml_aft_survival_regression(futime ~ ecog_ps + rx + age + resid_ds, censor_col = "fustat")

pred <- ml_predict(sur_reg, ovarian_test)
pred

End(Not run)

ml_als Spark ML – ALS

Description

Perform recommendation using Alternating Least Squares (ALS) matrix factorization.

Usage

ml_als(
x,
formula = NULL,
rating_col = "rating",
user_col = "user",
item_col = "item",
rank = 10,
reg_param = 0.1,
implicit_prefs = FALSE,
alpha = 1,
nonnegative = FALSE,
max_iter = 10,
num_user_blocks = 10,
num_item_blocks = 10,
checkpoint_interval = 10,

ml_als 95

cold_start_strategy = "nan",
intermediate_storage_level = "MEMORY_AND_DISK",
final_storage_level = "MEMORY_AND_DISK",
uid = random_string("als_"),
...

)

ml_recommend(model, type = c("items", "users"), n = 1)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
formula Used when x is a tbl_spark. R formula as a character string or a formula. This

is used to transform the input dataframe before fitting, see ft_r_formula for de-
tails. The ALS model requires a specific formula format, please use rating_col
~ user_col + item_col.

rating_col Column name for ratings. Default: "rating"
user_col Column name for user ids. Ids must be integers. Other numeric types are sup-

ported for this column, but will be cast to integers as long as they fall within the
integer value range. Default: "user"

item_col Column name for item ids. Ids must be integers. Other numeric types are sup-
ported for this column, but will be cast to integers as long as they fall within the
integer value range. Default: "item"

rank Rank of the matrix factorization (positive). Default: 10
reg_param Regularization parameter.
implicit_prefs Whether to use implicit preference. Default: FALSE.
alpha Alpha parameter in the implicit preference formulation (nonnegative).
nonnegative Whether to apply nonnegativity constraints. Default: FALSE.
max_iter Maximum number of iterations.
num_user_blocks

Number of user blocks (positive). Default: 10
num_item_blocks

Number of item blocks (positive). Default: 10
checkpoint_interval

Set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the
cache will get checkpointed every 10 iterations, defaults to 10.

cold_start_strategy

(Spark 2.2.0+) Strategy for dealing with unknown or new users/items at predic-
tion time. This may be useful in cross-validation or production scenarios, for
handling user/item ids the model has not seen in the training data. Supported
values: - "nan": predicted value for unknown ids will be NaN. - "drop": rows in
the input DataFrame containing unknown ids will be dropped from the output
DataFrame containing predictions. Default: "nan".

intermediate_storage_level

(Spark 2.0.0+) StorageLevel for intermediate datasets. Pass in a string represen-
tation of StorageLevel. Cannot be "NONE". Default: "MEMORY_AND_DISK".

96 ml_als

final_storage_level

(Spark 2.0.0+) StorageLevel for ALS model factors. Pass in a string representa-
tion of StorageLevel. Default: "MEMORY_AND_DISK".

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; currently unused.

model An ALS model object

type What to recommend, one of items or users

n Maximum number of recommendations to return

Details

ml_recommend() returns the top n users/items recommended for each item/user, for all items/users.
The output has been transformed (exploded and separated) from the default Spark outputs to be
more user friendly.

Value

ALS attempts to estimate the ratings matrix R as the product of two lower-rank matrices, X and Y,
i.e. X * Yt = R. Typically these approximations are called ’factor’ matrices. The general approach
is iterative. During each iteration, one of the factor matrices is held constant, while the other is
solved for using least squares. The newly-solved factor matrix is then held constant while solving
for the other factor matrix.

This is a blocked implementation of the ALS factorization algorithm that groups the two sets of fac-
tors (referred to as "users" and "products") into blocks and reduces communication by only sending
one copy of each user vector to each product block on each iteration, and only for the product blocks
that need that user’s feature vector. This is achieved by pre-computing some information about the
ratings matrix to determine the "out-links" of each user (which blocks of products it will contribute
to) and "in-link" information for each product (which of the feature vectors it receives from each
user block it will depend on). This allows us to send only an array of feature vectors between each
user block and product block, and have the product block find the users’ ratings and update the
products based on these messages.

For implicit preference data, the algorithm used is based on "Collaborative Filtering for Implicit
Feedback Datasets", available at doi: 10.1109/ICDM.2008.22, adapted for the blocked approach
used here.

Essentially instead of finding the low-rank approximations to the rating matrix R, this finds the
approximations for a preference matrix P where the elements of P are 1 if r is greater than 0 and
0 if r is less than or equal to 0. The ratings then act as ’confidence’ values related to strength of
indicated user preferences rather than explicit ratings given to items.

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_als recommender object, which is an Estimator.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the rec-
ommender appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a recommender estimator is constructed then immedi-
ately fit with the input tbl_spark, returning a recommendation model, i.e. ml_als_model.

https://doi.org/10.1109/ICDM.2008.22

ml_als_tidiers 97

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local")

movies <- data.frame(
user = c(1, 2, 0, 1, 2, 0),
item = c(1, 1, 1, 2, 2, 0),
rating = c(3, 1, 2, 4, 5, 4)

)
movies_tbl <- sdf_copy_to(sc, movies)

model <- ml_als(movies_tbl, rating ~ user + item)

ml_predict(model, movies_tbl)

ml_recommend(model, type = "item", 1)

End(Not run)

ml_als_tidiers Tidying methods for Spark ML ALS

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_als'
tidy(x, ...)

S3 method for class 'ml_model_als'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_als'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

98 ml_bisecting_kmeans

ml_bisecting_kmeans Spark ML – Bisecting K-Means Clustering

Description

A bisecting k-means algorithm based on the paper "A comparison of document clustering tech-
niques" by Steinbach, Karypis, and Kumar, with modification to fit Spark. The algorithm starts
from a single cluster that contains all points. Iteratively it finds divisible clusters on the bottom
level and bisects each of them using k-means, until there are k leaf clusters in total or no leaf clus-
ters are divisible. The bisecting steps of clusters on the same level are grouped together to increase
parallelism. If bisecting all divisible clusters on the bottom level would result more than k leaf
clusters, larger clusters get higher priority.

Usage

ml_bisecting_kmeans(
x,
formula = NULL,
k = 4,
max_iter = 20,
seed = NULL,
min_divisible_cluster_size = 1,
features_col = "features",
prediction_col = "prediction",
uid = random_string("bisecting_bisecting_kmeans_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

k The number of clusters to create

max_iter The maximum number of iterations to use.

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

min_divisible_cluster_size

The minimum number of points (if greater than or equal to 1.0) or the minimum
proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

prediction_col Prediction column name.

ml_chisquare_test 99

uid A character string used to uniquely identify the ML estimator.

... Optional arguments, see Details.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Estimator object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the clus-
tering estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, an estimator is constructed then immediately fit with the
input tbl_spark, returning a clustering model.

• tbl_spark, with formula or features specified: When formula is specified, the input
tbl_spark is first transformed using a RFormula transformer before being fit by the estimator.
The object returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.
This signature does not apply to ml_lda().

See Also

See https://spark.apache.org/docs/latest/ml-clustering.html for more information on
the set of clustering algorithms.

Other ml clustering algorithms: ml_gaussian_mixture(), ml_kmeans(), ml_lda()

Examples

Not run:
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

iris_tbl %>%
select(-Species) %>%
ml_bisecting_kmeans(k = 4, Species ~ .)

End(Not run)

ml_chisquare_test Chi-square hypothesis testing for categorical data.

Description

Conduct Pearson’s independence test for every feature against the label. For each feature, the
(feature, label) pairs are converted into a contingency matrix for which the Chi-squared statistic is
computed. All label and feature values must be categorical.

https://spark.apache.org/docs/latest/ml-clustering.html

100 ml_clustering_evaluator

Usage

ml_chisquare_test(x, features, label)

Arguments

x A tbl_spark.

features The name(s) of the feature columns. This can also be the name of a single vector
column created using ft_vector_assembler().

label The name of the label column.

Value

A data frame with one row for each (feature, label) pair with p-values, degrees of freedom, and test
statistics.

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

features <- c("Petal_Width", "Petal_Length", "Sepal_Length", "Sepal_Width")

ml_chisquare_test(iris_tbl, features = features, label = "Species")

End(Not run)

ml_clustering_evaluator

Spark ML - Clustering Evaluator

Description

Evaluator for clustering results. The metric computes the Silhouette measure using the squared
Euclidean distance. The Silhouette is a measure for the validation of the consistency within clusters.
It ranges between 1 and -1, where a value close to 1 means that the points in a cluster are close to
the other points in the same cluster and far from the points of the other clusters.

Usage

ml_clustering_evaluator(
x,
features_col = "features",
prediction_col = "prediction",
metric_name = "silhouette",
uid = random_string("clustering_evaluator_"),
...

)

ml_clustering_evaluator 101

Arguments

x A spark_connection object or a tbl_spark containing label and prediction
columns. The latter should be the output of sdf_predict.

features_col Name of features column.

prediction_col Name of the prediction column.

metric_name The performance metric. Currently supports "silhouette".

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; currently unused.

Value

The calculated performance metric

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training
iris_test <- partitions$test

formula <- Species ~ .

Train the models
kmeans_model <- ml_kmeans(iris_training, formula = formula)
b_kmeans_model <- ml_bisecting_kmeans(iris_training, formula = formula)
gmm_model <- ml_gaussian_mixture(iris_training, formula = formula)

Predict
pred_kmeans <- ml_predict(kmeans_model, iris_test)
pred_b_kmeans <- ml_predict(b_kmeans_model, iris_test)
pred_gmm <- ml_predict(gmm_model, iris_test)

Evaluate
ml_clustering_evaluator(pred_kmeans)
ml_clustering_evaluator(pred_b_kmeans)
ml_clustering_evaluator(pred_gmm)

End(Not run)

102 ml_decision_tree_classifier

ml_corr Compute correlation matrix

Description

Compute correlation matrix

Usage

ml_corr(x, columns = NULL, method = c("pearson", "spearman"))

Arguments

x A tbl_spark.

columns The names of the columns to calculate correlations of. If only one column is
specified, it must be a vector column (for example, assembled using ft_vector_assember()).

method The method to use, either "pearson" or "spearman".

Value

A correlation matrix organized as a data frame.

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

features <- c("Petal_Width", "Petal_Length", "Sepal_Length", "Sepal_Width")

ml_corr(iris_tbl, columns = features, method = "pearson")

End(Not run)

ml_decision_tree_classifier

Spark ML – Decision Trees

Description

Perform classification and regression using decision trees.

ml_decision_tree_classifier 103

Usage

ml_decision_tree_classifier(
x,
formula = NULL,
max_depth = 5,
max_bins = 32,
min_instances_per_node = 1,
min_info_gain = 0,
impurity = "gini",
seed = NULL,
thresholds = NULL,
cache_node_ids = FALSE,
checkpoint_interval = 10,
max_memory_in_mb = 256,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("decision_tree_classifier_"),
...

)

ml_decision_tree(
x,
formula = NULL,
type = c("auto", "regression", "classification"),
features_col = "features",
label_col = "label",
prediction_col = "prediction",
variance_col = NULL,
probability_col = "probability",
raw_prediction_col = "rawPrediction",
checkpoint_interval = 10L,
impurity = "auto",
max_bins = 32L,
max_depth = 5L,
min_info_gain = 0,
min_instances_per_node = 1L,
seed = NULL,
thresholds = NULL,
cache_node_ids = FALSE,
max_memory_in_mb = 256L,
uid = random_string("decision_tree_"),
response = NULL,
features = NULL,
...

)

104 ml_decision_tree_classifier

ml_decision_tree_regressor(
x,
formula = NULL,
max_depth = 5,
max_bins = 32,
min_instances_per_node = 1,
min_info_gain = 0,
impurity = "variance",
seed = NULL,
cache_node_ids = FALSE,
checkpoint_interval = 10,
max_memory_in_mb = 256,
variance_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("decision_tree_regressor_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

max_depth Maximum depth of the tree (>= 0); that is, the maximum number of nodes sep-
arating any leaves from the root of the tree.

max_bins The maximum number of bins used for discretizing continuous features and for
choosing how to split on features at each node. More bins give higher granular-
ity.

min_instances_per_node

Minimum number of instances each child must have after split.

min_info_gain Minimum information gain for a split to be considered at a tree node. Should be
>= 0, defaults to 0.

impurity Criterion used for information gain calculation. Supported: "entropy" and "gini"
(default) for classification and "variance" (default) for regression. For ml_decision_tree,
setting "auto" will default to the appropriate criterion based on model type.

seed Seed for random numbers.

thresholds Thresholds in multi-class classification to adjust the probability of predicting
each class. Array must have length equal to the number of classes, with values
> 0 excepting that at most one value may be 0. The class with largest value p/t
is predicted, where p is the original probability of that class and t is the class’s
threshold.

ml_decision_tree_classifier 105

cache_node_ids If FALSE, the algorithm will pass trees to executors to match instances with
nodes. If TRUE, the algorithm will cache node IDs for each instance. Caching
can speed up training of deeper trees. Defaults to FALSE.

checkpoint_interval

Set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the
cache will get checkpointed every 10 iterations, defaults to 10.

max_memory_in_mb

Maximum memory in MB allocated to histogram aggregation. If too small,
then 1 node will be split per iteration, and its aggregates may exceed this size.
Defaults to 256.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.
probability_col

Column name for predicted class conditional probabilities.
raw_prediction_col

Raw prediction (a.k.a. confidence) column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

type The type of model to fit. "regression" treats the response as a continuous
variable, while "classification" treats the response as a categorical variable.
When "auto" is used, the model type is inferred based on the response variable
type – if it is a numeric type, then regression is used; classification otherwise.

variance_col (Optional) Column name for the biased sample variance of prediction.

response (Deprecated) The name of the response column (as a length-one character vec-
tor.)

features (Deprecated) The name of features (terms) to use for the model fit.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

ml_decision_tree is a wrapper around ml_decision_tree_regressor.tbl_spark and ml_decision_tree_classifier.tbl_spark
and calls the appropriate method based on model type.

106 ml_decision_tree_classifier

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_gbt_classifier(), ml_generalized_linear_regression(),
ml_isotonic_regression(), ml_linear_regression(), ml_linear_svc(), ml_logistic_regression(),
ml_multilayer_perceptron_classifier(), ml_naive_bayes(), ml_one_vs_rest(), ml_random_forest_classifier()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training
iris_test <- partitions$test

dt_model <- iris_training %>%
ml_decision_tree(Species ~ .)

pred <- ml_predict(dt_model, iris_test)

ml_multiclass_classification_evaluator(pred)

End(Not run)

https://spark.apache.org/docs/latest/ml-classification-regression.html

ml_default_stop_words 107

ml_default_stop_words Default stop words

Description

Loads the default stop words for the given language.

Usage

ml_default_stop_words(
sc,
language = c("english", "danish", "dutch", "finnish", "french", "german",
"hungarian", "italian", "norwegian", "portuguese", "russian", "spanish", "swedish",
"turkish"),

...
)

Arguments

sc A spark_connection

language A character string.

... Optional arguments; currently unused.

Details

Supported languages: danish, dutch, english, finnish, french, german, hungarian, italian, norwe-
gian, portuguese, russian, spanish, swedish, turkish. Defaults to English. See https://anoncvs.
postgresql.org/cvsweb.cgi/pgsql/src/backend/snowball/stopwords/ for more details

Value

A list of stop words.

See Also

ft_stop_words_remover

https://anoncvs.postgresql.org/cvsweb.cgi/pgsql/src/backend/snowball/stopwords/
https://anoncvs.postgresql.org/cvsweb.cgi/pgsql/src/backend/snowball/stopwords/

108 ml_evaluate

ml_evaluate Evaluate the Model on a Validation Set

Description

Compute performance metrics.

Usage

ml_evaluate(x, dataset)

S3 method for class 'ml_model_logistic_regression'
ml_evaluate(x, dataset)

S3 method for class 'ml_logistic_regression_model'
ml_evaluate(x, dataset)

S3 method for class 'ml_model_linear_regression'
ml_evaluate(x, dataset)

S3 method for class 'ml_linear_regression_model'
ml_evaluate(x, dataset)

S3 method for class 'ml_model_generalized_linear_regression'
ml_evaluate(x, dataset)

S3 method for class 'ml_generalized_linear_regression_model'
ml_evaluate(x, dataset)

S3 method for class 'ml_model_clustering'
ml_evaluate(x, dataset)

S3 method for class 'ml_model_classification'
ml_evaluate(x, dataset)

S3 method for class 'ml_evaluator'
ml_evaluate(x, dataset)

Arguments

x An ML model object or an evaluator object.

dataset The dataset to be validate the model on.

Examples

Not run:
sc <- spark_connect(master = "local")

ml_evaluator 109

iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

ml_gaussian_mixture(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)

ml_kmeans(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)

ml_bisecting_kmeans(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)

End(Not run)

ml_evaluator Spark ML - Evaluators

Description

A set of functions to calculate performance metrics for prediction models. Also see the Spark ML
Documentation https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.evaluation.package

Usage

ml_binary_classification_evaluator(
x,
label_col = "label",
raw_prediction_col = "rawPrediction",
metric_name = "areaUnderROC",
uid = random_string("binary_classification_evaluator_"),
...

)

ml_binary_classification_eval(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "areaUnderROC"

)

ml_multiclass_classification_evaluator(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "f1",
uid = random_string("multiclass_classification_evaluator_"),
...

)

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.evaluation.package

110 ml_evaluator

ml_classification_eval(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "f1"

)

ml_regression_evaluator(
x,
label_col = "label",
prediction_col = "prediction",
metric_name = "rmse",
uid = random_string("regression_evaluator_"),
...

)

Arguments

x A spark_connection object or a tbl_spark containing label and prediction
columns. The latter should be the output of sdf_predict.

label_col Name of column string specifying which column contains the true labels or val-
ues.

raw_prediction_col

Raw prediction (a.k.a. confidence) column name.

metric_name The performance metric. See details.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; currently unused.

prediction_col Name of the column that contains the predicted label or value NOT the scored
probability. Column should be of type Double.

Details

The following metrics are supported

• Binary Classification: areaUnderROC (default) or areaUnderPR (not available in Spark 2.X.)

• Multiclass Classification: f1 (default), precision, recall, weightedPrecision, weightedRecall
or accuracy; for Spark 2.X: f1 (default), weightedPrecision, weightedRecall or accuracy.

• Regression: rmse (root mean squared error, default), mse (mean squared error), r2, or mae
(mean absolute error.)

ml_binary_classification_eval() is an alias for ml_binary_classification_evaluator()
for backwards compatibility.

ml_classification_eval() is an alias for ml_multiclass_classification_evaluator() for
backwards compatibility.

ml_feature_importances 111

Value

The calculated performance metric

Examples

Not run:
sc <- spark_connect(master = "local")
mtcars_tbl <- sdf_copy_to(sc, mtcars, name = "mtcars_tbl", overwrite = TRUE)

partitions <- mtcars_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

mtcars_training <- partitions$training
mtcars_test <- partitions$test

for multiclass classification
rf_model <- mtcars_training %>%

ml_random_forest(cyl ~ ., type = "classification")

pred <- ml_predict(rf_model, mtcars_test)

ml_multiclass_classification_evaluator(pred)

for regression
rf_model <- mtcars_training %>%

ml_random_forest(cyl ~ ., type = "regression")

pred <- ml_predict(rf_model, mtcars_test)

ml_regression_evaluator(pred, label_col = "cyl")

for binary classification
rf_model <- mtcars_training %>%

ml_random_forest(am ~ gear + carb, type = "classification")

pred <- ml_predict(rf_model, mtcars_test)

ml_binary_classification_evaluator(pred)

End(Not run)

ml_feature_importances

Spark ML - Feature Importance for Tree Models

Description

Spark ML - Feature Importance for Tree Models

112 ml_fpgrowth

Usage

ml_feature_importances(model, ...)

ml_tree_feature_importance(model, ...)

Arguments

model A decision tree-based model.

... Optional arguments; currently unused.

Value

For ml_model, a sorted data frame with feature labels and their relative importance. For ml_prediction_model,
a vector of relative importances.

ml_fpgrowth Frequent Pattern Mining – FPGrowth

Description

A parallel FP-growth algorithm to mine frequent itemsets.

Usage

ml_fpgrowth(
x,
items_col = "items",
min_confidence = 0.8,
min_support = 0.3,
prediction_col = "prediction",
uid = random_string("fpgrowth_"),
...

)

ml_association_rules(model)

ml_freq_itemsets(model)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

items_col Items column name. Default: "items"

min_confidence Minimal confidence for generating Association Rule. min_confidence will not
affect the mining for frequent itemsets, but will affect the association rules gen-
eration. Default: 0.8

ml_gaussian_mixture 113

min_support Minimal support level of the frequent pattern. [0.0, 1.0]. Any pattern that ap-
pears more than (min_support * size-of-the-dataset) times will be output in the
frequent itemsets. Default: 0.3

prediction_col Prediction column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; currently unused.

model A fitted FPGrowth model returned by ml_fpgrowth()

ml_gaussian_mixture Spark ML – Gaussian Mixture clustering.

Description

This class performs expectation maximization for multivariate Gaussian Mixture Models (GMMs).
A GMM represents a composite distribution of independent Gaussian distributions with associated
"mixing" weights specifying each’s contribution to the composite. Given a set of sample points,
this class will maximize the log-likelihood for a mixture of k Gaussians, iterating until the log-
likelihood changes by less than tol, or until it has reached the max number of iterations. While this
process is generally guaranteed to converge, it is not guaranteed to find a global optimum.

Usage

ml_gaussian_mixture(
x,
formula = NULL,
k = 2,
max_iter = 100,
tol = 0.01,
seed = NULL,
features_col = "features",
prediction_col = "prediction",
probability_col = "probability",
uid = random_string("gaussian_mixture_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

k The number of clusters to create

max_iter The maximum number of iterations to use.

tol Param for the convergence tolerance for iterative algorithms.

114 ml_gaussian_mixture

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

prediction_col Prediction column name.
probability_col

Column name for predicted class conditional probabilities. Note: Not all mod-
els output well-calibrated probability estimates! These probabilities should be
treated as confidences, not precise probabilities.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments, see Details.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Estimator object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the clus-
tering estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, an estimator is constructed then immediately fit with the
input tbl_spark, returning a clustering model.

• tbl_spark, with formula or features specified: When formula is specified, the input
tbl_spark is first transformed using a RFormula transformer before being fit by the estimator.
The object returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.
This signature does not apply to ml_lda().

See Also

See https://spark.apache.org/docs/latest/ml-clustering.html for more information on
the set of clustering algorithms.

Other ml clustering algorithms: ml_bisecting_kmeans(), ml_kmeans(), ml_lda()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

gmm_model <- ml_gaussian_mixture(iris_tbl, Species ~ .)
pred <- sdf_predict(iris_tbl, gmm_model)
ml_clustering_evaluator(pred)

End(Not run)

https://spark.apache.org/docs/latest/ml-clustering.html

ml_gbt_classifier 115

ml_gbt_classifier Spark ML – Gradient Boosted Trees

Description

Perform binary classification and regression using gradient boosted trees. Multiclass classification
is not supported yet.

Usage

ml_gbt_classifier(
x,
formula = NULL,
max_iter = 20,
max_depth = 5,
step_size = 0.1,
subsampling_rate = 1,
feature_subset_strategy = "auto",
min_instances_per_node = 1L,
max_bins = 32,
min_info_gain = 0,
loss_type = "logistic",
seed = NULL,
thresholds = NULL,
checkpoint_interval = 10,
cache_node_ids = FALSE,
max_memory_in_mb = 256,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("gbt_classifier_"),
...

)

ml_gradient_boosted_trees(
x,
formula = NULL,
type = c("auto", "regression", "classification"),
features_col = "features",
label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
checkpoint_interval = 10,
loss_type = c("auto", "logistic", "squared", "absolute"),

116 ml_gbt_classifier

max_bins = 32,
max_depth = 5,
max_iter = 20L,
min_info_gain = 0,
min_instances_per_node = 1,
step_size = 0.1,
subsampling_rate = 1,
feature_subset_strategy = "auto",
seed = NULL,
thresholds = NULL,
cache_node_ids = FALSE,
max_memory_in_mb = 256,
uid = random_string("gradient_boosted_trees_"),
response = NULL,
features = NULL,
...

)

ml_gbt_regressor(
x,
formula = NULL,
max_iter = 20,
max_depth = 5,
step_size = 0.1,
subsampling_rate = 1,
feature_subset_strategy = "auto",
min_instances_per_node = 1,
max_bins = 32,
min_info_gain = 0,
loss_type = "squared",
seed = NULL,
checkpoint_interval = 10,
cache_node_ids = FALSE,
max_memory_in_mb = 256,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("gbt_regressor_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

max_iter Maxmimum number of iterations.

ml_gbt_classifier 117

max_depth Maximum depth of the tree (>= 0); that is, the maximum number of nodes sep-
arating any leaves from the root of the tree.

step_size Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of
each estimator. (default = 0.1)

subsampling_rate

Fraction of the training data used for learning each decision tree, in range (0, 1].
(default = 1.0)

feature_subset_strategy

The number of features to consider for splits at each tree node. See details for
options.

min_instances_per_node

Minimum number of instances each child must have after split.

max_bins The maximum number of bins used for discretizing continuous features and for
choosing how to split on features at each node. More bins give higher granular-
ity.

min_info_gain Minimum information gain for a split to be considered at a tree node. Should be
>= 0, defaults to 0.

loss_type Loss function which GBT tries to minimize. Supported: "squared" (L2) and
"absolute" (L1) (default = squared) for regression and "logistic" (default)
for classification. For ml_gradient_boosted_trees, setting "auto" will de-
fault to the appropriate loss type based on model type.

seed Seed for random numbers.

thresholds Thresholds in multi-class classification to adjust the probability of predicting
each class. Array must have length equal to the number of classes, with values
> 0 excepting that at most one value may be 0. The class with largest value p/t
is predicted, where p is the original probability of that class and t is the class’s
threshold.

checkpoint_interval

Set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the
cache will get checkpointed every 10 iterations, defaults to 10.

cache_node_ids If FALSE, the algorithm will pass trees to executors to match instances with
nodes. If TRUE, the algorithm will cache node IDs for each instance. Caching
can speed up training of deeper trees. Defaults to FALSE.

max_memory_in_mb

Maximum memory in MB allocated to histogram aggregation. If too small,
then 1 node will be split per iteration, and its aggregates may exceed this size.
Defaults to 256.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.
probability_col

Column name for predicted class conditional probabilities.

118 ml_gbt_classifier

raw_prediction_col

Raw prediction (a.k.a. confidence) column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

type The type of model to fit. "regression" treats the response as a continuous
variable, while "classification" treats the response as a categorical variable.
When "auto" is used, the model type is inferred based on the response variable
type – if it is a numeric type, then regression is used; classification otherwise.

response (Deprecated) The name of the response column (as a length-one character vec-
tor.)

features (Deprecated) The name of features (terms) to use for the model fit.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

The supported options for feature_subset_strategy are

• "auto": Choose automatically for task: If num_trees == 1, set to "all". If num_trees > 1
(forest), set to "sqrt" for classification and to "onethird" for regression.

• "all": use all features

• "onethird": use 1/3 of the features

• "sqrt": use use sqrt(number of features)

• "log2": use log2(number of features)

• "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1,
number of features), use n features. (default = "auto")

ml_gradient_boosted_trees is a wrapper around ml_gbt_regressor.tbl_spark and ml_gbt_classifier.tbl_spark
and calls the appropriate method based on model type.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

ml_generalized_linear_regression 119

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_generalized_linear_regression(),
ml_isotonic_regression(), ml_linear_regression(), ml_linear_svc(), ml_logistic_regression(),
ml_multilayer_perceptron_classifier(), ml_naive_bayes(), ml_one_vs_rest(), ml_random_forest_classifier()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training
iris_test <- partitions$test

gbt_model <- iris_training %>%
ml_gradient_boosted_trees(Sepal_Length ~ Petal_Length + Petal_Width)

pred <- ml_predict(gbt_model, iris_test)

ml_regression_evaluator(pred, label_col = "Sepal_Length")

End(Not run)

ml_generalized_linear_regression

Spark ML – Generalized Linear Regression

Description

Perform regression using Generalized Linear Model (GLM).

https://spark.apache.org/docs/latest/ml-classification-regression.html

120 ml_generalized_linear_regression

Usage

ml_generalized_linear_regression(
x,
formula = NULL,
family = "gaussian",
link = NULL,
fit_intercept = TRUE,
offset_col = NULL,
link_power = NULL,
link_prediction_col = NULL,
reg_param = 0,
max_iter = 25,
weight_col = NULL,
solver = "irls",
tol = 1e-06,
variance_power = 0,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("generalized_linear_regression_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

family Name of family which is a description of the error distribution to be used in
the model. Supported options: "gaussian", "binomial", "poisson", "gamma" and
"tweedie". Default is "gaussian".

link Name of link function which provides the relationship between the linear predic-
tor and the mean of the distribution function. See for supported link functions.

fit_intercept Boolean; should the model be fit with an intercept term?

offset_col Offset column name. If this is not set, we treat all instance offsets as 0.0. The
feature specified as offset has a constant coefficient of 1.0.

link_power Index in the power link function. Only applicable to the Tweedie family. Note
that link power 0, 1, -1 or 0.5 corresponds to the Log, Identity, Inverse or Sqrt
link, respectively. When not set, this value defaults to 1 - variancePower, which
matches the R "statmod" package.

link_prediction_col

Link prediction (linear predictor) column name. Default is not set, which means
we do not output link prediction.

reg_param Regularization parameter (aka lambda)

max_iter The maximum number of iterations to use.

ml_generalized_linear_regression 121

weight_col The name of the column to use as weights for the model fit.

solver Solver algorithm for optimization.

tol Param for the convergence tolerance for iterative algorithms.

variance_power Power in the variance function of the Tweedie distribution which provides the
relationship between the variance and mean of the distribution. Only applicable
to the Tweedie family. (see Tweedie Distribution (Wikipedia)) Supported values:
0 and [1, Inf). Note that variance power 0, 1, or 2 corresponds to the Gaussian,
Poisson or Gamma family, respectively.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

Valid link functions for each family is listed below. The first link function of each family is the
default one.

• gaussian: "identity", "log", "inverse"

• binomial: "logit", "probit", "loglog"

• poisson: "log", "identity", "sqrt"

• gamma: "inverse", "identity", "log"

• tweedie: power link function specified through link_power. The default link power in the
tweedie family is 1 -variance_power.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

https://en.wikipedia.org/wiki/Tweedie_distribution

122 ml_generalized_linear_regression

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_isotonic_regression(), ml_linear_regression(), ml_linear_svc(), ml_logistic_regression(),
ml_multilayer_perceptron_classifier(), ml_naive_bayes(), ml_one_vs_rest(), ml_random_forest_classifier()

Examples

Not run:
library(sparklyr)

sc <- spark_connect(master = "local")
mtcars_tbl <- sdf_copy_to(sc, mtcars, name = "mtcars_tbl", overwrite = TRUE)

partitions <- mtcars_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

mtcars_training <- partitions$training
mtcars_test <- partitions$test

Specify the grid
family <- c("gaussian", "gamma", "poisson")
link <- c("identity", "log")
family_link <- expand.grid(family = family, link = link, stringsAsFactors = FALSE)
family_link <- data.frame(family_link, rmse = 0)

Train the models
for (i in seq_len(nrow(family_link))) {

glm_model <- mtcars_training %>%
ml_generalized_linear_regression(mpg ~ .,

family = family_link[i, 1],
link = family_link[i, 2]

)

pred <- ml_predict(glm_model, mtcars_test)
family_link[i, 3] <- ml_regression_evaluator(pred, label_col = "mpg")

}

family_link

End(Not run)

https://spark.apache.org/docs/latest/ml-classification-regression.html

ml_glm_tidiers 123

ml_glm_tidiers Tidying methods for Spark ML linear models

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_generalized_linear_regression'
tidy(x, exponentiate = FALSE, ...)

S3 method for class 'ml_model_linear_regression'
tidy(x, ...)

S3 method for class 'ml_model_generalized_linear_regression'
augment(
x,
newdata = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...

)

S3 method for class 'ml_model_linear_regression'
augment(
x,
newdata = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...

)

S3 method for class 'ml_model_generalized_linear_regression'
glance(x, ...)

S3 method for class 'ml_model_linear_regression'
glance(x, ...)

Arguments

x a Spark ML model.

exponentiate For GLM, whether to exponentiate the coefficient estimates (typical for logistic
regression.)

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

type.residuals type of residuals, defaults to "working". Must be set to "working" when
newdata is supplied.

124 ml_isotonic_regression

Details

The residuals attached by augment are of type "working" by default, which is different from the
default of "deviance" for residuals() or sdf_residuals().

ml_isotonic_regression

Spark ML – Isotonic Regression

Description

Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single
feature) algorithm supported.

Usage

ml_isotonic_regression(
x,
formula = NULL,
feature_index = 0,
isotonic = TRUE,
weight_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("isotonic_regression_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

feature_index Index of the feature if features_col is a vector column (default: 0), no effect
otherwise.

isotonic Whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing
(false). Default: true

weight_col The name of the column to use as weights for the model fit.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

ml_isotonic_regression 125

prediction_col Prediction column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_linear_regression(), ml_linear_svc(), ml_logistic_regression(),
ml_multilayer_perceptron_classifier(), ml_naive_bayes(), ml_one_vs_rest(), ml_random_forest_classifier()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training

https://spark.apache.org/docs/latest/ml-classification-regression.html

126 ml_kmeans

iris_test <- partitions$test

iso_res <- iris_tbl %>%
ml_isotonic_regression(Petal_Length ~ Petal_Width)

pred <- ml_predict(iso_res, iris_test)

pred

End(Not run)

ml_isotonic_regression_tidiers

Tidying methods for Spark ML Isotonic Regression

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_isotonic_regression'
tidy(x, ...)

S3 method for class 'ml_model_isotonic_regression'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_isotonic_regression'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

ml_kmeans Spark ML – K-Means Clustering

Description

K-means clustering with support for k-means|| initialization proposed by Bahmani et al. Using
‘ml_kmeans()‘ with the formula interface requires Spark 2.0+.

ml_kmeans 127

Usage

ml_kmeans(
x,
formula = NULL,
k = 2,
max_iter = 20,
tol = 1e-04,
init_steps = 2,
init_mode = "k-means||",
seed = NULL,
features_col = "features",
prediction_col = "prediction",
uid = random_string("kmeans_"),
...

)

ml_compute_cost(model, dataset)

ml_compute_silhouette_measure(
model,
dataset,
distance_measure = c("squaredEuclidean", "cosine")

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

k The number of clusters to create

max_iter The maximum number of iterations to use.

tol Param for the convergence tolerance for iterative algorithms.

init_steps Number of steps for the k-means|| initialization mode. This is an advanced set-
ting – the default of 2 is almost always enough. Must be > 0. Default: 2.

init_mode Initialization algorithm. This can be either "random" to choose random points
as initial cluster centers, or "k-means||" to use a parallel variant of k-means++
(Bahmani et al., Scalable K-Means++, VLDB 2012). Default: k-means||.

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

prediction_col Prediction column name.

uid A character string used to uniquely identify the ML estimator.

128 ml_kmeans

... Optional arguments, see Details.

model A fitted K-means model returned by ml_kmeans()

dataset Dataset on which to calculate K-means cost
distance_measure

Distance measure to apply when computing the Silhouette measure.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Estimator object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the clus-
tering estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, an estimator is constructed then immediately fit with the
input tbl_spark, returning a clustering model.

• tbl_spark, with formula or features specified: When formula is specified, the input
tbl_spark is first transformed using a RFormula transformer before being fit by the estimator.
The object returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.
This signature does not apply to ml_lda().

ml_compute_cost() returns the K-means cost (sum of squared distances of points to their nearest
center) for the model on the given data.

ml_compute_silhouette_measure() returns the Silhouette measure of the clustering on the given
data.

See Also

See https://spark.apache.org/docs/latest/ml-clustering.html for more information on
the set of clustering algorithms.

Other ml clustering algorithms: ml_bisecting_kmeans(), ml_gaussian_mixture(), ml_lda()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
ml_kmeans(iris_tbl, Species ~ .)

End(Not run)

https://spark.apache.org/docs/latest/ml-clustering.html

ml_kmeans_cluster_eval 129

ml_kmeans_cluster_eval

Evaluate a K-mean clustering

Description

Evaluate a K-mean clustering

Arguments

model A fitted K-means model returned by ml_kmeans()

dataset Dataset on which to calculate K-means cost

ml_lda Spark ML – Latent Dirichlet Allocation

Description

Latent Dirichlet Allocation (LDA), a topic model designed for text documents.

Usage

ml_lda(
x,
formula = NULL,
k = 10,
max_iter = 20,
doc_concentration = NULL,
topic_concentration = NULL,
subsampling_rate = 0.05,
optimizer = "online",
checkpoint_interval = 10,
keep_last_checkpoint = TRUE,
learning_decay = 0.51,
learning_offset = 1024,
optimize_doc_concentration = TRUE,
seed = NULL,
features_col = "features",
topic_distribution_col = "topicDistribution",
uid = random_string("lda_"),
...

)

ml_describe_topics(model, max_terms_per_topic = 10)

130 ml_lda

ml_log_likelihood(model, dataset)

ml_log_perplexity(model, dataset)

ml_topics_matrix(model)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

k The number of clusters to create

max_iter The maximum number of iterations to use.
doc_concentration

Concentration parameter (commonly named "alpha") for the prior placed on
documents’ distributions over topics ("theta"). See details.

topic_concentration

Concentration parameter (commonly named "beta" or "eta") for the prior placed
on topics’ distributions over terms.

subsampling_rate

(For Online optimizer only) Fraction of the corpus to be sampled and used in
each iteration of mini-batch gradient descent, in range (0, 1]. Note that this
should be adjusted in synch with max_iter so the entire corpus is used. Specif-
ically, set both so that maxIterations * miniBatchFraction greater than or equal
to 1.

optimizer Optimizer or inference algorithm used to estimate the LDA model. Supported:
"online" for Online Variational Bayes (default) and "em" for Expectation-Maximization.

checkpoint_interval

Set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the
cache will get checkpointed every 10 iterations, defaults to 10.

keep_last_checkpoint

(Spark 2.0.0+) (For EM optimizer only) If using checkpointing, this indicates
whether to keep the last checkpoint. If FALSE, then the checkpoint will be
deleted. Deleting the checkpoint can cause failures if a data partition is lost,
so set this bit with care. Note that checkpoints will be cleaned up via reference
counting, regardless.

learning_decay (For Online optimizer only) Learning rate, set as an exponential decay rate. This
should be between (0.5, 1.0] to guarantee asymptotic convergence. This is called
"kappa" in the Online LDA paper (Hoffman et al., 2010). Default: 0.51, based
on Hoffman et al.

learning_offset

(For Online optimizer only) A (positive) learning parameter that downweights
early iterations. Larger values make early iterations count less. This is called
"tau0" in the Online LDA paper (Hoffman et al., 2010) Default: 1024, following
Hoffman et al.

ml_lda 131

optimize_doc_concentration

(For Online optimizer only) Indicates whether the doc_concentration (Dirich-
let parameter for document-topic distribution) will be optimized during training.
Setting this to true will make the model more expressive and fit the training data
better. Default: FALSE

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

topic_distribution_col

Output column with estimates of the topic mixture distribution for each docu-
ment (often called "theta" in the literature). Returns a vector of zeros for an
empty document.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments, see Details.

model A fitted LDA model returned by ml_lda().
max_terms_per_topic

Maximum number of terms to collect for each topic. Default value of 10.

dataset test corpus to use for calculating log likelihood or log perplexity

Details

For ‘ml_lda.tbl_spark‘ with the formula interface, you can specify named arguments in ‘...‘ that will
be passed ‘ft_regex_tokenizer()‘, ‘ft_stop_words_remover()‘, and ‘ft_count_vectorizer()‘. For ex-
ample, to increase the default ‘min_token_length‘, you can use ‘ml_lda(dataset, ~ text, min_token_length
= 4)‘.

Terminology for LDA:

• "term" = "word": an element of the vocabulary

• "token": instance of a term appearing in a document

• "topic": multinomial distribution over terms representing some concept

• "document": one piece of text, corresponding to one row in the input data

Original LDA paper (journal version): Blei, Ng, and Jordan. "Latent Dirichlet Allocation." JMLR,
2003.

Input data (features_col): LDA is given a collection of documents as input data, via the features_col
parameter. Each document is specified as a Vector of length vocab_size, where each entry is the
count for the corresponding term (word) in the document. Feature transformers such as ft_tokenizer
and ft_count_vectorizer can be useful for converting text to word count vectors

Value

The object returned depends on the class of x.

132 ml_lda

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Estimator object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the clus-
tering estimator appended to the pipeline.

• tbl_spark: When x is a tbl_spark, an estimator is constructed then immediately fit with the
input tbl_spark, returning a clustering model.

• tbl_spark, with formula or features specified: When formula is specified, the input
tbl_spark is first transformed using a RFormula transformer before being fit by the estimator.
The object returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.
This signature does not apply to ml_lda().

ml_describe_topics returns a DataFrame with topics and their top-weighted terms.

ml_log_likelihood calculates a lower bound on the log likelihood of the entire corpus

Parameter details

doc_concentration: This is the parameter to a Dirichlet distribution, where larger values mean
more smoothing (more regularization). If not set by the user, then doc_concentration is set
automatically. If set to singleton vector [alpha], then alpha is replicated to a vector of length k in
fitting. Otherwise, the doc_concentration vector must be length k. (default = automatic)
Optimizer-specific parameter settings:
EM

• Currently only supports symmetric distributions, so all values in the vector should be the
same.

• Values should be greater than 1.0
• default = uniformly (50 / k) + 1, where 50/k is common in LDA libraries and +1 follows from

Asuncion et al. (2009), who recommend a +1 adjustment for EM.

Online

• Values should be greater than or equal to 0
• default = uniformly (1.0 / k), following the implementation from here

topic_concentration:
This is the parameter to a symmetric Dirichlet distribution.
Note: The topics’ distributions over terms are called "beta" in the original LDA paper by Blei et
al., but are called "phi" in many later papers such as Asuncion et al., 2009.
If not set by the user, then topic_concentration is set automatically. (default = automatic)
Optimizer-specific parameter settings:
EM

• Value should be greater than 1.0
• default = 0.1 + 1, where 0.1 gives a small amount of smoothing and +1 follows Asuncion et

al. (2009), who recommend a +1 adjustment for EM.

Online

• Value should be greater than or equal to 0

https://github.com/Blei-Lab/onlineldavb

ml_lda 133

• default = (1.0 / k), following the implementation from here.

topic_distribution_col: This uses a variational approximation following Hoffman et al.
(2010), where the approximate distribution is called "gamma." Technically, this method returns
this approximation "gamma" for each document.

See Also

See https://spark.apache.org/docs/latest/ml-clustering.html for more information on
the set of clustering algorithms.

Other ml clustering algorithms: ml_bisecting_kmeans(), ml_gaussian_mixture(), ml_kmeans()

Examples

Not run:
library(janeaustenr)
library(dplyr)
sc <- spark_connect(master = "local")

lines_tbl <- sdf_copy_to(sc,
austen_books()[c(1:30),],
name = "lines_tbl",
overwrite = TRUE

)

transform the data in a tidy form
lines_tbl_tidy <- lines_tbl %>%

ft_tokenizer(
input_col = "text",
output_col = "word_list"

) %>%
ft_stop_words_remover(

input_col = "word_list",
output_col = "wo_stop_words"

) %>%
mutate(text = explode(wo_stop_words)) %>%
filter(text != "") %>%
select(text, book)

lda_model <- lines_tbl_tidy %>%
ml_lda(~text, k = 4)

vocabulary and topics
tidy(lda_model)

End(Not run)

https://github.com/Blei-Lab/onlineldavb
https://spark.apache.org/docs/latest/ml-clustering.html

134 ml_linear_regression

ml_lda_tidiers Tidying methods for Spark ML LDA models

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_lda'
tidy(x, ...)

S3 method for class 'ml_model_lda'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_lda'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

ml_linear_regression Spark ML – Linear Regression

Description

Perform regression using linear regression.

Usage

ml_linear_regression(
x,
formula = NULL,
fit_intercept = TRUE,
elastic_net_param = 0,
reg_param = 0,
max_iter = 100,
weight_col = NULL,
loss = "squaredError",
solver = "auto",
standardization = TRUE,
tol = 1e-06,

ml_linear_regression 135

features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("linear_regression_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

fit_intercept Boolean; should the model be fit with an intercept term?
elastic_net_param

ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2
penalty. For alpha = 1, it is an L1 penalty.

reg_param Regularization parameter (aka lambda)

max_iter The maximum number of iterations to use.

weight_col The name of the column to use as weights for the model fit.

loss The loss function to be optimized. Supported options: "squaredError" and "hu-
ber". Default: "squaredError"

solver Solver algorithm for optimization.
standardization

Whether to standardize the training features before fitting the model.

tol Param for the convergence tolerance for iterative algorithms.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

136 ml_linear_regression

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_isotonic_regression(), ml_linear_svc(), ml_logistic_regression(),
ml_multilayer_perceptron_classifier(), ml_naive_bayes(), ml_one_vs_rest(), ml_random_forest_classifier()

Examples

Not run:
sc <- spark_connect(master = "local")
mtcars_tbl <- sdf_copy_to(sc, mtcars, name = "mtcars_tbl", overwrite = TRUE)

partitions <- mtcars_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

mtcars_training <- partitions$training
mtcars_test <- partitions$test

lm_model <- mtcars_training %>%
ml_linear_regression(mpg ~ .)

pred <- ml_predict(lm_model, mtcars_test)

ml_regression_evaluator(pred, label_col = "mpg")

End(Not run)

https://spark.apache.org/docs/latest/ml-classification-regression.html

ml_linear_svc 137

ml_linear_svc Spark ML – LinearSVC

Description

Perform classification using linear support vector machines (SVM). This binary classifier optimizes
the Hinge Loss using the OWLQN optimizer. Only supports L2 regularization currently.

Usage

ml_linear_svc(
x,
formula = NULL,
fit_intercept = TRUE,
reg_param = 0,
max_iter = 100,
standardization = TRUE,
weight_col = NULL,
tol = 1e-06,
threshold = 0,
aggregation_depth = 2,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
raw_prediction_col = "rawPrediction",
uid = random_string("linear_svc_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

fit_intercept Boolean; should the model be fit with an intercept term?

reg_param Regularization parameter (aka lambda)

max_iter The maximum number of iterations to use.
standardization

Whether to standardize the training features before fitting the model.

weight_col The name of the column to use as weights for the model fit.

tol Param for the convergence tolerance for iterative algorithms.

threshold in binary classification prediction, in range [0, 1].
aggregation_depth

(Spark 2.1.0+) Suggested depth for treeAggregate (>= 2).

138 ml_linear_svc

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.
raw_prediction_col

Raw prediction (a.k.a. confidence) column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_isotonic_regression(), ml_linear_regression(),
ml_logistic_regression(), ml_multilayer_perceptron_classifier(), ml_naive_bayes(),
ml_one_vs_rest(), ml_random_forest_classifier()

https://spark.apache.org/docs/latest/ml-classification-regression.html

ml_linear_svc_tidiers 139

Examples

Not run:
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

partitions <- iris_tbl %>%
filter(Species != "setosa") %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training
iris_test <- partitions$test

svc_model <- iris_training %>%
ml_linear_svc(Species ~ .)

pred <- ml_predict(svc_model, iris_test)

ml_binary_classification_evaluator(pred)

End(Not run)

ml_linear_svc_tidiers Tidying methods for Spark ML linear svc

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_linear_svc'
tidy(x, ...)

S3 method for class 'ml_model_linear_svc'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_linear_svc'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

140 ml_logistic_regression

ml_logistic_regression

Spark ML – Logistic Regression

Description

Perform classification using logistic regression.

Usage

ml_logistic_regression(
x,
formula = NULL,
fit_intercept = TRUE,
elastic_net_param = 0,
reg_param = 0,
max_iter = 100,
threshold = 0.5,
thresholds = NULL,
tol = 1e-06,
weight_col = NULL,
aggregation_depth = 2,
lower_bounds_on_coefficients = NULL,
lower_bounds_on_intercepts = NULL,
upper_bounds_on_coefficients = NULL,
upper_bounds_on_intercepts = NULL,
features_col = "features",
label_col = "label",
family = "auto",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("logistic_regression_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

fit_intercept Boolean; should the model be fit with an intercept term?
elastic_net_param

ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2
penalty. For alpha = 1, it is an L1 penalty.

ml_logistic_regression 141

reg_param Regularization parameter (aka lambda)
max_iter The maximum number of iterations to use.
threshold in binary classification prediction, in range [0, 1].
thresholds Thresholds in multi-class classification to adjust the probability of predicting

each class. Array must have length equal to the number of classes, with values
> 0 excepting that at most one value may be 0. The class with largest value p/t
is predicted, where p is the original probability of that class and t is the class’s
threshold.

tol Param for the convergence tolerance for iterative algorithms.
weight_col The name of the column to use as weights for the model fit.
aggregation_depth

(Spark 2.1.0+) Suggested depth for treeAggregate (>= 2).
lower_bounds_on_coefficients

(Spark 2.2.0+) Lower bounds on coefficients if fitting under bound constrained
optimization. The bound matrix must be compatible with the shape (1, number
of features) for binomial regression, or (number of classes, number of features)
for multinomial regression.

lower_bounds_on_intercepts

(Spark 2.2.0+) Lower bounds on intercepts if fitting under bound constrained
optimization. The bounds vector size must be equal with 1 for binomial regres-
sion, or the number of classes for multinomial regression.

upper_bounds_on_coefficients

(Spark 2.2.0+) Upper bounds on coefficients if fitting under bound constrained
optimization. The bound matrix must be compatible with the shape (1, number
of features) for binomial regression, or (number of classes, number of features)
for multinomial regression.

upper_bounds_on_intercepts

(Spark 2.2.0+) Upper bounds on intercepts if fitting under bound constrained op-
timization. The bounds vector size must be equal with 1 for binomial regression,
or the number of classes for multinomial regression.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

family (Spark 2.1.0+) Param for the name of family which is a description of the label
distribution to be used in the model. Supported options: "auto", "binomial", and
"multinomial."

prediction_col Prediction column name.
probability_col

Column name for predicted class conditional probabilities.
raw_prediction_col

Raw prediction (a.k.a. confidence) column name.
uid A character string used to uniquely identify the ML estimator.
... Optional arguments; see Details.

142 ml_logistic_regression

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_isotonic_regression(), ml_linear_regression(),
ml_linear_svc(), ml_multilayer_perceptron_classifier(), ml_naive_bayes(), ml_one_vs_rest(),
ml_random_forest_classifier()

Examples

Not run:
sc <- spark_connect(master = "local")
mtcars_tbl <- sdf_copy_to(sc, mtcars, name = "mtcars_tbl", overwrite = TRUE)

partitions <- mtcars_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

mtcars_training <- partitions$training
mtcars_test <- partitions$test

lr_model <- mtcars_training %>%
ml_logistic_regression(am ~ gear + carb)

https://spark.apache.org/docs/latest/ml-classification-regression.html

ml_logistic_regression_tidiers 143

pred <- ml_predict(lr_model, mtcars_test)

ml_binary_classification_evaluator(pred)

End(Not run)

ml_logistic_regression_tidiers

Tidying methods for Spark ML Logistic Regression

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_logistic_regression'
tidy(x, ...)

S3 method for class 'ml_model_logistic_regression'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_logistic_regression'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

ml_model_data Extracts data associated with a Spark ML model

Description

Extracts data associated with a Spark ML model

Usage

ml_model_data(object)

Arguments

object a Spark ML model

144 ml_multilayer_perceptron_classifier

Value

A tbl_spark

ml_multilayer_perceptron_classifier

Spark ML – Multilayer Perceptron

Description

Classification model based on the Multilayer Perceptron. Each layer has sigmoid activation func-
tion, output layer has softmax.

Usage

ml_multilayer_perceptron_classifier(
x,
formula = NULL,
layers = NULL,
max_iter = 100,
step_size = 0.03,
tol = 1e-06,
block_size = 128,
solver = "l-bfgs",
seed = NULL,
initial_weights = NULL,
thresholds = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("multilayer_perceptron_classifier_"),
...

)

ml_multilayer_perceptron(
x,
formula = NULL,
layers,
max_iter = 100,
step_size = 0.03,
tol = 1e-06,
block_size = 128,
solver = "l-bfgs",
seed = NULL,
initial_weights = NULL,

ml_multilayer_perceptron_classifier 145

features_col = "features",
label_col = "label",
thresholds = NULL,
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("multilayer_perceptron_classifier_"),
response = NULL,
features = NULL,
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

layers A numeric vector describing the layers – each element in the vector gives the
size of a layer. For example, c(4,5,2) would imply three layers, with an input
(feature) layer of size 4, an intermediate layer of size 5, and an output (class)
layer of size 2.

max_iter The maximum number of iterations to use.

step_size Step size to be used for each iteration of optimization (> 0).

tol Param for the convergence tolerance for iterative algorithms.

block_size Block size for stacking input data in matrices to speed up the computation. Data
is stacked within partitions. If block size is more than remaining data in a parti-
tion then it is adjusted to the size of this data. Recommended size is between 10
and 1000. Default: 128

solver The solver algorithm for optimization. Supported options: "gd" (minibatch gra-
dient descent) or "l-bfgs". Default: "l-bfgs"

seed A random seed. Set this value if you need your results to be reproducible across
repeated calls.

initial_weights

The initial weights of the model.

thresholds Thresholds in multi-class classification to adjust the probability of predicting
each class. Array must have length equal to the number of classes, with values
> 0 excepting that at most one value may be 0. The class with largest value p/t
is predicted, where p is the original probability of that class and t is the class’s
threshold.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

146 ml_multilayer_perceptron_classifier

prediction_col Prediction column name.
probability_col

Column name for predicted class conditional probabilities.
raw_prediction_col

Raw prediction (a.k.a. confidence) column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

response (Deprecated) The name of the response column (as a length-one character vec-
tor.)

features (Deprecated) The name of features (terms) to use for the model fit.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

ml_multilayer_perceptron() is an alias for ml_multilayer_perceptron_classifier() for
backwards compatibility.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_isotonic_regression(), ml_linear_regression(),
ml_linear_svc(), ml_logistic_regression(), ml_naive_bayes(), ml_one_vs_rest(), ml_random_forest_classifier()

https://spark.apache.org/docs/latest/ml-classification-regression.html

ml_multilayer_perceptron_tidiers 147

Examples

Not run:
sc <- spark_connect(master = "local")

iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%

sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training
iris_test <- partitions$test

mlp_model <- iris_training %>%
ml_multilayer_perceptron_classifier(Species ~ ., layers = c(4, 3, 3))

pred <- ml_predict(mlp_model, iris_test)

ml_multiclass_classification_evaluator(pred)

End(Not run)

ml_multilayer_perceptron_tidiers

Tidying methods for Spark ML MLP

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_multilayer_perceptron_classification'
tidy(x, ...)

S3 method for class 'ml_model_multilayer_perceptron_classification'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_multilayer_perceptron_classification'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

148 ml_naive_bayes

ml_naive_bayes Spark ML – Naive-Bayes

Description

Naive Bayes Classifiers. It supports Multinomial NB (see here) which can handle finitely supported
discrete data. For example, by converting documents into TF-IDF vectors, it can be used for docu-
ment classification. By making every vector a binary (0/1) data, it can also be used as Bernoulli NB
(see here). The input feature values must be nonnegative.

Usage

ml_naive_bayes(
x,
formula = NULL,
model_type = "multinomial",
smoothing = 1,
thresholds = NULL,
weight_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("naive_bayes_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

model_type The model type. Supported options: "multinomial" and "bernoulli". (de-
fault = multinomial)

smoothing The (Laplace) smoothing parameter. Defaults to 1.

thresholds Thresholds in multi-class classification to adjust the probability of predicting
each class. Array must have length equal to the number of classes, with values
> 0 excepting that at most one value may be 0. The class with largest value p/t
is predicted, where p is the original probability of that class and t is the class’s
threshold.

weight_col (Spark 2.1.0+) Weight column name. If this is not set or empty, we treat all
instance weights as 1.0.

http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

ml_naive_bayes 149

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.
probability_col

Column name for predicted class conditional probabilities.
raw_prediction_col

Raw prediction (a.k.a. confidence) column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_isotonic_regression(), ml_linear_regression(),
ml_linear_svc(), ml_logistic_regression(), ml_multilayer_perceptron_classifier(),
ml_one_vs_rest(), ml_random_forest_classifier()

https://spark.apache.org/docs/latest/ml-classification-regression.html

150 ml_naive_bayes_tidiers

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training
iris_test <- partitions$test

nb_model <- iris_training %>%
ml_naive_bayes(Species ~ .)

pred <- ml_predict(nb_model, iris_test)

ml_multiclass_classification_evaluator(pred)

End(Not run)

ml_naive_bayes_tidiers

Tidying methods for Spark ML Naive Bayes

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_naive_bayes'
tidy(x, ...)

S3 method for class 'ml_model_naive_bayes'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_naive_bayes'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

ml_one_vs_rest 151

ml_one_vs_rest Spark ML – OneVsRest

Description

Reduction of Multiclass Classification to Binary Classification. Performs reduction using one
against all strategy. For a multiclass classification with k classes, train k models (one per class).
Each example is scored against all k models and the model with highest score is picked to label the
example.

Usage

ml_one_vs_rest(
x,
formula = NULL,
classifier = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("one_vs_rest_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

classifier Object of class ml_estimator. Base binary classifier that we reduce multiclass
classification into.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that

152 ml_pca_tidiers

converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_isotonic_regression(), ml_linear_regression(),
ml_linear_svc(), ml_logistic_regression(), ml_multilayer_perceptron_classifier(),
ml_naive_bayes(), ml_random_forest_classifier()

ml_pca_tidiers Tidying methods for Spark ML Principal Component Analysis

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_pca'
tidy(x, ...)

S3 method for class 'ml_model_pca'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_pca'
glance(x, ...)

https://spark.apache.org/docs/latest/ml-classification-regression.html

ml_pipeline 153

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

ml_pipeline Spark ML – Pipelines

Description

Create Spark ML Pipelines

Usage

ml_pipeline(x, ..., uid = random_string("pipeline_"))

Arguments

x Either a spark_connection or ml_pipeline_stage objects

... ml_pipeline_stage objects.

uid A character string used to uniquely identify the ML estimator.

Value

When x is a spark_connection, ml_pipeline() returns an empty pipeline object. When x is a
ml_pipeline_stage, ml_pipeline() returns an ml_pipeline with the stages set to x and any
transformers or estimators given in

ml_power_iteration Spark ML – Power Iteration Clustering

Description

Power iteration clustering (PIC) is a scalable and efficient algorithm for clustering vertices of a
graph given pairwise similarities as edge properties, described in the paper "Power Iteration Clus-
tering" by Frank Lin and William W. Cohen. It computes a pseudo-eigenvector of the normalized
affinity matrix of the graph via power iteration and uses it to cluster vertices. spark.mllib includes
an implementation of PIC using GraphX as its backend. It takes an RDD of (srcId, dstId, similarity)
tuples and outputs a model with the clustering assignments. The similarities must be nonnegative.
PIC assumes that the similarity measure is symmetric. A pair (srcId, dstId) regardless of the order-
ing should appear at most once in the input data. If a pair is missing from input, their similarity is
treated as zero.

154 ml_power_iteration

Usage

ml_power_iteration(
x,
k = 4,
max_iter = 20,
init_mode = "random",
src_col = "src",
dst_col = "dst",
weight_col = "weight",
...

)

Arguments

x A ‘spark_connection’ or a ‘tbl_spark’.

k The number of clusters to create.

max_iter The maximum number of iterations to run.

init_mode This can be either “random”, which is the default, to use a random vector as
vertex properties, or “degree” to use normalized sum similarities.

src_col Column in the input Spark dataframe containing 0-based indexes of all source
vertices in the affinity matrix described in the PIC paper.

dst_col Column in the input Spark dataframe containing 0-based indexes of all destina-
tion vertices in the affinity matrix described in the PIC paper.

weight_col Column in the input Spark dataframe containing non-negative edge weights in
the affinity matrix described in the PIC paper.

... Optional arguments. Currently unused.

Value

A 2-column R dataframe with columns named "id" and "cluster" describing the resulting cluster
assignments

Examples

Not run:

library(sparklyr)

sc <- spark_connect(master = "local")

r1 <- 1
n1 <- 80L
r2 <- 4
n2 <- 80L

gen_circle <- function(radius, num_pts) {
generate evenly distributed points on a circle centered at the origin
seq(0, num_pts - 1) %>%

ml_power_iteration 155

lapply(
function(pt) {

theta <- 2 * pi * pt / num_pts

radius * c(cos(theta), sin(theta))
}

)
}

guassian_similarity <- function(pt1, pt2) {
dist2 <- sum((pt2 - pt1)^2)

exp(-dist2 / 2)
}

gen_pic_data <- function() {
generate points on 2 concentric circle centered at the origin and then
compute pairwise Gaussian similarity values of all unordered pair of
points
n <- n1 + n2
pts <- append(gen_circle(r1, n1), gen_circle(r2, n2))
num_unordered_pairs <- n * (n - 1) / 2

src <- rep(0L, num_unordered_pairs)
dst <- rep(0L, num_unordered_pairs)
sim <- rep(0, num_unordered_pairs)

idx <- 1
for (i in seq(2, n)) {
for (j in seq(i - 1)) {

src[[idx]] <- i - 1L
dst[[idx]] <- j - 1L
sim[[idx]] <- guassian_similarity(pts[[i]], pts[[j]])
idx <- idx + 1

}
}

tibble::tibble(src = src, dst = dst, sim = sim)
}

pic_data <- copy_to(sc, gen_pic_data())

clusters <- ml_power_iteration(
pic_data,
src_col = "src", dst_col = "dst", weight_col = "sim", k = 2, max_iter = 40

)
print(clusters)

End(Not run)

156 ml_prefixspan

ml_prefixspan Frequent Pattern Mining – PrefixSpan

Description

PrefixSpan algorithm for mining frequent itemsets.

Usage

ml_prefixspan(
x,
seq_col = "sequence",
min_support = 0.1,
max_pattern_length = 10,
max_local_proj_db_size = 3.2e+07,
uid = random_string("prefixspan_"),
...

)

ml_freq_seq_patterns(model)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

seq_col The name of the sequence column in dataset (default “sequence”). Rows with
nulls in this column are ignored.

min_support The minimum support required to be considered a frequent sequential pattern.
max_pattern_length

The maximum length of a frequent sequential pattern. Any frequent pattern
exceeding this length will not be included in the results.

max_local_proj_db_size

The maximum number of items allowed in a prefix-projected database before lo-
cal iterative processing of the projected database begins. This parameter should
be tuned with respect to the size of your executors.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; currently unused.

model A Prefix Span model.

Examples

Not run:
library(sparklyr)
sc <- spark_connect(master = "local", version = "2.4.0")

items_df <- tibble::tibble(
seq = list(

ml_random_forest_classifier 157

list(list(1, 2), list(3)),
list(list(1), list(3, 2), list(1, 2)),
list(list(1, 2), list(5)),
list(list(6))

)
)
items_sdf <- copy_to(sc, items_df, overwrite = TRUE)

prefix_span_model <- ml_prefixspan(
sc,
seq_col = "seq",
min_support = 0.5,
max_pattern_length = 5,
max_local_proj_db_size = 32000000

)

frequent_items <- prefix_span_model$frequent_sequential_patterns(items_sdf) %>% collect()

End(Not run)

ml_random_forest_classifier

Spark ML – Random Forest

Description

Perform classification and regression using random forests.

Usage

ml_random_forest_classifier(
x,
formula = NULL,
num_trees = 20,
subsampling_rate = 1,
max_depth = 5,
min_instances_per_node = 1,
feature_subset_strategy = "auto",
impurity = "gini",
min_info_gain = 0,
max_bins = 32,
seed = NULL,
thresholds = NULL,
checkpoint_interval = 10,
cache_node_ids = FALSE,
max_memory_in_mb = 256,
features_col = "features",

158 ml_random_forest_classifier

label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("random_forest_classifier_"),
...

)

ml_random_forest(
x,
formula = NULL,
type = c("auto", "regression", "classification"),
features_col = "features",
label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
feature_subset_strategy = "auto",
impurity = "auto",
checkpoint_interval = 10,
max_bins = 32,
max_depth = 5,
num_trees = 20,
min_info_gain = 0,
min_instances_per_node = 1,
subsampling_rate = 1,
seed = NULL,
thresholds = NULL,
cache_node_ids = FALSE,
max_memory_in_mb = 256,
uid = random_string("random_forest_"),
response = NULL,
features = NULL,
...

)

ml_random_forest_regressor(
x,
formula = NULL,
num_trees = 20,
subsampling_rate = 1,
max_depth = 5,
min_instances_per_node = 1,
feature_subset_strategy = "auto",
impurity = "variance",
min_info_gain = 0,
max_bins = 32,
seed = NULL,

ml_random_forest_classifier 159

checkpoint_interval = 10,
cache_node_ids = FALSE,
max_memory_in_mb = 256,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("random_forest_regressor_"),
...

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula Used when x is a tbl_spark. R formula as a character string or a formula.
This is used to transform the input dataframe before fitting, see ft_r_formula for
details.

num_trees Number of trees to train (>= 1). If 1, then no bootstrapping is used. If > 1, then
bootstrapping is done.

subsampling_rate

Fraction of the training data used for learning each decision tree, in range (0, 1].
(default = 1.0)

max_depth Maximum depth of the tree (>= 0); that is, the maximum number of nodes sep-
arating any leaves from the root of the tree.

min_instances_per_node

Minimum number of instances each child must have after split.
feature_subset_strategy

The number of features to consider for splits at each tree node. See details for
options.

impurity Criterion used for information gain calculation. Supported: "entropy" and "gini"
(default) for classification and "variance" (default) for regression. For ml_decision_tree,
setting "auto" will default to the appropriate criterion based on model type.

min_info_gain Minimum information gain for a split to be considered at a tree node. Should be
>= 0, defaults to 0.

max_bins The maximum number of bins used for discretizing continuous features and for
choosing how to split on features at each node. More bins give higher granular-
ity.

seed Seed for random numbers.

thresholds Thresholds in multi-class classification to adjust the probability of predicting
each class. Array must have length equal to the number of classes, with values
> 0 excepting that at most one value may be 0. The class with largest value p/t
is predicted, where p is the original probability of that class and t is the class’s
threshold.

checkpoint_interval

Set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the
cache will get checkpointed every 10 iterations, defaults to 10.

160 ml_random_forest_classifier

cache_node_ids If FALSE, the algorithm will pass trees to executors to match instances with
nodes. If TRUE, the algorithm will cache node IDs for each instance. Caching
can speed up training of deeper trees. Defaults to FALSE.

max_memory_in_mb

Maximum memory in MB allocated to histogram aggregation. If too small,
then 1 node will be split per iteration, and its aggregates may exceed this size.
Defaults to 256.

features_col Features column name, as a length-one character vector. The column should
be single vector column of numeric values. Usually this column is output by
ft_r_formula.

label_col Label column name. The column should be a numeric column. Usually this
column is output by ft_r_formula.

prediction_col Prediction column name.
probability_col

Column name for predicted class conditional probabilities.
raw_prediction_col

Raw prediction (a.k.a. confidence) column name.

uid A character string used to uniquely identify the ML estimator.

... Optional arguments; see Details.

type The type of model to fit. "regression" treats the response as a continuous
variable, while "classification" treats the response as a categorical variable.
When "auto" is used, the model type is inferred based on the response variable
type – if it is a numeric type, then regression is used; classification otherwise.

response (Deprecated) The name of the response column (as a length-one character vec-
tor.)

features (Deprecated) The name of features (terms) to use for the model fit.

Details

When x is a tbl_spark and formula (alternatively, response and features) is specified, the func-
tion returns a ml_model object wrapping a ml_pipeline_model which contains data pre-processing
transformers, the ML predictor, and, for classification models, a post-processing transformer that
converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label") can be used to specify the name of the predicted label column.
In addition to the fitted ml_pipeline_model, ml_model objects also contain a ml_pipeline object
where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline" to faciliate model refresh workflows.

The supported options for feature_subset_strategy are

• "auto": Choose automatically for task: If num_trees == 1, set to "all". If num_trees > 1
(forest), set to "sqrt" for classification and to "onethird" for regression.

• "all": use all features

• "onethird": use 1/3 of the features

• "sqrt": use use sqrt(number of features)

• "log2": use log2(number of features)

ml_random_forest_classifier 161

• "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1,
number of features), use n features. (default = "auto")

ml_random_forest is a wrapper around ml_random_forest_regressor.tbl_spark and ml_random_forest_classifier.tbl_spark
and calls the appropriate method based on model type.

Value

The object returned depends on the class of x.

• spark_connection: When x is a spark_connection, the function returns an instance of a
ml_estimator object. The object contains a pointer to a Spark Predictor object and can be
used to compose Pipeline objects.

• ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the pre-
dictor appended to the pipeline.

• tbl_spark: When x is a tbl_spark, a predictor is constructed then immediately fit with the
input tbl_spark, returning a prediction model.

• tbl_spark, with formula: specified When formula is specified, the input tbl_spark is
first transformed using a RFormula transformer before being fit by the predictor. The object
returned in this case is a ml_model which is a wrapper of a ml_pipeline_model.

See Also

See https://spark.apache.org/docs/latest/ml-classification-regression.html for more
information on the set of supervised learning algorithms.

Other ml algorithms: ml_aft_survival_regression(), ml_decision_tree_classifier(), ml_gbt_classifier(),
ml_generalized_linear_regression(), ml_isotonic_regression(), ml_linear_regression(),
ml_linear_svc(), ml_logistic_regression(), ml_multilayer_perceptron_classifier(),
ml_naive_bayes(), ml_one_vs_rest()

Examples

Not run:
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)

iris_training <- partitions$training
iris_test <- partitions$test

rf_model <- iris_training %>%
ml_random_forest(Species ~ ., type = "classification")

pred <- ml_predict(rf_model, iris_test)

ml_multiclass_classification_evaluator(pred)

End(Not run)

https://spark.apache.org/docs/latest/ml-classification-regression.html

162 ml_summary

ml_stage Spark ML – Pipeline stage extraction

Description

Extraction of stages from a Pipeline or PipelineModel object.

Usage

ml_stage(x, stage)

ml_stages(x, stages = NULL)

Arguments

x A ml_pipeline or a ml_pipeline_model object

stage The UID of a stage in the pipeline.

stages The UIDs of stages in the pipeline as a character vector.

Value

For ml_stage(): The stage specified.

For ml_stages(): A list of stages. If stages is not set, the function returns all stages of the pipeline
in a list.

ml_summary Spark ML – Extraction of summary metrics

Description

Extracts a metric from the summary object of a Spark ML model.

Usage

ml_summary(x, metric = NULL, allow_null = FALSE)

Arguments

x A Spark ML model that has a summary.

metric The name of the metric to extract. If not set, returns the summary object.

allow_null Whether null results are allowed when the metric is not found in the summary.

ml_survival_regression_tidiers 163

ml_survival_regression_tidiers

Tidying methods for Spark ML Survival Regression

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_aft_survival_regression'
tidy(x, ...)

S3 method for class 'ml_model_aft_survival_regression'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_aft_survival_regression'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

ml_tree_tidiers Tidying methods for Spark ML tree models

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_decision_tree_classification'
tidy(x, ...)

S3 method for class 'ml_model_decision_tree_regression'
tidy(x, ...)

S3 method for class 'ml_model_decision_tree_classification'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_decision_tree_regression'
augment(x, newdata = NULL, ...)

164 ml_tree_tidiers

S3 method for class 'ml_model_decision_tree_classification'
glance(x, ...)

S3 method for class 'ml_model_decision_tree_regression'
glance(x, ...)

S3 method for class 'ml_model_random_forest_classification'
tidy(x, ...)

S3 method for class 'ml_model_random_forest_regression'
tidy(x, ...)

S3 method for class 'ml_model_random_forest_classification'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_random_forest_regression'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_random_forest_classification'
glance(x, ...)

S3 method for class 'ml_model_random_forest_regression'
glance(x, ...)

S3 method for class 'ml_model_gbt_classification'
tidy(x, ...)

S3 method for class 'ml_model_gbt_regression'
tidy(x, ...)

S3 method for class 'ml_model_gbt_classification'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_gbt_regression'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_gbt_classification'
glance(x, ...)

S3 method for class 'ml_model_gbt_regression'
glance(x, ...)

Arguments

x a Spark ML model.
... extra arguments (not used.)
newdata a tbl_spark of new data to use for prediction.

ml_uid 165

ml_uid Spark ML – UID

Description

Extracts the UID of an ML object.

Usage

ml_uid(x)

Arguments

x A Spark ML object

ml_unsupervised_tidiers

Tidying methods for Spark ML unsupervised models

Description

These methods summarize the results of Spark ML models into tidy forms.

Usage

S3 method for class 'ml_model_kmeans'
tidy(x, ...)

S3 method for class 'ml_model_kmeans'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_kmeans'
glance(x, ...)

S3 method for class 'ml_model_bisecting_kmeans'
tidy(x, ...)

S3 method for class 'ml_model_bisecting_kmeans'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_bisecting_kmeans'
glance(x, ...)

S3 method for class 'ml_model_gaussian_mixture'
tidy(x, ...)

166 nest

S3 method for class 'ml_model_gaussian_mixture'
augment(x, newdata = NULL, ...)

S3 method for class 'ml_model_gaussian_mixture'
glance(x, ...)

Arguments

x a Spark ML model.

... extra arguments (not used.)

newdata a tbl_spark of new data to use for prediction.

mutate Mutate

Description

See mutate for more details.

na.replace Replace Missing Values in Objects

Description

This S3 generic provides an interface for replacing NA values within an object.

Usage

na.replace(object, ...)

Arguments

object An R object.

... Arguments passed along to implementing methods.

nest Nest

Description

See nest for more details.

pivot_longer 167

pivot_longer Pivot longer

Description

See pivot_longer for more details.

pivot_wider Pivot wider

Description

See pivot_wider for more details.

random_string Random string generation

Description

Generate a random string with a given prefix.

Usage

random_string(prefix = "table")

Arguments

prefix A length-one character vector.

168 registerDoSpark

reactiveSpark Reactive spark reader

Description

Given a spark object, returns a reactive data source for the contents of the spark object. This function
is most useful to read Spark streams.

Usage

reactiveSpark(x, intervalMillis = 1000, session = NULL)

Arguments

x An object coercable to a Spark DataFrame.

intervalMillis Approximate number of milliseconds to wait to retrieve updated data frame.
This can be a numeric value, or a function that returns a numeric value.

session The user session to associate this file reader with, or NULL if none. If non-null,
the reader will automatically stop when the session ends.

registerDoSpark Register a Parallel Backend

Description

Registers a parallel backend using the foreach package.

Usage

registerDoSpark(spark_conn, parallelism = NULL, ...)

Arguments

spark_conn Spark connection to use

parallelism Level of parallelism to use for task execution (if unspecified, then it will take the
value of ‘SparkContext.defaultParallelism()‘ which by default is the number of
cores available to the ‘sparklyr‘ application)

... additional options for sparklyr parallel backend (currently only the only valid
option is nocompile = T, F)

Value

None

register_extension 169

Examples

Not run:

sc <- spark_connect(master = "local")
registerDoSpark(sc, nocompile = FALSE)

End(Not run)

register_extension Register a Package that Implements a Spark Extension

Description

Registering an extension package will result in the package being automatically scanned for spark
dependencies when a connection to Spark is created.

Usage

register_extension(package)

registered_extensions()

Arguments

package The package(s) to register.

Note

Packages should typically register their extensions in their .onLoad hook – this ensures that their
extensions are registered when their namespaces are loaded.

replace_na Replace NA

Description

See replace_na for more details.

right_join Right join

Description

See right_join for more details.

170 sdf-transform-methods

sdf-saveload Save / Load a Spark DataFrame

Description

Routines for saving and loading Spark DataFrames.

Usage

sdf_save_table(x, name, overwrite = FALSE, append = FALSE)

sdf_load_table(sc, name)

sdf_save_parquet(x, path, overwrite = FALSE, append = FALSE)

sdf_load_parquet(sc, path)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

name The table name to assign to the saved Spark DataFrame.

overwrite Boolean; overwrite a pre-existing table of the same name?

append Boolean; append to a pre-existing table of the same name?

sc A spark_connection object.

path The path where the Spark DataFrame should be saved.

sdf-transform-methods Spark ML – Transform, fit, and predict methods (sdf_ interface)

Description

Deprecated methods for transformation, fit, and prediction. These are mirrors of the corresponding
ml-transform-methods.

Usage

sdf_predict(x, model, ...)

sdf_transform(x, transformer, ...)

sdf_fit(x, estimator, ...)

sdf_fit_and_transform(x, estimator, ...)

sdf_along 171

Arguments

x A tbl_spark.

model A ml_transformer or a ml_model object.

... Optional arguments passed to the corresponding ml_ methods.

transformer A ml_transformer object.

estimator A ml_estimator object.

Value

sdf_predict(), sdf_transform(), and sdf_fit_and_transform() return a transformed dataframe
whereas sdf_fit() returns a ml_transformer.

sdf_along Create DataFrame for along Object

Description

Creates a DataFrame along the given object.

Usage

sdf_along(sc, along, repartition = NULL, type = c("integer", "integer64"))

Arguments

sc The associated Spark connection.

along Takes the length from the length of this argument.

repartition The number of partitions to use when distributing the data across the Spark
cluster.

type The data type to use for the index, either "integer" or "integer64".

sdf_bind Bind multiple Spark DataFrames by row and column

Description

sdf_bind_rows() and sdf_bind_cols() are implementation of the common pattern of do.call(rbind,sdfs)
or do.call(cbind,sdfs) for binding many Spark DataFrames into one.

Usage

sdf_bind_rows(..., id = NULL)

sdf_bind_cols(...)

172 sdf_broadcast

Arguments

... Spark tbls to combine.

Each argument can either be a Spark DataFrame or a list of Spark DataFrames

When row-binding, columns are matched by name, and any missing columns
with be filled with NA.

When column-binding, rows are matched by position, so all data frames must
have the same number of rows.

id Data frame identifier.

When id is supplied, a new column of identifiers is created to link each row to
its original Spark DataFrame. The labels are taken from the named arguments
to sdf_bind_rows(). When a list of Spark DataFrames is supplied, the labels
are taken from the names of the list. If no names are found a numeric sequence
is used instead.

Details

The output of sdf_bind_rows() will contain a column if that column appears in any of the inputs.

Value

sdf_bind_rows() and sdf_bind_cols() return tbl_spark

sdf_broadcast Broadcast hint

Description

Used to force broadcast hash joins.

Usage

sdf_broadcast(x)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

sdf_checkpoint 173

sdf_checkpoint Checkpoint a Spark DataFrame

Description

Checkpoint a Spark DataFrame

Usage

sdf_checkpoint(x, eager = TRUE)

Arguments

x an object coercible to a Spark DataFrame

eager whether to truncate the lineage of the DataFrame

sdf_coalesce Coalesces a Spark DataFrame

Description

Coalesces a Spark DataFrame

Usage

sdf_coalesce(x, partitions)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

partitions number of partitions

174 sdf_copy_to

sdf_collect Collect a Spark DataFrame into R.

Description

Collects a Spark dataframe into R.

Usage

sdf_collect(object, impl = c("row-wise", "row-wise-iter", "column-wise"), ...)

Arguments

object Spark dataframe to collect

impl Which implementation to use while collecting Spark dataframe - row-wise:
fetch the entire dataframe into memory and then process it row-by-row - row-
wise-iter: iterate through the dataframe using RDD local iterator, processing
one row at a time (hence reducing memory footprint) - column-wise: fetch the
entire dataframe into memory and then process it column-by-column NOTE:
(1) this will not apply to streaming or arrow use cases (2) this parameter will
only affect implementation detail, and will not affect result of ‘sdf_collect‘, and
should only be set if performance profiling indicates any particular choice will
be significantly better than the default choice ("row-wise")

... Additional options.

sdf_copy_to Copy an Object into Spark

Description

Copy an object into Spark, and return an R object wrapping the copied object (typically, a Spark
DataFrame).

Usage

sdf_copy_to(sc, x, name, memory, repartition, overwrite, struct_columns, ...)

sdf_import(x, sc, name, memory, repartition, overwrite, struct_columns, ...)

sdf_crosstab 175

Arguments

sc The associated Spark connection.

x An R object from which a Spark DataFrame can be generated.

name The name to assign to the copied table in Spark.

memory Boolean; should the table be cached into memory?

repartition The number of partitions to use when distributing the table across the Spark
cluster. The default (0) can be used to avoid partitioning.

overwrite Boolean; overwrite a pre-existing table with the name name if one already exists?

struct_columns (only supported with Spark 2.4.0 or higher) A list of columns from the source
data frame that should be converted to Spark SQL StructType columns. The
source columns can contain either json strings or nested lists. All rows within
each source column should have identical schemas (because otherwise the con-
version result will contain unexpected null values or missing values as Spark
currently does not support schema discovery on individual rows within a struct
column).

... Optional arguments, passed to implementing methods.

Advanced Usage

sdf_copy_to is an S3 generic that, by default, dispatches to sdf_import. Package authors that
would like to implement sdf_copy_to for a custom object type can accomplish this by implement-
ing the associated method on sdf_import.

See Also

Other Spark data frames: sdf_distinct(), sdf_random_split(), sdf_register(), sdf_sample(),
sdf_sort(), sdf_weighted_sample()

Examples

Not run:
sc <- spark_connect(master = "spark://HOST:PORT")
sdf_copy_to(sc, iris)

End(Not run)

sdf_crosstab Cross Tabulation

Description

Builds a contingency table at each combination of factor levels.

176 sdf_describe

Usage

sdf_crosstab(x, col1, col2)

Arguments

x A Spark DataFrame
col1 The name of the first column. Distinct items will make the first item of each

row.
col2 The name of the second column. Distinct items will make the column names of

the DataFrame.

Value

A DataFrame containing the contingency table.

sdf_debug_string Debug Info for Spark DataFrame

Description

Prints plan of execution to generate x. This plan will, among other things, show the number of
partitions in parenthesis at the far left and indicate stages using indentation.

Usage

sdf_debug_string(x, print = TRUE)

Arguments

x An R object wrapping, or containing, a Spark DataFrame.
print Print debug information?

sdf_describe Compute summary statistics for columns of a data frame

Description

Compute summary statistics for columns of a data frame

Usage

sdf_describe(x, cols = colnames(x))

Arguments

x An object coercible to a Spark DataFrame
cols Columns to compute statistics for, given as a character vector

sdf_dim 177

sdf_dim Support for Dimension Operations

Description

sdf_dim(), sdf_nrow() and sdf_ncol() provide similar functionality to dim(), nrow() and
ncol().

Usage

sdf_dim(x)

sdf_nrow(x)

sdf_ncol(x)

Arguments

x An object (usually a spark_tbl).

sdf_distinct Invoke distinct on a Spark DataFrame

Description

Invoke distinct on a Spark DataFrame

Usage

sdf_distinct(x, ..., name)

Arguments

x A Spark DataFrame.
... Optional variables to use when determining uniqueness. If there are multiple

rows for a given combination of inputs, only the first row will be preserved. If
omitted, will use all variables.

name A name to assign this table. Passed to [sdf_register()].

Transforming Spark DataFrames

The family of functions prefixed with sdf_ generally access the Scala Spark DataFrame API di-
rectly, as opposed to the dplyr interface which uses Spark SQL. These functions will ’force’ any
pending SQL in a dplyr pipeline, such that the resulting tbl_spark object returned will no longer
have the attached ’lazy’ SQL operations. Note that the underlying Spark DataFrame does execute
its operations lazily, so that even though the pending set of operations (currently) are not exposed
at the R level, these operations will only be executed when you explicitly collect() the table.

178 sdf_expand_grid

See Also

Other Spark data frames: sdf_copy_to(), sdf_random_split(), sdf_register(), sdf_sample(),
sdf_sort(), sdf_weighted_sample()

sdf_drop_duplicates Remove duplicates from a Spark DataFrame

Description

Remove duplicates from a Spark DataFrame

Usage

sdf_drop_duplicates(x, cols = NULL)

Arguments

x An object coercible to a Spark DataFrame

cols Subset of Columns to consider, given as a character vector

sdf_expand_grid Create a Spark dataframe containing all combinations of inputs

Description

Given one or more R vectors/factors or single-column Spark dataframes, perform an expand.grid
operation on all of them and store the result in a Spark dataframe

Usage

sdf_expand_grid(
sc,
...,
broadcast_vars = NULL,
memory = TRUE,
repartition = NULL,
partition_by = NULL

)

sdf_from_avro 179

Arguments

sc The associated Spark connection.

... Each input variable can be either a R vector/factor or a Spark dataframe. Un-
named inputs will assume the default names of ’Var1’, ’Var2’, etc in the result,
similar to what ‘expand.grid‘ does for unnamed inputs.

broadcast_vars Indicates which input(s) should be broadcasted to all nodes of the Spark cluster
during the join process (default: none).

memory Boolean; whether the resulting Spark dataframe should be cached into memory
(default: TRUE)

repartition Number of partitions the resulting Spark dataframe should have

partition_by Vector of column names used for partitioning the resulting Spark dataframe,
only supported for Spark 2.0+

Examples

Not run:
sc <- spark_connect(master = "local")
grid_sdf <- sdf_expand_grid(sc, seq(5), rnorm(10), letters)

End(Not run)

sdf_from_avro Convert column(s) from avro format

Description

Convert column(s) from avro format

Usage

sdf_from_avro(x, cols)

Arguments

x An object coercible to a Spark DataFrame

cols Named list of columns to transform from Avro format plus a valid Avro schema
string for each column, where column names are keys and column schema
strings are values (e.g., c(example_primitive_col = "string",example_complex_col
= "{\"type\":\"record\",\"name\":\"person\",\"fields\":[{\"name\":\"person_name\",\"type\":\"string\"},{\"name\":\"person_id\",\"type\":\"long\"}]}")

180 sdf_last_index

sdf_is_streaming Spark DataFrame is Streaming

Description

Is the given Spark DataFrame a streaming data?

Usage

sdf_is_streaming(x)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

sdf_last_index Returns the last index of a Spark DataFrame

Description

Returns the last index of a Spark DataFrame. The Spark mapPartitionsWithIndex function is
used to iterate through the last nonempty partition of the RDD to find the last record.

Usage

sdf_last_index(x, id = "id")

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

id The name of the index column.

sdf_len 181

sdf_len Create DataFrame for Length

Description

Creates a DataFrame for the given length.

Usage

sdf_len(sc, length, repartition = NULL, type = c("integer", "integer64"))

Arguments

sc The associated Spark connection.

length The desired length of the sequence.

repartition The number of partitions to use when distributing the data across the Spark
cluster.

type The data type to use for the index, either "integer" or "integer64".

sdf_num_partitions Gets number of partitions of a Spark DataFrame

Description

Gets number of partitions of a Spark DataFrame

Usage

sdf_num_partitions(x)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

182 sdf_persist

sdf_partition_sizes Compute the number of records within each partition of a Spark
DataFrame

Description

Compute the number of records within each partition of a Spark DataFrame

Usage

sdf_partition_sizes(x)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

Examples

Not run:
library(sparklyr)
sc <- spark_connect(master = "spark://HOST:PORT")
example_sdf <- sdf_len(sc, 100L, repartition = 10L)
example_sdf %>%

sdf_partition_sizes() %>%
print()

End(Not run)

sdf_persist Persist a Spark DataFrame

Description

Persist a Spark DataFrame, forcing any pending computations and (optionally) serializing the results
to disk.

Usage

sdf_persist(x, storage.level = "MEMORY_AND_DISK", name = NULL)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
storage.level The storage level to be used. Please view the Spark Documentation for informa-

tion on what storage levels are accepted.
name A name to assign this table. Passed to [sdf_register()].

https://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence

sdf_pivot 183

Details

Spark DataFrames invoke their operations lazily – pending operations are deferred until their results
are actually needed. Persisting a Spark DataFrame effectively ’forces’ any pending computations,
and then persists the generated Spark DataFrame as requested (to memory, to disk, or otherwise).

Users of Spark should be careful to persist the results of any computations which are non-deterministic
– otherwise, one might see that the values within a column seem to ’change’ as new operations are
performed on that data set.

sdf_pivot Pivot a Spark DataFrame

Description

Construct a pivot table over a Spark Dataframe, using a syntax similar to that from reshape2::dcast.

Usage

sdf_pivot(x, formula, fun.aggregate = "count")

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

formula A two-sided R formula of the form x_1 + x_2 + ... ~ y_1. The left-hand side of
the formula indicates which variables are used for grouping, and the right-hand
side indicates which variable is used for pivoting. Currently, only a single pivot
column is supported.

fun.aggregate How should the grouped dataset be aggregated? Can be a length-one character
vector, giving the name of a Spark aggregation function to be called; a named R
list mapping column names to an aggregation method, or an R function that is
invoked on the grouped dataset.

Examples

Not run:
library(sparklyr)
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

aggregating by mean
iris_tbl %>%

mutate(Petal_Width = ifelse(Petal_Width > 1.5, "High", "Low")) %>%
sdf_pivot(Petal_Width ~ Species,

fun.aggregate = list(Petal_Length = "mean")
)

184 sdf_project

aggregating all observations in a list
iris_tbl %>%

mutate(Petal_Width = ifelse(Petal_Width > 1.5, "High", "Low")) %>%
sdf_pivot(Petal_Width ~ Species,
fun.aggregate = list(Petal_Length = "collect_list")

)

End(Not run)

sdf_project Project features onto principal components

Description

Project features onto principal components

Usage

sdf_project(
object,
newdata,
features = dimnames(object$pc)[[1]],
feature_prefix = NULL,
...

)

Arguments

object A Spark PCA model object

newdata An object coercible to a Spark DataFrame

features A vector of names of columns to be projected

feature_prefix The prefix used in naming the output features

... Optional arguments; currently unused.

Transforming Spark DataFrames

The family of functions prefixed with sdf_ generally access the Scala Spark DataFrame API di-
rectly, as opposed to the dplyr interface which uses Spark SQL. These functions will ’force’ any
pending SQL in a dplyr pipeline, such that the resulting tbl_spark object returned will no longer
have the attached ’lazy’ SQL operations. Note that the underlying Spark DataFrame does execute
its operations lazily, so that even though the pending set of operations (currently) are not exposed
at the R level, these operations will only be executed when you explicitly collect() the table.

sdf_quantile 185

sdf_quantile Compute (Approximate) Quantiles with a Spark DataFrame

Description

Given a numeric column within a Spark DataFrame, compute approximate quantiles.

Usage

sdf_quantile(
x,
column,
probabilities = c(0, 0.25, 0.5, 0.75, 1),
relative.error = 1e-05,
weight.column = NULL

)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

column The column(s) for which quantiles should be computed. Multiple columns are
only supported in Spark 2.0+.

probabilities A numeric vector of probabilities, for which quantiles should be computed.

relative.error The maximal possible difference between the actual percentile of a result and
its expected percentile (e.g., if ‘relative.error‘ is 0.01 and ‘probabilities‘ is 0.95,
then any value between the 94th and 96th percentile will be considered an ac-
ceptable approximation).

weight.column If not NULL, then a generalized version of the Greenwald- Khanna algorithm
will be run to compute weighted percentiles, with each sample from ‘column‘
having a relative weight specified by the corresponding value in ‘weight.column‘.
The weights can be considered as relative frequencies of sample data points.

sdf_random_split Partition a Spark Dataframe

Description

Partition a Spark DataFrame into multiple groups. This routine is useful for splitting a DataFrame
into, for example, training and test datasets.

186 sdf_random_split

Usage

sdf_random_split(
x,
...,
weights = NULL,
seed = sample(.Machine$integer.max, 1)

)

sdf_partition(x, ..., weights = NULL, seed = sample(.Machine$integer.max, 1))

Arguments

x An object coercable to a Spark DataFrame.

... Named parameters, mapping table names to weights. The weights will be nor-
malized such that they sum to 1.

weights An alternate mechanism for supplying weights – when specified, this takes
precedence over the ... arguments.

seed Random seed to use for randomly partitioning the dataset. Set this if you want
your partitioning to be reproducible on repeated runs.

Details

The sampling weights define the probability that a particular observation will be assigned to a
particular partition, not the resulting size of the partition. This implies that partitioning a DataFrame
with, for example,

sdf_random_split(x,training = 0.5,test = 0.5)

is not guaranteed to produce training and test partitions of equal size.

Value

An R list of tbl_sparks.

Transforming Spark DataFrames

The family of functions prefixed with sdf_ generally access the Scala Spark DataFrame API di-
rectly, as opposed to the dplyr interface which uses Spark SQL. These functions will ’force’ any
pending SQL in a dplyr pipeline, such that the resulting tbl_spark object returned will no longer
have the attached ’lazy’ SQL operations. Note that the underlying Spark DataFrame does execute
its operations lazily, so that even though the pending set of operations (currently) are not exposed
at the R level, these operations will only be executed when you explicitly collect() the table.

See Also

Other Spark data frames: sdf_copy_to(), sdf_distinct(), sdf_register(), sdf_sample(),
sdf_sort(), sdf_weighted_sample()

sdf_rbeta 187

Examples

Not run:
randomly partition data into a 'training' and 'test'
dataset, with 60% of the observations assigned to the
'training' dataset, and 40% assigned to the 'test' dataset
data(diamonds, package = "ggplot2")
diamonds_tbl <- copy_to(sc, diamonds, "diamonds")
partitions <- diamonds_tbl %>%

sdf_random_split(training = 0.6, test = 0.4)
print(partitions)

alternate way of specifying weights
weights <- c(training = 0.6, test = 0.4)
diamonds_tbl %>% sdf_random_split(weights = weights)

End(Not run)

sdf_rbeta Generate random samples from a Beta distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a Betal distribution.

Usage

sdf_rbeta(
sc,
n,
shape1,
shape2,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

shape1 Non-negative parameter (alpha) of the Beta distribution.

shape2 Non-negative parameter (beta) of the Beta distribution.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

188 sdf_rbinom

See Also

Other Spark statistical routines: sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(), sdf_rexp(),
sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(),
sdf_runif(), sdf_rweibull()

sdf_rbinom Generate random samples from a binomial distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a binomial distribution.

Usage

sdf_rbinom(
sc,
n,
size,
prob,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

size Number of trials (zero or more).

prob Probability of success on each trial.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rcauchy(), sdf_rchisq(), sdf_rexp(), sdf_rgamma(),
sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(), sdf_runif(),
sdf_rweibull()

sdf_rcauchy 189

sdf_rcauchy Generate random samples from a Cauchy distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a Cauchy distribution.

Usage

sdf_rcauchy(
sc,
n,
location = 0,
scale = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

location Location parameter of the distribution.

scale Scale parameter of the distribution.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rchisq(), sdf_rexp(), sdf_rgamma(),
sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(), sdf_runif(),
sdf_rweibull()

190 sdf_read_column

sdf_rchisq Generate random samples from a chi-squared distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a chi-squared distribution.

Usage

sdf_rchisq(sc, n, df, num_partitions = NULL, seed = NULL, output_col = "x")

Arguments

sc A Spark connection.
n Sample Size (default: 1000).
df Degrees of freedom (non-negative, but can be non-integer).
num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-

lelism of the Spark cluster).
seed Random seed (default: a random long integer).
output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rexp(), sdf_rgamma(),
sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(), sdf_runif(),
sdf_rweibull()

sdf_read_column Read a Column from a Spark DataFrame

Description

Read a single column from a Spark DataFrame, and return the contents of that column back to R.

Usage

sdf_read_column(x, column)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
column The name of a column within x.

Details

It is expected for this operation to preserve row order.

sdf_register 191

sdf_register Register a Spark DataFrame

Description

Registers a Spark DataFrame (giving it a table name for the Spark SQL context), and returns a
tbl_spark.

Usage

sdf_register(x, name = NULL)

Arguments

x A Spark DataFrame.
name A name to assign this table.

Transforming Spark DataFrames

The family of functions prefixed with sdf_ generally access the Scala Spark DataFrame API di-
rectly, as opposed to the dplyr interface which uses Spark SQL. These functions will ’force’ any
pending SQL in a dplyr pipeline, such that the resulting tbl_spark object returned will no longer
have the attached ’lazy’ SQL operations. Note that the underlying Spark DataFrame does execute
its operations lazily, so that even though the pending set of operations (currently) are not exposed
at the R level, these operations will only be executed when you explicitly collect() the table.

See Also

Other Spark data frames: sdf_copy_to(), sdf_distinct(), sdf_random_split(), sdf_sample(),
sdf_sort(), sdf_weighted_sample()

sdf_repartition Repartition a Spark DataFrame

Description

Repartition a Spark DataFrame

Usage

sdf_repartition(x, partitions = NULL, partition_by = NULL)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.
partitions number of partitions
partition_by vector of column names used for partitioning, only supported for Spark 2.0+

192 sdf_rexp

sdf_residuals.ml_model_generalized_linear_regression

Model Residuals

Description

This generic method returns a Spark DataFrame with model residuals added as a column to the
model training data.

Usage

S3 method for class 'ml_model_generalized_linear_regression'
sdf_residuals(
object,
type = c("deviance", "pearson", "working", "response"),
...

)

S3 method for class 'ml_model_linear_regression'
sdf_residuals(object, ...)

sdf_residuals(object, ...)

Arguments

object Spark ML model object.

type type of residuals which should be returned.

... additional arguments

sdf_rexp Generate random samples from an exponential distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
an exponential distribution.

Usage

sdf_rexp(sc, n, rate = 1, num_partitions = NULL, seed = NULL, output_col = "x")

sdf_rgamma 193

Arguments

sc A Spark connection.
n Sample Size (default: 1000).
rate Rate of the exponential distribution (default: 1). The exponential distribution

with rate lambda has mean 1 / lambda and density f(x) = lambda e^- lambda x.
num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-

lelism of the Spark cluster).
seed Random seed (default: a random long integer).
output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(),
sdf_runif(), sdf_rweibull()

sdf_rgamma Generate random samples from a Gamma distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a Gamma distribution.

Usage

sdf_rgamma(
sc,
n,
shape,
rate = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.
n Sample Size (default: 1000).
shape Shape parameter (greater than 0) for the Gamma distribution.
rate Rate parameter (greater than 0) for the Gamma distribution (scale is 1/rate).
num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-

lelism of the Spark cluster).
seed Random seed (default: a random long integer).
output_col Name of the output column containing sample values (default: "x").

194 sdf_rgeom

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(),
sdf_runif(), sdf_rweibull()

sdf_rgeom Generate random samples from a geometric distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a geometric distribution.

Usage

sdf_rgeom(sc, n, prob, num_partitions = NULL, seed = NULL, output_col = "x")

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

prob Probability of success in each trial.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(),
sdf_runif(), sdf_rweibull()

sdf_rhyper 195

sdf_rhyper Generate random samples from a hypergeometric distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a hypergeometric distribution.

Usage

sdf_rhyper(
sc,
nn,
m,
n,
k,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.

nn Sample Size.

m The number of successes among the population.

n The number of failures among the population.

k The number of draws.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(),
sdf_runif(), sdf_rweibull()

196 sdf_rlnorm

sdf_rlnorm Generate random samples from a log normal distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a log normal distribution.

Usage

sdf_rlnorm(
sc,
n,
meanlog = 0,
sdlog = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

meanlog The mean of the normally distributed natural logarithm of this distribution.

sdlog The Standard deviation of the normally distributed natural logarithm of this dis-
tribution.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rnorm(), sdf_rpois(), sdf_rt(),
sdf_runif(), sdf_rweibull()

sdf_rnorm 197

sdf_rnorm Generate random samples from the standard normal distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
the standard normal distribution.

Usage

sdf_rnorm(
sc,
n,
mean = 0,
sd = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

mean The mean value of the normal distribution.

sd The standard deviation of the normal distribution.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rpois(), sdf_rt(),
sdf_runif(), sdf_rweibull()

198 sdf_rt

sdf_rpois Generate random samples from a Poisson distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a Poisson distribution.

Usage

sdf_rpois(sc, n, lambda, num_partitions = NULL, seed = NULL, output_col = "x")

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

lambda Mean, or lambda, of the Poisson distribution.

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rt(),
sdf_runif(), sdf_rweibull()

sdf_rt Generate random samples from a t-distribution

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a t-distribution.

Usage

sdf_rt(sc, n, df, num_partitions = NULL, seed = NULL, output_col = "x")

sdf_runif 199

Arguments

sc A Spark connection.
n Sample Size (default: 1000).
df Degrees of freedom (> 0, maybe non-integer).
num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-

lelism of the Spark cluster).
seed Random seed (default: a random long integer).
output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(),
sdf_runif(), sdf_rweibull()

sdf_runif Generate random samples from the uniform distribution U(0, 1).

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
the uniform distribution U(0, 1).

Usage

sdf_runif(
sc,
n,
min = 0,
max = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.
n Sample Size (default: 1000).
min The lower limit of the distribution.
max The upper limit of the distribution.
num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-

lelism of the Spark cluster).
seed Random seed (default: a random long integer).
output_col Name of the output column containing sample values (default: "x").

200 sdf_rweibull

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(),
sdf_rt(), sdf_rweibull()

sdf_rweibull Generate random samples from a Weibull distribution.

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from
a Weibull distribution.

Usage

sdf_rweibull(
sc,
n,
shape,
scale = 1,
num_partitions = NULL,
seed = NULL,
output_col = "x"

)

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

shape The shape of the Weibull distribution.

scale The scale of the Weibull distribution (default: 1).

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(),
sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(),
sdf_rt(), sdf_runif()

sdf_sample 201

sdf_sample Randomly Sample Rows from a Spark DataFrame

Description

Draw a random sample of rows (with or without replacement) from a Spark DataFrame.

Usage

sdf_sample(x, fraction = 1, replacement = TRUE, seed = NULL)

Arguments

x An object coercable to a Spark DataFrame.

fraction The fraction to sample.

replacement Boolean; sample with replacement?

seed An (optional) integer seed.

Transforming Spark DataFrames

The family of functions prefixed with sdf_ generally access the Scala Spark DataFrame API di-
rectly, as opposed to the dplyr interface which uses Spark SQL. These functions will ’force’ any
pending SQL in a dplyr pipeline, such that the resulting tbl_spark object returned will no longer
have the attached ’lazy’ SQL operations. Note that the underlying Spark DataFrame does execute
its operations lazily, so that even though the pending set of operations (currently) are not exposed
at the R level, these operations will only be executed when you explicitly collect() the table.

See Also

Other Spark data frames: sdf_copy_to(), sdf_distinct(), sdf_random_split(), sdf_register(),
sdf_sort(), sdf_weighted_sample()

sdf_schema Read the Schema of a Spark DataFrame

Description

Read the schema of a Spark DataFrame.

Usage

sdf_schema(x, expand_nested_cols = FALSE, expand_struct_cols = FALSE)

202 sdf_separate_column

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

expand_nested_cols

Whether to expand columns containing nested array of structs (which are usually
created by tidyr::nest on a Spark data frame)

expand_struct_cols

Whether to expand columns containing structs

Details

The type column returned gives the string representation of the underlying Spark type for that
column; for example, a vector of numeric values would be returned with the type "DoubleType".
Please see the Spark Scala API Documentation for information on what types are available and
exposed by Spark.

Value

An R list, with each list element describing the name and type of a column.

sdf_separate_column Separate a Vector Column into Scalar Columns

Description

Given a vector column in a Spark DataFrame, split that into n separate columns, each column made
up of the different elements in the column column.

Usage

sdf_separate_column(x, column, into = NULL)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

column The name of a (vector-typed) column.

into A specification of the columns that should be generated from column. This can
either be a vector of column names, or an R list mapping column names to the
(1-based) index at which a particular vector element should be extracted.

https://spark.apache.org/docs/latest/api/scala/index.html

sdf_seq 203

sdf_seq Create DataFrame for Range

Description

Creates a DataFrame for the given range

Usage

sdf_seq(
sc,
from = 1L,
to = 1L,
by = 1L,
repartition = NULL,
type = c("integer", "integer64")

)

Arguments

sc The associated Spark connection.

from, to The start and end to use as a range

by The increment of the sequence.

repartition The number of partitions to use when distributing the data across the Spark
cluster. Defaults to the minimum number of partitions.

type The data type to use for the index, either "integer" or "integer64".

sdf_sort Sort a Spark DataFrame

Description

Sort a Spark DataFrame by one or more columns, with each column sorted in ascending order.

Usage

sdf_sort(x, columns)

Arguments

x An object coercable to a Spark DataFrame.

columns The column(s) to sort by.

204 sdf_to_avro

Transforming Spark DataFrames

The family of functions prefixed with sdf_ generally access the Scala Spark DataFrame API di-
rectly, as opposed to the dplyr interface which uses Spark SQL. These functions will ’force’ any
pending SQL in a dplyr pipeline, such that the resulting tbl_spark object returned will no longer
have the attached ’lazy’ SQL operations. Note that the underlying Spark DataFrame does execute
its operations lazily, so that even though the pending set of operations (currently) are not exposed
at the R level, these operations will only be executed when you explicitly collect() the table.

See Also

Other Spark data frames: sdf_copy_to(), sdf_distinct(), sdf_random_split(), sdf_register(),
sdf_sample(), sdf_weighted_sample()

sdf_sql Spark DataFrame from SQL

Description

Defines a Spark DataFrame from a SQL query, useful to create Spark DataFrames without collecting
the results immediately.

Usage

sdf_sql(sc, sql)

Arguments

sc A spark_connection.

sql a ’SQL’ query used to generate a Spark DataFrame.

sdf_to_avro Convert column(s) to avro format

Description

Convert column(s) to avro format

Usage

sdf_to_avro(x, cols = colnames(x))

Arguments

x An object coercible to a Spark DataFrame

cols Subset of Columns to convert into avro format

sdf_unnest_longer 205

sdf_unnest_longer Unnest longer

Description

Expand a struct column or an array column within a Spark dataframe into one or more rows, similar
what to tidyr::unnest_longer does to an R dataframe. An index column, if included, will be 1-based
if ‘col‘ is an array column.

Usage

sdf_unnest_longer(
data,
col,
values_to = NULL,
indices_to = NULL,
include_indices = NULL,
names_repair = "check_unique",
ptype = list(),
transform = list()

)

Arguments

data The Spark dataframe to be unnested

col The struct column to extract components from

values_to Name of column to store vector values. Defaults to ‘col‘.

indices_to A string giving the name of column which will contain the inner names or posi-
tion (if not named) of the values. Defaults to ‘col‘ with ‘_id‘ suffix

include_indices

Whether to include an index column. An index column will be included by
default if ‘col‘ is a struct column. It will also be included if ‘indices_to‘ is not
‘NULL‘.

names_repair Strategy for fixing duplicate column names (the semantic will be exactly identi-
cal to that of ‘.name_repair‘ option in tibble)

ptype Optionally, supply an R data frame prototype for the output. Each column of the
unnested result will be casted based on the Spark equivalent of the type of the
column with the same name within ‘ptype‘, e.g., if ‘ptype‘ has a column ‘x‘ of
type ‘character‘, then column ‘x‘ of the unnested result will be casted from its
original SQL type to StringType.

transform Optionally, a named list of transformation functions applied

206 sdf_unnest_wider

Examples

Not run:
library(sparklyr)
sc <- spark_connect(master = "local", version = "2.4.0")

unnesting a struct column
sdf <- copy_to(

sc,
tibble::tibble(
x = 1:3,
y = list(list(a = 1, b = 2), list(a = 3, b = 4), list(a = 5, b = 6))

)
)

unnested <- sdf %>% sdf_unnest_longer(y, indices_to = "attr")

unnesting an array column
sdf <- copy_to(

sc,
tibble::tibble(

x = 1:3,
y = list(1:10, 1:5, 1:2)

)
)

unnested <- sdf %>% sdf_unnest_longer(y, indices_to = "array_idx")

End(Not run)

sdf_unnest_wider Unnest wider

Description

Flatten a struct column within a Spark dataframe into one or more columns, similar what to tidyr::unnest_wider
does to an R dataframe

Usage

sdf_unnest_wider(
data,
col,
names_sep = NULL,
names_repair = "check_unique",
ptype = list(),
transform = list()

)

sdf_weighted_sample 207

Arguments

data The Spark dataframe to be unnested

col The struct column to extract components from

names_sep If ‘NULL‘, the default, the names will be left as is. If a string, the inner and
outer names will be pasted together using ‘names_sep‘ as the delimiter.

names_repair Strategy for fixing duplicate column names (the semantic will be exactly identi-
cal to that of ‘.name_repair‘ option in tibble)

ptype Optionally, supply an R data frame prototype for the output. Each column of the
unnested result will be casted based on the Spark equivalent of the type of the
column with the same name within ‘ptype‘, e.g., if ‘ptype‘ has a column ‘x‘ of
type ‘character‘, then column ‘x‘ of the unnested result will be casted from its
original SQL type to StringType.

transform Optionally, a named list of transformation functions applied to each component
(e.g., list(‘x = as.character‘) to cast column ‘x‘ to String).

Examples

Not run:
library(sparklyr)
sc <- spark_connect(master = "local", version = "2.4.0")

sdf <- copy_to(
sc,
tibble::tibble(

x = 1:3,
y = list(list(a = 1, b = 2), list(a = 3, b = 4), list(a = 5, b = 6))

)
)

flatten struct column 'y' into two separate columns 'y_a' and 'y_b'
unnested <- sdf %>% sdf_unnest_wider(y, names_sep = "_")

End(Not run)

sdf_weighted_sample Perform Weighted Random Sampling on a Spark DataFrame

Description

Draw a random sample of rows (with or without replacement) from a Spark DataFrame If the
sampling is done without replacement, then it will be conceptually equivalent to an iterative process
such that in each step the probability of adding a row to the sample set is equal to its weight divided
by summation of weights of all rows that are not in the sample set yet in that step.

208 sdf_with_sequential_id

Usage

sdf_weighted_sample(x, weight_col, k, replacement = TRUE, seed = NULL)

Arguments

x An object coercable to a Spark DataFrame.

weight_col Name of the weight column

k Sample set size

replacement Whether to sample with replacement

seed An (optional) integer seed

Transforming Spark DataFrames

The family of functions prefixed with sdf_ generally access the Scala Spark DataFrame API di-
rectly, as opposed to the dplyr interface which uses Spark SQL. These functions will ’force’ any
pending SQL in a dplyr pipeline, such that the resulting tbl_spark object returned will no longer
have the attached ’lazy’ SQL operations. Note that the underlying Spark DataFrame does execute
its operations lazily, so that even though the pending set of operations (currently) are not exposed
at the R level, these operations will only be executed when you explicitly collect() the table.

See Also

Other Spark data frames: sdf_copy_to(), sdf_distinct(), sdf_random_split(), sdf_register(),
sdf_sample(), sdf_sort()

sdf_with_sequential_id

Add a Sequential ID Column to a Spark DataFrame

Description

Add a sequential ID column to a Spark DataFrame. The Spark zipWithIndex function is used to
produce these. This differs from sdf_with_unique_id in that the IDs generated are independent
of partitioning.

Usage

sdf_with_sequential_id(x, id = "id", from = 1L)

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

id The name of the column to host the generated IDs.

from The starting value of the id column

sdf_with_unique_id 209

sdf_with_unique_id Add a Unique ID Column to a Spark DataFrame

Description

Add a unique ID column to a Spark DataFrame. The Spark monotonicallyIncreasingId func-
tion is used to produce these and is guaranteed to produce unique, monotonically increasing ids;
however, there is no guarantee that these IDs will be sequential. The table is persisted immediately
after the column is generated, to ensure that the column is stable – otherwise, it can differ across
new computations.

Usage

sdf_with_unique_id(x, id = "id")

Arguments

x A spark_connection, ml_pipeline, or a tbl_spark.

id The name of the column to host the generated IDs.

select Select

Description

See select for more details.

separate Separate

Description

See separate for more details.

210 spark-api

spark-api Access the Spark API

Description

Access the commonly-used Spark objects associated with a Spark instance. These objects provide
access to different facets of the Spark API.

Usage

spark_context(sc)

java_context(sc)

hive_context(sc)

spark_session(sc)

Arguments

sc A spark_connection.

Details

The Scala API documentation is useful for discovering what methods are available for each of these
objects. Use invoke to call methods on these objects.

Spark Context

The main entry point for Spark functionality. The Spark Context represents the connection to a
Spark cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.

Java Spark Context

A Java-friendly version of the aforementioned Spark Context.

Hive Context

An instance of the Spark SQL execution engine that integrates with data stored in Hive. Configura-
tion for Hive is read from hive-site.xml on the classpath.

Starting with Spark >= 2.0.0, the Hive Context class has been deprecated – it is superceded by the
Spark Session class, and hive_context will return a Spark Session object instead. Note that both
classes share a SQL interface, and therefore one can invoke SQL through these objects.

https://spark.apache.org/docs/latest/api/scala/

spark-connections 211

Spark Session

Available since Spark 2.0.0, the Spark Session unifies the Spark Context and Hive Context
classes into a single interface. Its use is recommended over the older APIs for code targeting Spark
2.0.0 and above.

spark-connections Manage Spark Connections

Description

These routines allow you to manage your connections to Spark.

Call ‘spark_disconnect()‘ on each open Spark connection

Usage

spark_connect(
master,
spark_home = Sys.getenv("SPARK_HOME"),
method = c("shell", "livy", "databricks", "test", "qubole"),
app_name = "sparklyr",
version = NULL,
config = spark_config(),
extensions = sparklyr::registered_extensions(),
packages = NULL,
scala_version = NULL,
...

)

spark_connection_is_open(sc)

spark_disconnect(sc, ...)

spark_disconnect_all(...)

spark_submit(
master,
file,
spark_home = Sys.getenv("SPARK_HOME"),
app_name = "sparklyr",
version = NULL,
config = spark_config(),
extensions = sparklyr::registered_extensions(),
scala_version = NULL,
...

)

212 spark-connections

Arguments

master Spark cluster url to connect to. Use "local" to connect to a local instance of
Spark installed via spark_install.

spark_home The path to a Spark installation. Defaults to the path provided by the SPARK_HOME
environment variable. If SPARK_HOME is defined, it will always be used unless
the version parameter is specified to force the use of a locally installed version.

method The method used to connect to Spark. Default connection method is "shell"
to connect using spark-submit, use "livy" to perform remote connections using
HTTP, or "databricks" when using a Databricks clusters.

app_name The application name to be used while running in the Spark cluster.

version The version of Spark to use. Required for "local" Spark connections, optional
otherwise.

config Custom configuration for the generated Spark connection. See spark_config
for details.

extensions Extension R packages to enable for this connection. By default, all packages
enabled through the use of sparklyr::register_extension will be passed
here.

packages A list of Spark packages to load. For example, "delta" or "kafka" to enable
Delta Lake or Kafka. Also supports full versions like "io.delta:delta-core_2.11:0.4.0".
This is similar to adding packages into the sparklyr.shell.packages config-
uration option. Notice that the version parameter is used to choose the correct
package, otherwise assumes the latest version is being used.

scala_version Load the sparklyr jar file that is built with the version of Scala specified (this
currently only makes sense for Spark 2.4, where sparklyr will by default assume
Spark 2.4 on current host is built with Scala 2.11, and therefore ‘scala_version
= ’2.12’‘ is needed if sparklyr is connecting to Spark 2.4 built with Scala 2.12)

... Additional params to be passed to each ‘spark_disconnect()‘ call (e.g., ‘termi-
nate = TRUE‘)

sc A spark_connection.

file Path to R source file to submit for batch execution.

Details

By default, when using method = "livy", jars are downloaded from GitHub. But an alternative
path (local to Livy server or on HDFS or HTTP(s)) to sparklyr JAR can also be specified through
the sparklyr.livy.jar setting.

Examples

conf <- spark_config()
conf$`sparklyr.shell.conf` <- c(
"spark.executor.extraJavaOptions=-Duser.timezone='UTC'",
"spark.driver.extraJavaOptions=-Duser.timezone='UTC'",
"spark.sql.session.timeZone='UTC'"

)

sparklyr_get_backend_port 213

sc <- spark_connect(
master = "spark://HOST:PORT", config = conf

)
connection_is_open(sc)

spark_disconnect(sc)

sparklyr_get_backend_port

Return the port number of a sparklyr backend.

Description

Retrieve the port number of the sparklyr backend associated with a Spark connection.

Usage

sparklyr_get_backend_port(sc)

Arguments

sc A spark_connection.

Value

The port number of the sparklyr backend associated with sc.

spark_adaptive_query_execution

Retrieves or sets status of Spark AQE

Description

Retrieves or sets whether Spark adaptive query execution is enabled

Usage

spark_adaptive_query_execution(sc, enable = NULL)

Arguments

sc A spark_connection.

enable Whether to enable Spark adaptive query execution. Defaults to NULL to retrieve
configuration entries.

214 spark_apply

See Also

Other Spark runtime configuration: spark_advisory_shuffle_partition_size(), spark_auto_broadcast_join_threshold(),
spark_coalesce_initial_num_partitions(), spark_coalesce_min_num_partitions(), spark_coalesce_shuffle_partitions(),
spark_session_config()

spark_advisory_shuffle_partition_size

Retrieves or sets advisory size of the shuffle partition

Description

Retrieves or sets advisory size in bytes of the shuffle partition during adaptive optimization

Usage

spark_advisory_shuffle_partition_size(sc, size = NULL)

Arguments

sc A spark_connection.

size Advisory size in bytes of the shuffle partition. Defaults to NULL to retrieve con-
figuration entries.

See Also

Other Spark runtime configuration: spark_adaptive_query_execution(), spark_auto_broadcast_join_threshold(),
spark_coalesce_initial_num_partitions(), spark_coalesce_min_num_partitions(), spark_coalesce_shuffle_partitions(),
spark_session_config()

spark_apply Apply an R Function in Spark

Description

Applies an R function to a Spark object (typically, a Spark DataFrame).

spark_apply 215

Usage

spark_apply(
x,
f,
columns = NULL,
memory = TRUE,
group_by = NULL,
packages = NULL,
context = NULL,
name = NULL,
barrier = NULL,
fetch_result_as_sdf = TRUE,
partition_index_param = "",
arrow_max_records_per_batch = NULL,
auto_deps = FALSE,
...

)

Arguments

x An object (usually a spark_tbl) coercable to a Spark DataFrame.

f A function that transforms a data frame partition into a data frame. The func-
tion f has signature f(df,context,group1,group2,...) where df is a data
frame with the data to be processed, context is an optional object passed as the
context parameter and group1 to groupN contain the values of the group_by
values. When group_by is not specified, f takes only one argument.
Can also be an rlang anonymous function. For example, as ~ .x + 1 to define
an expression that adds one to the given .x data frame.

columns A vector of column names or a named vector of column types for the trans-
formed object. When not specified, a sample of 10 rows is taken to infer out the
output columns automatically, to avoid this performance penalty, specify the col-
umn types. The sample size is configurable using the sparklyr.apply.schema.infer
configuration option.

memory Boolean; should the table be cached into memory?

group_by Column name used to group by data frame partitions.

packages Boolean to distribute .libPaths() packages to each node, a list of packages to
distribute, or a package bundle created with spark_apply_bundle().
Defaults to TRUE or the sparklyr.apply.packages value set in spark_config().
For clusters using Yarn cluster mode, packages can point to a package bundle
created using spark_apply_bundle() and made available as a Spark file us-
ing config$sparklyr.shell.files. For clusters using Livy, packages can be
manually installed on the driver node.
For offline clusters where available.packages() is not available, manually
download the packages database from https://cran.r-project.org/web/packages/packages.rds
and set Sys.setenv(sparklyr.apply.packagesdb = "<pathl-to-rds>"). Oth-
erwise, all packages will be used by default.

216 spark_apply

For clusters where R packages already installed in every worker node, the spark.r.libpaths
config entry can be set in spark_config() to the local packages library. To
specify multiple paths collapse them (without spaces) with a comma delimiter
(e.g., "/lib/path/one,/lib/path/two").

context Optional object to be serialized and passed back to f().

name Optional table name while registering the resulting data frame.

barrier Optional to support Barrier Execution Mode in the scheduler.
fetch_result_as_sdf

Whether to return the transformed results in a Spark Dataframe (defaults to
TRUE). When set to FALSE, results will be returned as a list of R objects instead.
NOTE: fetch_result_as_sdf must be set to FALSE when the transformation
function being applied is returning R objects that cannot be stored in a Spark
Dataframe (e.g., complex numbers or any other R data type that does not have
an equivalent representation among Spark SQL data types).

partition_index_param

Optional if non-empty, then f also receives the index of the partition being pro-
cessed as a named argument with this name, in addition to all positional argu-
ment(s) it will receive
NOTE: when fetch_result_as_sdf is set to FALSE, object returned from the
transformation function also must be serializable by the base::serialize func-
tion in R.

arrow_max_records_per_batch

Maximum size of each Arrow record batch, ignored if Arrow serialization is not
enabled.

auto_deps [Experimental] Whether to infer all required R packages by examining the clo-
sure f() and only distribute required R and their transitive dependencies to
Spark worker nodes (default: FALSE). NOTE: this option will only take ef-
fect if packages is set to TRUE or is a character vector of R package names. If
packages is a character vector of R package names, then both the set of pack-
ages specified by packages and the set of inferred packages will be distributed
to Spark workers.

... Optional arguments; currently unused.

Configuration

spark_config() settings can be specified to change the workers environment.

For instance, to set additional environment variables to each worker node use the sparklyr.apply.env.*
config, to launch workers without --vanilla use sparklyr.apply.options.vanilla set to FALSE,
to run a custom script before launching Rscript use sparklyr.apply.options.rscript.before.

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local[3]")

spark_apply_bundle 217

creates an Spark data frame with 10 elements then multiply times 10 in R
sdf_len(sc, 10) %>% spark_apply(function(df) df * 10)

using barrier mode
sdf_len(sc, 3, repartition = 3) %>%

spark_apply(nrow, barrier = TRUE, columns = c(id = "integer")) %>%
collect()

End(Not run)

spark_apply_bundle Create Bundle for Spark Apply

Description

Creates a bundle of packages for spark_apply().

Usage

spark_apply_bundle(packages = TRUE, base_path = getwd(), session_id = NULL)

Arguments

packages List of packages to pack or TRUE to pack all.

base_path Base path used to store the resulting bundle.

session_id An optional ID string to include in the bundle file name to allow the bundle to
be session-specific

spark_apply_log Log Writer for Spark Apply

Description

Writes data to log under spark_apply().

Usage

spark_apply_log(..., level = "INFO")

Arguments

... Arguments to write to log.

level Severity level for this entry; recommended values: INFO, ERROR or WARN.

218 spark_coalesce_initial_num_partitions

spark_auto_broadcast_join_threshold

Retrieves or sets the auto broadcast join threshold

Description

Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when
performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently
statistics are only supported for Hive Metastore tables where the command ‘ANALYZE TABLE
<tableName> COMPUTE STATISTICS noscan‘ has been run, and file-based data source tables
where the statistics are computed directly on the files of data.

Usage

spark_auto_broadcast_join_threshold(sc, threshold = NULL)

Arguments

sc A spark_connection.

threshold Maximum size in bytes for a table that will be broadcast to all worker nodes
when performing a join. Defaults to NULL to retrieve configuration entries.

See Also

Other Spark runtime configuration: spark_adaptive_query_execution(), spark_advisory_shuffle_partition_size(),
spark_coalesce_initial_num_partitions(), spark_coalesce_min_num_partitions(), spark_coalesce_shuffle_partitions(),
spark_session_config()

spark_coalesce_initial_num_partitions

Retrieves or sets initial number of shuffle partitions before coalescing

Description

Retrieves or sets initial number of shuffle partitions before coalescing

Usage

spark_coalesce_initial_num_partitions(sc, num_partitions = NULL)

Arguments

sc A spark_connection.

num_partitions Initial number of shuffle partitions before coalescing. Defaults to NULL to re-
trieve configuration entries.

spark_coalesce_min_num_partitions 219

See Also

Other Spark runtime configuration: spark_adaptive_query_execution(), spark_advisory_shuffle_partition_size(),
spark_auto_broadcast_join_threshold(), spark_coalesce_min_num_partitions(), spark_coalesce_shuffle_partitions(),
spark_session_config()

spark_coalesce_min_num_partitions

Retrieves or sets the minimum number of shuffle partitions after coa-
lescing

Description

Retrieves or sets the minimum number of shuffle partitions after coalescing

Usage

spark_coalesce_min_num_partitions(sc, num_partitions = NULL)

Arguments

sc A spark_connection.

num_partitions Minimum number of shuffle partitions after coalescing. Defaults to NULL to
retrieve configuration entries.

See Also

Other Spark runtime configuration: spark_adaptive_query_execution(), spark_advisory_shuffle_partition_size(),
spark_auto_broadcast_join_threshold(), spark_coalesce_initial_num_partitions(), spark_coalesce_shuffle_partitions(),
spark_session_config()

spark_coalesce_shuffle_partitions

Retrieves or sets whether coalescing contiguous shuffle partitions is
enabled

Description

Retrieves or sets whether coalescing contiguous shuffle partitions is enabled

Usage

spark_coalesce_shuffle_partitions(sc, enable = NULL)

220 spark_compilation_spec

Arguments

sc A spark_connection.

enable Whether to enable coalescing of contiguous shuffle partitions. Defaults to NULL
to retrieve configuration entries.

See Also

Other Spark runtime configuration: spark_adaptive_query_execution(), spark_advisory_shuffle_partition_size(),
spark_auto_broadcast_join_threshold(), spark_coalesce_initial_num_partitions(), spark_coalesce_min_num_partitions(),
spark_session_config()

spark_compilation_spec

Define a Spark Compilation Specification

Description

For use with compile_package_jars. The Spark compilation specification is used when compiling
Spark extension Java Archives, and defines which versions of Spark, as well as which versions of
Scala, should be used for compilation.

Usage

spark_compilation_spec(
spark_version = NULL,
spark_home = NULL,
scalac_path = NULL,
scala_filter = NULL,
jar_name = NULL,
jar_path = NULL,
jar_dep = NULL,
embedded_srcs = "embedded_sources.R"

)

Arguments

spark_version The Spark version to build against. This can be left unset if the path to a suitable
Spark home is supplied.

spark_home The path to a Spark home installation. This can be left unset if spark_version
is supplied; in such a case, sparklyr will attempt to discover the associated
Spark installation using spark_home_dir.

scalac_path The path to the scalac compiler to be used during compilation of your Spark
extension. Note that you should ensure the version of scalac selected matches
the version of scalac used with the version of Spark you are compiling against.

spark_config 221

scala_filter An optional R function that can be used to filter which scala files are used
during compilation. This can be useful if you have auxiliary files that should
only be included with certain versions of Spark.

jar_name The name to be assigned to the generated jar.

jar_path The path to the jar tool to be used during compilation of your Spark extension.

jar_dep An optional list of additional jar dependencies.

embedded_srcs Embedded source file(s) under <R package root>/java to be included in the
root of the resulting jar file as resources

Details

Most Spark extensions won’t need to define their own compilation specification, and can instead
rely on the default behavior of compile_package_jars.

spark_config Read Spark Configuration

Description

Read Spark Configuration

Usage

spark_config(file = "config.yml", use_default = TRUE)

Arguments

file Name of the configuration file

use_default TRUE to use the built-in defaults provided in this package

Details

Read Spark configuration using the config package.

Value

Named list with configuration data

222 spark_config_kubernetes

spark_config_kubernetes

Kubernetes Configuration

Description

Convenience function to initialize a Kubernetes configuration instead of spark_config(), exposes
common properties to set in Kubernetes clusters.

Usage

spark_config_kubernetes(
master,
version = "2.3.2",
image = "spark:sparklyr",
driver = random_string("sparklyr-"),
account = "spark",
jars = "local:///opt/sparklyr",
forward = TRUE,
executors = NULL,
conf = NULL,
timeout = 120,
ports = c(8880, 8881, 4040),
fix_config = identical(.Platform$OS.type, "windows"),
...

)

Arguments

master Kubernetes url to connect to, found by running kubectl cluster-info.

version The version of Spark being used.

image Container image to use to launch Spark and sparklyr. Also known as spark.kubernetes.container.image.

driver Name of the driver pod. If not set, the driver pod name is set to "sparklyr" suf-
fixed by id to avoid name conflicts. Also known as spark.kubernetes.driver.pod.name.

account Service account that is used when running the driver pod. The driver pod uses
this service account when requesting executor pods from the API server. Also
known as spark.kubernetes.authenticate.driver.serviceAccountName.

jars Path to the sparklyr jars; either, a local path inside the container image with
the sparklyr jars copied when the image was created or, a path accesible by the
container where the sparklyr jars were copied. You can find a path to the sparklyr
jars by running system.file("java/",package = "sparklyr").

forward Should ports used in sparklyr be forwarded automatically through Kubernetes?
Default to TRUE which runs kubectl port-forward and pkill kubectl on dis-
connection.

executors Number of executors to request while connecting.

spark_config_packages 223

conf A named list of additional entries to add to sparklyr.shell.conf.

timeout Total seconds to wait before giving up on connection.

ports Ports to forward using kubectl.

fix_config Should the spark-defaults.conf get fixed? TRUE for Windows.

... Additional parameters, currently not in use.

spark_config_packages Creates Spark Configuration

Description

Creates Spark Configuration

Usage

spark_config_packages(config, packages, version, scala_version = NULL, ...)

Arguments

config The Spark configuration object.

packages A list of named packages or versioned packagese to add.

version The version of Spark being used.

scala_version Acceptable Scala version of packages to be loaded

... Additional configurations

spark_config_settings Retrieve Available Settings

Description

Retrieves available sparklyr settings that can be used in configuration files or spark_config().

Usage

spark_config_settings()

224 spark_connection_find

spark_connection Retrieve the Spark Connection Associated with an R Object

Description

Retrieve the spark_connection associated with an R object.

Usage

spark_connection(x, ...)

Arguments

x An R object from which a spark_connection can be obtained.

... Optional arguments; currently unused.

spark_connection-class

spark_connection class

Description

spark_connection class

spark_connection_find Find Spark Connection

Description

Finds an active spark connection in the environment given the connection parameters.

Usage

spark_connection_find(master = NULL, app_name = NULL, method = NULL)

Arguments

master The Spark master parameter.

app_name The Spark application name.

method The method used to connect to Spark.

spark_context_config 225

spark_context_config Runtime configuration interface for the Spark Context.

Description

Retrieves the runtime configuration interface for the Spark Context.

Usage

spark_context_config(sc)

Arguments

sc A spark_connection.

spark_dataframe Retrieve a Spark DataFrame

Description

This S3 generic is used to access a Spark DataFrame object (as a Java object reference) from an R
object.

Usage

spark_dataframe(x, ...)

Arguments

x An R object wrapping, or containing, a Spark DataFrame.

... Optional arguments; currently unused.

Value

A spark_jobj representing a Java object reference to a Spark DataFrame.

226 spark_dependency

spark_default_compilation_spec

Default Compilation Specification for Spark Extensions

Description

This is the default compilation specification used for Spark extensions, when used with compile_package_jars.

Usage

spark_default_compilation_spec(
pkg = infer_active_package_name(),
locations = NULL

)

Arguments

pkg The package containing Spark extensions to be compiled.

locations Additional locations to scan. By default, the directories /opt/scala and /usr/local/scala
will be scanned.

spark_dependency Define a Spark dependency

Description

Define a Spark dependency consisting of a set of custom JARs, Spark packages, and customized
dbplyr SQL translation env.

Usage

spark_dependency(
jars = NULL,
packages = NULL,
initializer = NULL,
catalog = NULL,
repositories = NULL,
dbplyr_sql_variant = NULL,
...

)

spark_dependency_fallback 227

Arguments

jars Character vector of full paths to JAR files.

packages Character vector of Spark packages names.

initializer Optional callback function called when initializing a connection.

catalog Optional location where extension JAR files can be downloaded for Livy.

repositories Character vector of Spark package repositories.

dbplyr_sql_variant

Customization of dbplyr SQL translation env. Must be a named list of the fol-
lowing form: list(scalar = list(scalar_fn1 = ..., scalar_fn2 = ..., <etc>), aggregate
= list(agg_fn1 = ..., agg_fn2 = ..., <etc>), window = list(wnd_fn1 = ..., wnd_fn2
= ..., <etc>)) See sql_variant for details.

... Additional optional arguments.

Value

An object of type ‘spark_dependency‘

spark_dependency_fallback

Fallback to Spark Dependency

Description

Helper function to assist falling back to previous Spark versions.

Usage

spark_dependency_fallback(spark_version, supported_versions)

Arguments

spark_version The Spark version being requested in spark_dependencies.

supported_versions

The Spark versions that are supported by this extension.

Value

A Spark version to use.

228 spark_home_set

spark_extension Create Spark Extension

Description

Creates an R package ready to be used as an Spark extension.

Usage

spark_extension(path)

Arguments

path Location where the extension will be created.

spark_home_set Set the SPARK_HOME environment variable

Description

Set the SPARK_HOME environment variable. This slightly speeds up some operations, including the
connection time.

Usage

spark_home_set(path = NULL, ...)

Arguments

path A string containing the path to the installation location of Spark. If NULL, the
path to the most latest Spark/Hadoop versions is used.

... Additional parameters not currently used.

Value

The function is mostly invoked for the side-effect of setting the SPARK_HOME environment variable.
It also returns TRUE if the environment was successfully set, and FALSE otherwise.

Examples

Not run:
Not run due to side-effects
spark_home_set()

End(Not run)

spark_install 229

spark_install Download and install various versions of Spark

Description

Install versions of Spark for use with local Spark connections (i.e. spark_connect(master =
"local")

Usage

spark_install(
version = NULL,
hadoop_version = NULL,
reset = TRUE,
logging = "INFO",
verbose = interactive()

)

spark_uninstall(version, hadoop_version)

spark_install_dir()

spark_install_tar(tarfile)

spark_installed_versions()

spark_available_versions(
show_hadoop = FALSE,
show_minor = FALSE,
show_future = FALSE

)

Arguments

version Version of Spark to install. See spark_available_versions for a list of sup-
ported versions

hadoop_version Version of Hadoop to install. See spark_available_versions for a list of
supported versions

reset Attempts to reset settings to defaults.
logging Logging level to configure install. Supported options: "WARN", "INFO"
verbose Report information as Spark is downloaded / installed
tarfile Path to TAR file conforming to the pattern spark-###-bin-(hadoop)?### where

reference spark and hadoop versions respectively.
show_hadoop Show Hadoop distributions?
show_minor Show minor Spark versions?
show_future Should future versions which have not been released be shown?

230 spark_jobj-class

Value

List with information about the installed version.

spark_jobj Retrieve a Spark JVM Object Reference

Description

This S3 generic is used for accessing the underlying Java Virtual Machine (JVM) Spark objects
associated with R objects. These objects act as references to Spark objects living in the JVM.
Methods on these objects can be called with the invoke family of functions.

Usage

spark_jobj(x, ...)

Arguments

x An R object containing, or wrapping, a spark_jobj.

... Optional arguments; currently unused.

See Also

invoke, for calling methods on Java object references.

spark_jobj-class spark_jobj class

Description

spark_jobj class

spark_load_table 231

spark_load_table Reads from a Spark Table into a Spark DataFrame.

Description

Reads from a Spark Table into a Spark DataFrame.

Usage

spark_load_table(
sc,
name,
path,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

See Also

Other Spark serialization routines: collect_from_rds(), spark_read_avro(), spark_read_binary(),
spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

232 spark_read

spark_log View Entries in the Spark Log

Description

View the most recent entries in the Spark log. This can be useful when inspecting output / errors
produced by Spark during the invocation of various commands.

Usage

spark_log(sc, n = 100, filter = NULL, ...)

Arguments

sc A spark_connection.
n The max number of log entries to retrieve. Use NULL to retrieve all entries within

the log.
filter Character string to filter log entries.
... Optional arguments; currently unused.

spark_read Read file(s) into a Spark DataFrame using a custom reader

Description

Run a custom R function on Spark workers to ingest data from one or more files into a Spark
DataFrame, assuming all files follow the same schema.

Usage

spark_read(sc, paths, reader, columns, packages = TRUE, ...)

Arguments

sc A spark_connection.
paths A character vector of one or more file URIs (e.g., c("hdfs://localhost:9000/file.txt",

"hdfs://localhost:9000/file2.txt"))
reader A self-contained R function that takes a single file URI as argument and returns

the data read from that file as a data frame.
columns a named list of column names and column types of the resulting data frame (e.g.,

list(column_1 = "integer", column_2 = "character")), or a list of column names
only if column types should be inferred from the data (e.g., list("column_1",
"column_2"), or NULL if column types should be inferred and resulting data
frame can have arbitrary column names

packages A list of R packages to distribute to Spark workers
... Optional arguments; currently unused.

spark_read_avro 233

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

Examples

Not run:

library(sparklyr)
sc <- spark_connect(

master = "yarn",
spark_home = "~/spark/spark-2.4.5-bin-hadoop2.7"

)

This is a contrived example to show reader tasks will be distributed across
all Spark worker nodes
spark_read(

sc,
rep("/dev/null", 10),
reader = function(path) system("hostname", intern = TRUE),
columns = c(hostname = "string")

) %>% sdf_collect()

End(Not run)

spark_read_avro Read Apache Avro data into a Spark DataFrame.

Description

Read Apache Avro data into a Spark DataFrame. Notice this functionality requires the Spark con-
nection sc to be instantiated with either an explicitly specified Spark version (i.e., spark_connect(...,version
= <version>,packages = c("avro",<other package(s)>),...)) or a specific version of Spark
avro package to use (e.g., spark_connect(...,packages = c("org.apache.spark:spark-avro_2.12:3.0.0",<other
package(s)>),...)).

Usage

spark_read_avro(
sc,
name = NULL,
path = name,
avro_schema = NULL,

234 spark_read_binary

ignore_extension = TRUE,
repartition = 0,
memory = TRUE,
overwrite = TRUE

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

avro_schema Optional Avro schema in JSON format
ignore_extension

If enabled, all files with and without .avro extension are loaded (default: TRUE)

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_binary(),
spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_binary Read binary data into a Spark DataFrame.

Description

Read binary files within a directory and convert each file into a record within the resulting Spark
dataframe. The output will be a Spark dataframe with the following columns and possibly partition
columns:

• path: StringType

• modificationTime: TimestampType

• length: LongType

• content: BinaryType

spark_read_binary 235

Usage

spark_read_binary(
sc,
name = NULL,
dir = name,
path_glob_filter = "*",
recursive_file_lookup = FALSE,
repartition = 0,
memory = TRUE,
overwrite = TRUE

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

dir Directory to read binary files from.

path_glob_filter

Glob pattern of binary files to be loaded (e.g., "*.jpg").

recursive_file_lookup

If FALSE (default), then partition discovery will be enabled (i.e., if a partition
naming scheme is present, then partitions specified by subdirectory names such
as "date=2019-07-01" will be created and files outside subdirectories following
a partition naming scheme will be ignored). If TRUE, then all nested directories
will be searched even if their names do not follow a partition naming scheme.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

236 spark_read_csv

spark_read_csv Read a CSV file into a Spark DataFrame

Description

Read a tabular data file into a Spark DataFrame.

Usage

spark_read_csv(
sc,
name = NULL,
path = name,
header = TRUE,
columns = NULL,
infer_schema = is.null(columns),
delimiter = ",",
quote = "\"",
escape = "\\",
charset = "UTF-8",
null_value = NULL,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
...

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

header Boolean; should the first row of data be used as a header? Defaults to TRUE.

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

infer_schema Boolean; should column types be automatically inferred? Requires one extra
pass over the data. Defaults to is.null(columns).

delimiter The character used to delimit each column. Defaults to ‘','’.

quote The character used as a quote. Defaults to ‘'"'’.

escape The character used to escape other characters. Defaults to ‘'\'’.

spark_read_delta 237

charset The character set. Defaults to ‘"UTF-8"’.

null_value The character to use for null, or missing, values. Defaults to NULL.

options A list of strings with additional options.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

... Optional arguments; currently unused.

Details

You can read data from HDFS (hdfs://), S3 (s3a://), as well as the local file system (file://).

If you are reading from a secure S3 bucket be sure to set the following in your spark-defaults.conf
spark.hadoop.fs.s3a.access.key, spark.hadoop.fs.s3a.secret.key or any of the methods
outlined in the aws-sdk documentation Working with AWS credentials In order to work with the
newer s3a:// protocol also set the values for spark.hadoop.fs.s3a.impl and spark.hadoop.fs.s3a.endpoint
. In addition, to support v4 of the S3 api be sure to pass the -Dcom.amazonaws.services.s3.enableV4
driver options for the config key spark.driver.extraJavaOptions For instructions on how to
configure s3n:// check the hadoop documentation: s3n authentication properties

When header is FALSE, the column names are generated with a V prefix; e.g. V1,V2,....

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_delta(), spark_read_image(), spark_read_jdbc(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_delta Read from Delta Lake into a Spark DataFrame.

Description

Read from Delta Lake into a Spark DataFrame.

Usage

spark_read_delta(
sc,
path,
name = NULL,
version = NULL,

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#Authentication_properties

238 spark_read_image

timestamp = NULL,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
...

)

Arguments

sc A spark_connection.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

name The name to assign to the newly generated table.

version The version of the delta table to read.

timestamp The timestamp of the delta table to read. For example, "2019-01-01" or "2019-01-01'T'00:00:00.000Z".

options A list of strings with additional options.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_image(), spark_read_jdbc(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_image Read image data into a Spark DataFrame.

Description

Read image files within a directory and convert each file into a record within the resulting Spark
dataframe. The output will be a Spark dataframe consisting of struct types containing the following
attributes:

• origin: StringType

• height: IntegerType

spark_read_image 239

• width: IntegerType

• nChannels: IntegerType

• mode: IntegerType

• data: BinaryType

Usage

spark_read_image(
sc,
name = NULL,
dir = name,
drop_invalid = TRUE,
repartition = 0,
memory = TRUE,
overwrite = TRUE

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

dir Directory to read binary files from.

drop_invalid Whether to drop files that are not valid images from the result (default: TRUE).

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_jdbc(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

240 spark_read_jdbc

spark_read_jdbc Read from JDBC connection into a Spark DataFrame.

Description

Read from JDBC connection into a Spark DataFrame.

Usage

spark_read_jdbc(
sc,
name,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
...

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_json(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

spark_read_json 241

Examples

Not run:
sc <- spark_connect(

master = "local",
config = list(
`sparklyr.shell.driver-class-path` = "/usr/share/java/mysql-connector-java-8.0.25.jar"
)

)
spark_read_jdbc(

sc,
name = "my_sql_table",
options = list(

url = "jdbc:mysql://localhost:3306/my_sql_schema",
driver = "com.mysql.jdbc.Driver",
user = "me",
password = "******",
dbtable = "my_sql_table"

)
)

End(Not run)

spark_read_json Read a JSON file into a Spark DataFrame

Description

Read a table serialized in the JavaScript Object Notation format into a Spark DataFrame.

Usage

spark_read_json(
sc,
name = NULL,
path = name,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
...

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

http://www.json.org/

242 spark_read_libsvm

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

options A list of strings with additional options.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

... Optional arguments; currently unused.

Details

You can read data from HDFS (hdfs://), S3 (s3a://), as well as the local file system (file://).

If you are reading from a secure S3 bucket be sure to set the following in your spark-defaults.conf
spark.hadoop.fs.s3a.access.key, spark.hadoop.fs.s3a.secret.key or any of the methods
outlined in the aws-sdk documentation Working with AWS credentials In order to work with the
newer s3a:// protocol also set the values for spark.hadoop.fs.s3a.impl and spark.hadoop.fs.s3a.endpoint
. In addition, to support v4 of the S3 api be sure to pass the -Dcom.amazonaws.services.s3.enableV4
driver options for the config key spark.driver.extraJavaOptions For instructions on how to
configure s3n:// check the hadoop documentation: s3n authentication properties

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_libsvm Read libsvm file into a Spark DataFrame.

Description

Read libsvm file into a Spark DataFrame.

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#Authentication_properties

spark_read_orc 243

Usage

spark_read_libsvm(
sc,
name = NULL,
path = name,
repartition = 0,
memory = TRUE,
overwrite = TRUE,
options = list(),
...

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

options A list of strings with additional options.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_orc(), spark_read_parquet(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_orc Read a ORC file into a Spark DataFrame

Description

Read a ORC file into a Spark DataFrame.

https://orc.apache.org/

244 spark_read_orc

Usage

spark_read_orc(
sc,
name = NULL,
path = name,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
schema = NULL,
...

)

Arguments

sc A spark_connection.
name The name to assign to the newly generated table.
path The path to the file. Needs to be accessible from the cluster. Supports the

‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.
options A list of strings with additional options. See https://spark.apache.org/

docs/latest/sql-programming-guide.html#configuration.
repartition The number of partitions used to distribute the generated table. Use 0 (the de-

fault) to avoid partitioning.
memory Boolean; should the data be loaded eagerly into memory? (That is, should the

table be cached?)
overwrite Boolean; overwrite the table with the given name if it already exists?
columns A vector of column names or a named vector of column types. If specified,

the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

schema A (java) read schema. Useful for optimizing read operation on nested data.
... Optional arguments; currently unused.

Details

You can read data from HDFS (hdfs://), S3 (s3a://), as well as the local file system (file://).

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(),
spark_write_parquet(), spark_write_source(), spark_write_table(), spark_write_text()

https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

spark_read_parquet 245

spark_read_parquet Read a Parquet file into a Spark DataFrame

Description

Read a Parquet file into a Spark DataFrame.

Usage

spark_read_parquet(
sc,
name = NULL,
path = name,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
schema = NULL,
...

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

schema A (java) read schema. Useful for optimizing read operation on nested data.

... Optional arguments; currently unused.

https://parquet.apache.org/
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

246 spark_read_source

Details

You can read data from HDFS (hdfs://), S3 (s3a://), as well as the local file system (file://).

If you are reading from a secure S3 bucket be sure to set the following in your spark-defaults.conf
spark.hadoop.fs.s3a.access.key, spark.hadoop.fs.s3a.secret.key or any of the methods
outlined in the aws-sdk documentation Working with AWS credentials In order to work with the
newer s3a:// protocol also set the values for spark.hadoop.fs.s3a.impl and spark.hadoop.fs.s3a.endpoint
. In addition, to support v4 of the S3 api be sure to pass the -Dcom.amazonaws.services.s3.enableV4
driver options for the config key spark.driver.extraJavaOptions For instructions on how to
configure s3n:// check the hadoop documentation: s3n authentication properties

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_source(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_source Read from a generic source into a Spark DataFrame.

Description

Read from a generic source into a Spark DataFrame.

Usage

spark_read_source(
sc,
name = NULL,
path = name,
source,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
...

)

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#Authentication_properties

spark_read_table 247

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

source A data source capable of reading data.

options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_table(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_table Reads from a Spark Table into a Spark DataFrame.

Description

Reads from a Spark Table into a Spark DataFrame.

Usage

spark_read_table(
sc,
name,
options = list(),
repartition = 0,
memory = TRUE,
columns = NULL,
...

)

https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

248 spark_read_text

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_read_text Read a Text file into a Spark DataFrame

Description

Read a text file into a Spark DataFrame.

Usage

spark_read_text(
sc,
name = NULL,
path = name,
repartition = 0,
memory = TRUE,
overwrite = TRUE,
options = list(),
whole = FALSE,
...

)

https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

spark_save_table 249

Arguments

sc A spark_connection.

name The name to assign to the newly generated table.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

repartition The number of partitions used to distribute the generated table. Use 0 (the de-
fault) to avoid partitioning.

memory Boolean; should the data be loaded eagerly into memory? (That is, should the
table be cached?)

overwrite Boolean; overwrite the table with the given name if it already exists?

options A list of strings with additional options.

whole Read the entire text file as a single entry? Defaults to FALSE.

... Optional arguments; currently unused.

Details

You can read data from HDFS (hdfs://), S3 (s3a://), as well as the local file system (file://).

If you are reading from a secure S3 bucket be sure to set the following in your spark-defaults.conf
spark.hadoop.fs.s3a.access.key, spark.hadoop.fs.s3a.secret.key or any of the methods
outlined in the aws-sdk documentation Working with AWS credentials In order to work with the
newer s3a:// protocol also set the values for spark.hadoop.fs.s3a.impl and spark.hadoop.fs.s3a.endpoint
. In addition, to support v4 of the S3 api be sure to pass the -Dcom.amazonaws.services.s3.enableV4
driver options for the config key spark.driver.extraJavaOptions For instructions on how to
configure s3n:// check the hadoop documentation: s3n authentication properties

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read(), spark_save_table(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_save_table Saves a Spark DataFrame as a Spark table

Description

Saves a Spark DataFrame and as a Spark table.

Usage

spark_save_table(x, path, mode = NULL, options = list())

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#Authentication_properties

250 spark_session_config

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_write_avro(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_session_config Runtime configuration interface for the Spark Session

Description

Retrieves or sets runtime configuration entries for the Spark Session

Usage

spark_session_config(sc, config = TRUE, value = NULL)

Arguments

sc A spark_connection.

config The configuration entry name(s) (e.g., "spark.sql.shuffle.partitions").
Defaults to NULL to retrieve all configuration entries.

value The configuration value to be set. Defaults to NULL to retrieve configuration
entries.

See Also

Other Spark runtime configuration: spark_adaptive_query_execution(), spark_advisory_shuffle_partition_size(),
spark_auto_broadcast_join_threshold(), spark_coalesce_initial_num_partitions(), spark_coalesce_min_num_partitions(),
spark_coalesce_shuffle_partitions()

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

spark_statistical_routines 251

spark_statistical_routines

Generate random samples from some distribution

Description

Generator methods for creating single-column Spark dataframes comprised of i.i.d. samples from
some distribution.

Arguments

sc A Spark connection.

n Sample Size (default: 1000).

num_partitions Number of partitions in the resulting Spark dataframe (default: default paral-
lelism of the Spark cluster).

seed Random seed (default: a random long integer).

output_col Name of the output column containing sample values (default: "x").

spark_table_name Generate a Table Name from Expression

Description

Attempts to generate a table name from an expression; otherwise, assigns an auto-generated generic
name with "sparklyr_" prefix.

Usage

spark_table_name(expr)

Arguments

expr The expression to attempt to use as name

252 spark_version_from_home

spark_version Get the Spark Version Associated with a Spark Connection

Description

Retrieve the version of Spark associated with a Spark connection.

Usage

spark_version(sc)

Arguments

sc A spark_connection.

Details

Suffixes for e.g. preview versions, or snapshotted versions, are trimmed – if you require the full
Spark version, you can retrieve it with invoke(spark_context(sc),"version").

Value

The Spark version as a numeric_version.

spark_version_from_home

Get the Spark Version Associated with a Spark Installation

Description

Retrieve the version of Spark associated with a Spark installation.

Usage

spark_version_from_home(spark_home, default = NULL)

Arguments

spark_home The path to a Spark installation.

default The default version to be inferred, in case version lookup failed, e.g. no Spark
installation was found at spark_home.

spark_web 253

spark_web Open the Spark web interface

Description

Open the Spark web interface

Usage

spark_web(sc, ...)

Arguments

sc A spark_connection.

... Optional arguments; currently unused.

spark_write Write Spark DataFrame to file using a custom writer

Description

Run a custom R function on Spark worker to write a Spark DataFrame into file(s). If Spark’s
speculative execution feature is enabled (i.e., ‘spark.speculation‘ is true), then each write task may
be executed more than once and the user-defined writer function will need to ensure no concurrent
writes happen to the same file path (e.g., by appending UUID to each file name).

Usage

spark_write(x, writer, paths, packages = NULL)

Arguments

x A Spark Dataframe to be saved into file(s)

writer A writer function with the signature function(partition, path) where partition
is a R dataframe containing all rows from one partition of the original Spark
Dataframe x and path is a string specifying the file to write partition to

paths A single destination path or a list of destination paths, each one specifying a lo-
cation for a partition from x to be written to. If number of partition(s) in x is not
equal to length(paths) then x will be re-partitioned to contain length(paths)
partition(s)

packages Boolean to distribute .libPaths() packages to each node, a list of packages to
distribute, or a package bundle created with

254 spark_write_avro

Examples

Not run:

library(sparklyr)

sc <- spark_connect(master = "local[3]")

copy some test data into a Spark Dataframe
sdf <- sdf_copy_to(sc, iris, overwrite = TRUE)

create a writer function
writer <- function(df, path) {

write.csv(df, path)
}

spark_write(
sdf,
writer,
re-partition sdf into 3 partitions and write them to 3 separate files
paths = list("file:///tmp/file1", "file:///tmp/file2", "file:///tmp/file3"),

)

spark_write(
sdf,
writer,
save all rows into a single file
paths = list("file:///tmp/all_rows")

)

End(Not run)

spark_write_avro Serialize a Spark DataFrame into Apache Avro format

Description

Serialize a Spark DataFrame into Apache Avro format. Notice this functionality requires the Spark
connection sc to be instantiated with either an explicitly specified Spark version (i.e., spark_connect(...,version
= <version>,packages = c("avro",<other package(s)>),...)) or a specific version of Spark
avro package to use (e.g., spark_connect(...,packages = c("org.apache.spark:spark-avro_2.12:3.0.0",<other
package(s)>),...)).

Usage

spark_write_avro(
x,
path,
avro_schema = NULL,

spark_write_csv 255

record_name = "topLevelRecord",
record_namespace = "",
compression = "snappy",
partition_by = NULL

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

avro_schema Optional Avro schema in JSON format

record_name Optional top level record name in write result (default: "topLevelRecord")
record_namespace

Record namespace in write result (default: "")

compression Compression codec to use (default: "snappy")

partition_by A character vector. Partitions the output by the given columns on the file
system.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_csv(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_write_csv Write a Spark DataFrame to a CSV

Description

Write a Spark DataFrame to a tabular (typically, comma-separated) file.

Usage

spark_write_csv(
x,
path,
header = TRUE,
delimiter = ",",
quote = "\"",
escape = "\\",
charset = "UTF-8",
null_value = NULL,

256 spark_write_delta

options = list(),
mode = NULL,
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

header Should the first row of data be used as a header? Defaults to TRUE.

delimiter The character used to delimit each column, defaults to ,.

quote The character used as a quote. Defaults to ‘'"'’.

escape The character used to escape other characters, defaults to \.

charset The character set, defaults to "UTF-8".

null_value The character to use for default values, defaults to NULL.

options A list of strings with additional options.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_write_delta Writes a Spark DataFrame into Delta Lake

Description

Writes a Spark DataFrame into Delta Lake.

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

spark_write_jdbc 257

Usage

spark_write_delta(
x,
path,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.

For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_jdbc(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_write_jdbc Writes a Spark DataFrame into a JDBC table

Description

Writes a Spark DataFrame into a JDBC table.

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

258 spark_write_jdbc

Usage

spark_write_jdbc(
x,
name,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

name The name to assign to the newly generated table.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_json(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

Examples

Not run:
sc <- spark_connect(

master = "local",
config = list(
`sparklyr.shell.driver-class-path` = "/usr/share/java/mysql-connector-java-8.0.25.jar"
)

)
spark_write_jdbc(

sdf_len(sc, 10),
name = "my_sql_table",
options = list(

url = "jdbc:mysql://localhost:3306/my_sql_schema",
driver = "com.mysql.jdbc.Driver",

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

spark_write_json 259

user = "me",
password = "******",
dbtable = "my_sql_table"

)
)

End(Not run)

spark_write_json Write a Spark DataFrame to a JSON file

Description

Serialize a Spark DataFrame to the JavaScript Object Notation format.

Usage

spark_write_json(
x,
path,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.

For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

http://www.json.org/
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

260 spark_write_orc

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_orc(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_write_orc Write a Spark DataFrame to a ORC file

Description

Serialize a Spark DataFrame to the ORC format.

Usage

spark_write_orc(
x,
path,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

https://orc.apache.org/
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

spark_write_parquet 261

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_parquet(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_write_parquet Write a Spark DataFrame to a Parquet file

Description

Serialize a Spark DataFrame to the Parquet format.

Usage

spark_write_parquet(
x,
path,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options. See https://spark.apache.org/
docs/latest/sql-programming-guide.html#configuration.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

https://parquet.apache.org/
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration
https://spark.apache.org/docs/latest/sql-programming-guide.html#configuration

262 spark_write_rds

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(),
spark_write_source(), spark_write_table(), spark_write_text()

spark_write_rds Write Spark DataFrame to RDS files

Description

Write Spark dataframe to RDS files. Each partition of the dataframe will be exported to a separate
RDS file so that all partitions can be processed in parallel.

Usage

spark_write_rds(x, dest_uri)

Arguments

x A Spark DataFrame to be exported

dest_uri Can be a URI template containing "partitionId" (e.g., "hdfs://my_data_part_partitionId.rds")
where "partitionId" will be substituted with ID of each partition using ‘glue‘, or a
list of URIs to be assigned to RDS output from all partitions (e.g., "hdfs://my_data_part_0.rds",
"hdfs://my_data_part_1.rds", and so on) If working with a Spark instance run-
ning locally, then all URIs should be in "file://<local file path>" form. Other-
wise the scheme of the URI should reflect the underlying file system the Spark
instance is working with (e.g., "hdfs://"). If the resulting list of URI(s) does not
contain unique values, then it will be post-processed with ‘make.unique()‘ to
ensure uniqueness.

Value

A tibble containing partition ID and RDS file location for each partition of the input Spark dataframe.

spark_write_source 263

spark_write_source Writes a Spark DataFrame into a generic source

Description

Writes a Spark DataFrame into a generic source.

Usage

spark_write_source(
x,
source,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

source A data source capable of reading data.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(),
spark_write_parquet(), spark_write_table(), spark_write_text()

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

264 spark_write_table

spark_write_table Writes a Spark DataFrame into a Spark table

Description

Writes a Spark DataFrame into a Spark table.

Usage

spark_write_table(
x,
name,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

name The name to assign to the newly generated table.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(),
spark_write_parquet(), spark_write_source(), spark_write_text()

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

spark_write_text 265

spark_write_text Write a Spark DataFrame to a Text file

Description

Serialize a Spark DataFrame to the plain text format.

Usage

spark_write_text(
x,
path,
mode = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode A character element. Specifies the behavior when data or table already exists.
Supported values include: ’error’, ’append’, ’overwrite’ and ignore. Notice that
’overwrite’ will also change the column structure.
For more details see also https://spark.apache.org/docs/latest/sql-programming-guide.
html#save-modes for your version of Spark.

options A list of strings with additional options.

partition_by A character vector. Partitions the output by the given columns on the file
system.

... Optional arguments; currently unused.

See Also

Other Spark serialization routines: collect_from_rds(), spark_load_table(), spark_read_avro(),
spark_read_binary(), spark_read_csv(), spark_read_delta(), spark_read_image(), spark_read_jdbc(),
spark_read_json(), spark_read_libsvm(), spark_read_orc(), spark_read_parquet(), spark_read_source(),
spark_read_table(), spark_read_text(), spark_read(), spark_save_table(), spark_write_avro(),
spark_write_csv(), spark_write_delta(), spark_write_jdbc(), spark_write_json(), spark_write_orc(),
spark_write_parquet(), spark_write_source(), spark_write_table()

https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
https://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

266 stream_find

src_databases Show database list

Description

Show database list

Usage

src_databases(sc, ...)

Arguments

sc A spark_connection.

... Optional arguments; currently unused.

stream_find Find Stream

Description

Finds and returns a stream based on the stream’s identifier.

Usage

stream_find(sc, id)

Arguments

sc The associated Spark connection.

id The stream identifier to find.

Examples

Not run:
sc <- spark_connect(master = "local")
sdf_len(sc, 10) %>%

spark_write_parquet(path = "parquet-in")

stream <- stream_read_parquet(sc, "parquet-in") %>%
stream_write_parquet("parquet-out")

stream_id <- stream_id(stream)
stream_find(sc, stream_id)

End(Not run)

stream_generate_test 267

stream_generate_test Generate Test Stream

Description

Generates a local test stream, useful when testing streams locally.

Usage

stream_generate_test(
df = rep(1:1000),
path = "source",
distribution = floor(10 + 1e+05 * stats::dbinom(1:20, 20, 0.5)),
iterations = 50,
interval = 1

)

Arguments

df The data frame used as a source of rows to the stream, will be cast to data frame
if needed. Defaults to a sequence of one thousand entries.

path Path to save stream of files to, defaults to "source".

distribution The distribution of rows to use over each iteration, defaults to a binomial distri-
bution. The stream will cycle through the distribution if needed.

iterations Number of iterations to execute before stopping, defaults to fifty.

interval The inverval in seconds use to write the stream, defaults to one second.

Details

This function requires the callr package to be installed.

stream_id Spark Stream’s Identifier

Description

Retrieves the identifier of the Spark stream.

Usage

stream_id(stream)

Arguments

stream The spark stream object.

268 stream_lag

stream_lag Apply lag function to columns of a Spark Streaming DataFrame

Description

Given a streaming Spark dataframe as input, this function will return another streaming dataframe
that contains all columns in the input and column(s) that are shifted behind by the offset(s) specified
in ‘...‘ (see example)

Usage

stream_lag(x, cols, thresholds = NULL)

Arguments

x An object coercable to a Spark Streaming DataFrame.

cols A list of expressions of the form <destination column> = <source column> ~
<offset> (e.g., ‘prev_value = value ~ 1‘ will create a new column ‘prev_value‘
containing all values from the source column ‘value‘ shifted behind by 1

thresholds Optional named list of timestamp column(s) and corresponding time duration(s)
for deterimining whether a previous record is sufficiently recent relative to the
current record. If the any of the time difference(s) between the current and a
previous record is greater than the maximal duration allowed, then the previous
record is discarded and will not be part of the query result. The durations can
be specified with numeric types (which will be interpreted as max difference al-
lowed in number of milliseconds between 2 UNIX timestamps) or time duration
strings such as "5s", "5sec", "5min", "5hour", etc. Any timestamp column in ‘x‘
that is not of timestamp of date Spark SQL types will be interepreted as number
of milliseconds since the UNIX epoch.

Examples

Not run:

library(sparklyr)

sc <- spark_connect(master = "local", version = "2.2.0")

streaming_path <- tempfile("days_df_")
days_df <- tibble::tibble(

today = weekdays(as.Date(seq(7), origin = "1970-01-01"))
)
num_iters <- 7
stream_generate_test(

df = days_df,
path = streaming_path,
distribution = rep(nrow(days_df), num_iters),
iterations = num_iters

stream_name 269

)

stream_read_csv(sc, streaming_path) %>%
stream_lag(cols = c(yesterday = today ~ 1, two_days_ago = today ~ 2)) %>%
collect() %>%
print(n = 10L)

End(Not run)

stream_name Spark Stream’s Name

Description

Retrieves the name of the Spark stream if available.

Usage

stream_name(stream)

Arguments

stream The spark stream object.

stream_read_csv Read CSV Stream

Description

Reads a CSV stream as a Spark dataframe stream.

Usage

stream_read_csv(
sc,
path,
name = NULL,
header = TRUE,
columns = NULL,
delimiter = ",",
quote = "\"",
escape = "\\",
charset = "UTF-8",
null_value = NULL,
options = list(),
...

)

270 stream_read_csv

Arguments

sc A spark_connection.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

name The name to assign to the newly generated stream.

header Boolean; should the first row of data be used as a header? Defaults to TRUE.

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

delimiter The character used to delimit each column. Defaults to ‘','’.

quote The character used as a quote. Defaults to ‘'"'’.

escape The character used to escape other characters. Defaults to ‘'\'’.

charset The character set. Defaults to ‘"UTF-8"’.

null_value The character to use for null, or missing, values. Defaults to NULL.

options A list of strings with additional options.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_delta(), stream_read_json(), stream_read_kafka(),
stream_read_orc(), stream_read_parquet(), stream_read_socket(), stream_read_text(),
stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

dir.create("csv-in")
write.csv(iris, "csv-in/data.csv", row.names = FALSE)

csv_path <- file.path("file://", getwd(), "csv-in")

stream <- stream_read_csv(sc, csv_path) %>% stream_write_csv("csv-out")

stream_stop(stream)

End(Not run)

stream_read_delta 271

stream_read_delta Read Delta Stream

Description

Reads a Delta Lake table as a Spark dataframe stream.

Usage

stream_read_delta(sc, path, name = NULL, options = list(), ...)

Arguments

sc A spark_connection.
path The path to the file. Needs to be accessible from the cluster. Supports the

‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.
name The name to assign to the newly generated stream.
options A list of strings with additional options.
... Optional arguments; currently unused.

Details

Please note that Delta Lake requires installing the appropriate package by setting the packages
parameter to "delta" in spark_connect()

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_json(), stream_read_kafka(),
stream_read_orc(), stream_read_parquet(), stream_read_socket(), stream_read_text(),
stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "2.4.0", packages = "delta")

sdf_len(sc, 5) %>% spark_write_delta(path = "delta-test")

stream <- stream_read_delta(sc, "delta-test") %>%
stream_write_json("json-out")

stream_stop(stream)

End(Not run)

272 stream_read_json

stream_read_json Read JSON Stream

Description

Reads a JSON stream as a Spark dataframe stream.

Usage

stream_read_json(sc, path, name = NULL, columns = NULL, options = list(), ...)

Arguments

sc A spark_connection.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

name The name to assign to the newly generated stream.

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

options A list of strings with additional options.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_kafka(),
stream_read_orc(), stream_read_parquet(), stream_read_socket(), stream_read_text(),
stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

dir.create("json-in")
jsonlite::write_json(list(a = c(1, 2), b = c(10, 20)), "json-in/data.json")

json_path <- file.path("file://", getwd(), "json-in")

stream <- stream_read_json(sc, json_path) %>% stream_write_json("json-out")

stream_stop(stream)

stream_read_kafka 273

End(Not run)

stream_read_kafka Read Kafka Stream

Description

Reads a Kafka stream as a Spark dataframe stream.

Usage

stream_read_kafka(sc, name = NULL, options = list(), ...)

Arguments

sc A spark_connection.

name The name to assign to the newly generated stream.

options A list of strings with additional options.

... Optional arguments; currently unused.

Details

Please note that Kafka requires installing the appropriate package by setting the packages parame-
ter to "kafka" in spark_connect()

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_orc(), stream_read_parquet(), stream_read_socket(), stream_read_text(),
stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "2.3", packages = "kafka")

read_options <- list(kafka.bootstrap.servers = "localhost:9092", subscribe = "topic1")
write_options <- list(kafka.bootstrap.servers = "localhost:9092", topic = "topic2")

stream <- stream_read_kafka(sc, options = read_options) %>%
stream_write_kafka(options = write_options)

274 stream_read_orc

stream_stop(stream)

End(Not run)

stream_read_orc Read ORC Stream

Description

Reads an ORC stream as a Spark dataframe stream.

Usage

stream_read_orc(sc, path, name = NULL, columns = NULL, options = list(), ...)

Arguments

sc A spark_connection.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

name The name to assign to the newly generated stream.

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

options A list of strings with additional options.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_parquet(), stream_read_socket(), stream_read_text(),
stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

sdf_len(sc, 10) %>% spark_write_orc("orc-in")

stream <- stream_read_orc(sc, "orc-in") %>% stream_write_orc("orc-out")

https://orc.apache.org/

stream_read_parquet 275

stream_stop(stream)

End(Not run)

stream_read_parquet Read Parquet Stream

Description

Reads a parquet stream as a Spark dataframe stream.

Usage

stream_read_parquet(
sc,
path,
name = NULL,
columns = NULL,
options = list(),
...

)

Arguments

sc A spark_connection.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

name The name to assign to the newly generated stream.

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

options A list of strings with additional options.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_socket(), stream_read_text(), stream_write_console(),
stream_write_csv(), stream_write_delta(), stream_write_json(), stream_write_kafka(),
stream_write_memory(), stream_write_orc(), stream_write_parquet(), stream_write_text()

276 stream_read_socket

Examples

Not run:

sc <- spark_connect(master = "local")

sdf_len(sc, 10) %>% spark_write_parquet("parquet-in")

stream <- stream_read_parquet(sc, "parquet-in") %>% stream_write_parquet("parquet-out")

stream_stop(stream)

End(Not run)

stream_read_socket Read Socket Stream

Description

Reads a Socket stream as a Spark dataframe stream.

Usage

stream_read_socket(sc, name = NULL, columns = NULL, options = list(), ...)

Arguments

sc A spark_connection.

name The name to assign to the newly generated stream.

columns A vector of column names or a named vector of column types. If specified,
the elements can be "binary" for BinaryType, "boolean" for BooleanType,
"byte" for ByteType, "integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType, "timestamp" for
TimestampType and "date" for DateType.

options A list of strings with additional options.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_text(),
stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

stream_read_text 277

Examples

Not run:

sc <- spark_connect(master = "local")

Start socket server from terminal, example: nc -lk 9999
stream <- stream_read_socket(sc, options = list(host = "localhost", port = 9999))
stream

End(Not run)

stream_read_text Read Text Stream

Description

Reads a text stream as a Spark dataframe stream.

Usage

stream_read_text(sc, path, name = NULL, options = list(), ...)

Arguments

sc A spark_connection.

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

name The name to assign to the newly generated stream.

options A list of strings with additional options.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_write_console(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

dir.create("text-in")

278 stream_render

writeLines("A text entry", "text-in/text.txt")

text_path <- file.path("file://", getwd(), "text-in")

stream <- stream_read_text(sc, text_path) %>% stream_write_text("text-out")

stream_stop(stream)

End(Not run)

stream_render Render Stream

Description

Collects streaming statistics to render the stream as an ’htmlwidget’.

Usage

stream_render(stream = NULL, collect = 10, stats = NULL, ...)

Arguments

stream The stream to render

collect The interval in seconds to collect data before rendering the ’htmlwidget’.

stats Optional stream statistics collected using stream_stats(), when specified, stream
should be omitted.

... Additional optional arguments.

Examples

Not run:
library(sparklyr)
sc <- spark_connect(master = "local")

dir.create("iris-in")
write.csv(iris, "iris-in/iris.csv", row.names = FALSE)

stream <- stream_read_csv(sc, "iris-in/") %>%
stream_write_csv("iris-out/")

stream_render(stream)
stream_stop(stream)

End(Not run)

stream_stats 279

stream_stats Stream Statistics

Description

Collects streaming statistics, usually, to be used with stream_render() to render streaming statis-
tics.

Usage

stream_stats(stream, stats = list())

Arguments

stream The stream to collect statistics from.

stats An optional stats object generated using stream_stats().

Value

A stats object containing streaming statistics that can be passed back to the stats parameter to
continue aggregating streaming stats.

Examples

Not run:
sc <- spark_connect(master = "local")
sdf_len(sc, 10) %>%

spark_write_parquet(path = "parquet-in")

stream <- stream_read_parquet(sc, "parquet-in") %>%
stream_write_parquet("parquet-out")

stream_stats(stream)

End(Not run)

stream_stop Stops a Spark Stream

Description

Stops processing data from a Spark stream.

Usage

stream_stop(stream)

280 stream_trigger_interval

Arguments

stream The spark stream object to be stopped.

stream_trigger_continuous

Spark Stream Continuous Trigger

Description

Creates a Spark structured streaming trigger to execute continuously. This mode is the most perfor-
mant but not all operations are supported.

Usage

stream_trigger_continuous(checkpoint = 5000)

Arguments

checkpoint The checkpoint interval specified in milliseconds.

See Also

stream_trigger_interval

stream_trigger_interval

Spark Stream Interval Trigger

Description

Creates a Spark structured streaming trigger to execute over the specified interval.

Usage

stream_trigger_interval(interval = 1000)

Arguments

interval The execution interval specified in milliseconds.

See Also

stream_trigger_continuous

stream_view 281

stream_view View Stream

Description

Opens a Shiny gadget to visualize the given stream.

Usage

stream_view(stream, ...)

Arguments

stream The stream to visualize.

... Additional optional arguments.

Examples

Not run:
library(sparklyr)
sc <- spark_connect(master = "local")

dir.create("iris-in")
write.csv(iris, "iris-in/iris.csv", row.names = FALSE)

stream_read_csv(sc, "iris-in/") %>%
stream_write_csv("iris-out/") %>%
stream_view() %>%
stream_stop()

End(Not run)

stream_watermark Watermark Stream

Description

Ensures a stream has a watermark defined, which is required for some operations over streams.

Usage

stream_watermark(x, column = "timestamp", threshold = "10 minutes")

282 stream_write_console

Arguments

x An object coercable to a Spark Streaming DataFrame.

column The name of the column that contains the event time of the row, if the column is
missing, a column with the current time will be added.

threshold The minimum delay to wait to data to arrive late, defaults to ten minutes.

stream_write_console Write Console Stream

Description

Writes a Spark dataframe stream into console logs.

Usage

stream_write_console(
x,
mode = c("append", "complete", "update"),
options = list(),
trigger = stream_trigger_interval(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

options A list of strings with additional options.

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_csv(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

stream_write_csv 283

Examples

Not run:

sc <- spark_connect(master = "local")

sdf_len(sc, 10) %>%
dplyr::transmute(text = as.character(id)) %>%
spark_write_text("text-in")

stream <- stream_read_text(sc, "text-in") %>% stream_write_console()

stream_stop(stream)

End(Not run)

stream_write_csv Write CSV Stream

Description

Writes a Spark dataframe stream into a tabular (typically, comma-separated) stream.

Usage

stream_write_csv(
x,
path,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path(path, "checkpoint"),
header = TRUE,
delimiter = ",",
quote = "\"",
escape = "\\",
charset = "UTF-8",
null_value = NULL,
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

284 stream_write_csv

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

header Should the first row of data be used as a header? Defaults to TRUE.

delimiter The character used to delimit each column, defaults to ,.

quote The character used as a quote. Defaults to ‘'"'’.

escape The character used to escape other characters, defaults to \.

charset The character set, defaults to "UTF-8".

null_value The character to use for default values, defaults to NULL.

options A list of strings with additional options.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_delta(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

dir.create("csv-in")
write.csv(iris, "csv-in/data.csv", row.names = FALSE)

csv_path <- file.path("file://", getwd(), "csv-in")

stream <- stream_read_csv(sc, csv_path) %>% stream_write_csv("csv-out")

stream_stop(stream)

End(Not run)

stream_write_delta 285

stream_write_delta Write Delta Stream

Description

Writes a Spark dataframe stream into a Delta Lake table.

Usage

stream_write_delta(
x,
path,
mode = c("append", "complete", "update"),
checkpoint = file.path("checkpoints", random_string("")),
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The path to the file. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

options A list of strings with additional options.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

Details

Please note that Delta Lake requires installing the appropriate package by setting the packages
parameter to "delta" in spark_connect()

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_json(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

286 stream_write_json

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "2.4.0", packages = "delta")

dir.create("text-in")
writeLines("A text entry", "text-in/text.txt")

text_path <- file.path("file://", getwd(), "text-in")

stream <- stream_read_text(sc, text_path) %>% stream_write_delta(path = "delta-test")

stream_stop(stream)

End(Not run)

stream_write_json Write JSON Stream

Description

Writes a Spark dataframe stream into a JSON stream.

Usage

stream_write_json(
x,
path,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path(path, "checkpoints", random_string("")),
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The destination path. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

stream_write_kafka 287

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

options A list of strings with additional options.
partition_by Partitions the output by the given list of columns.
... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_delta(),
stream_write_kafka(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

dir.create("json-in")
jsonlite::write_json(list(a = c(1, 2), b = c(10, 20)), "json-in/data.json")

json_path <- file.path("file://", getwd(), "json-in")

stream <- stream_read_json(sc, json_path) %>% stream_write_json("json-out")

stream_stop(stream)

End(Not run)

stream_write_kafka Write Kafka Stream

Description

Writes a Spark dataframe stream into an kafka stream.

Usage

stream_write_kafka(
x,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path("checkpoints", random_string("")),
options = list(),
partition_by = NULL,
...

)

288 stream_write_kafka

Arguments

x A Spark DataFrame or dplyr operation

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

options A list of strings with additional options.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

Details

Please note that Kafka requires installing the appropriate package by setting the packages parame-
ter to "kafka" in spark_connect()

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_delta(),
stream_write_json(), stream_write_memory(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

library(sparklyr)
sc <- spark_connect(master = "local", version = "2.3", packages = "kafka")

read_options <- list(kafka.bootstrap.servers = "localhost:9092", subscribe = "topic1")
write_options <- list(kafka.bootstrap.servers = "localhost:9092", topic = "topic2")

stream <- stream_read_kafka(sc, options = read_options) %>%
stream_write_kafka(options = write_options)

stream_stop(stream)

End(Not run)

stream_write_memory 289

stream_write_memory Write Memory Stream

Description

Writes a Spark dataframe stream into a memory stream.

Usage

stream_write_memory(
x,
name = random_string("sparklyr_tmp_"),
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path("checkpoints", name, random_string("")),
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

name The name to assign to the newly generated stream.

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

options A list of strings with additional options.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_delta(),
stream_write_json(), stream_write_kafka(), stream_write_orc(), stream_write_parquet(),
stream_write_text()

290 stream_write_orc

Examples

Not run:

sc <- spark_connect(master = "local")

dir.create("csv-in")
write.csv(iris, "csv-in/data.csv", row.names = FALSE)

csv_path <- file.path("file://", getwd(), "csv-in")

stream <- stream_read_csv(sc, csv_path) %>% stream_write_memory("csv-out")

stream_stop(stream)

End(Not run)

stream_write_orc Write a ORC Stream

Description

Writes a Spark dataframe stream into an ORC stream.

Usage

stream_write_orc(
x,
path,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path(path, "checkpoints", random_string("")),
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The destination path. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

https://orc.apache.org/

stream_write_parquet 291

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

options A list of strings with additional options.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_delta(),
stream_write_json(), stream_write_kafka(), stream_write_memory(), stream_write_parquet(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

sdf_len(sc, 10) %>% spark_write_orc("orc-in")

stream <- stream_read_orc(sc, "orc-in") %>% stream_write_orc("orc-out")

stream_stop(stream)

End(Not run)

stream_write_parquet Write Parquet Stream

Description

Writes a Spark dataframe stream into a parquet stream.

Usage

stream_write_parquet(
x,
path,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path(path, "checkpoints", random_string("")),
options = list(),
partition_by = NULL,
...

)

292 stream_write_text

Arguments

x A Spark DataFrame or dplyr operation

path The destination path. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

options A list of strings with additional options.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_delta(),
stream_write_json(), stream_write_kafka(), stream_write_memory(), stream_write_orc(),
stream_write_text()

Examples

Not run:

sc <- spark_connect(master = "local")

sdf_len(sc, 10) %>% spark_write_parquet("parquet-in")

stream <- stream_read_parquet(sc, "parquet-in") %>% stream_write_parquet("parquet-out")

stream_stop(stream)

End(Not run)

stream_write_text Write Text Stream

Description

Writes a Spark dataframe stream into a text stream.

stream_write_text 293

Usage

stream_write_text(
x,
path,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path(path, "checkpoints", random_string("")),
options = list(),
partition_by = NULL,
...

)

Arguments

x A Spark DataFrame or dplyr operation

path The destination path. Needs to be accessible from the cluster. Supports the
‘"hdfs://"’, ‘"s3a://"’ and ‘"file://"’ protocols.

mode Specifies how data is written to a streaming sink. Valid values are "append",
"complete" or "update".

trigger The trigger for the stream query, defaults to micro-batches runnnig every 5 sec-
onds. See stream_trigger_interval and stream_trigger_continuous.

checkpoint The location where the system will write all the checkpoint information to guar-
antee end-to-end fault-tolerance.

options A list of strings with additional options.

partition_by Partitions the output by the given list of columns.

... Optional arguments; currently unused.

See Also

Other Spark stream serialization: stream_read_csv(), stream_read_delta(), stream_read_json(),
stream_read_kafka(), stream_read_orc(), stream_read_parquet(), stream_read_socket(),
stream_read_text(), stream_write_console(), stream_write_csv(), stream_write_delta(),
stream_write_json(), stream_write_kafka(), stream_write_memory(), stream_write_orc(),
stream_write_parquet()

Examples

Not run:

sc <- spark_connect(master = "local")

dir.create("text-in")
writeLines("A text entry", "text-in/text.txt")

text_path <- file.path("file://", getwd(), "text-in")

stream <- stream_read_text(sc, text_path) %>% stream_write_text("text-out")

294 tbl_change_db

stream_stop(stream)

End(Not run)

tbl_cache Cache a Spark Table

Description

Force a Spark table with name name to be loaded into memory. Operations on cached tables should
normally (although not always) be more performant than the same operation performed on an un-
cached table.

Usage

tbl_cache(sc, name, force = TRUE)

Arguments

sc A spark_connection.

name The table name.

force Force the data to be loaded into memory? This is accomplished by calling the
count API on the associated Spark DataFrame.

tbl_change_db Use specific database

Description

Use specific database

Usage

tbl_change_db(sc, name)

Arguments

sc A spark_connection.

name The database name.

tbl_uncache 295

tbl_uncache Uncache a Spark Table

Description

Force a Spark table with name name to be unloaded from memory.

Usage

tbl_uncache(sc, name)

Arguments

sc A spark_connection.

name The table name.

transform_sdf transform a subset of column(s) in a Spark Dataframe

Description

transform a subset of column(s) in a Spark Dataframe

Usage

transform_sdf(x, cols, fn)

Arguments

x An object coercible to a Spark DataFrame

cols Subset of columns to apply transformation to

fn Transformation function taking column name as the 1st parameter, the corre-
sponding org.apache.spark.sql.Column object as the 2nd parameter, and re-
turning a transformed org.apache.spark.sql.Column object

unite Unite

Description

See unite for more details.

296 [.tbl_spark

unnest Unnest

Description

See unnest for more details.

[.tbl_spark Subsetting operator for Spark dataframe

Description

Susetting operator for Spark dataframe allowing a subset of column(s) to be selected using syntaxes
similar to those supported by R dataframes

Usage

S3 method for class 'tbl_spark'
x[i]

Arguments

x The Spark dataframe

i Expression specifying subset of column(s) to include or exclude from the result
(e.g., ‘["col1"]‘, ‘[c("col1", "col2")]‘, ‘[1:10]‘, ‘[-1]‘, ‘[NULL]‘, or ‘[]‘)

Examples

Not run:
library(sparklyr)
sc <- spark_connect(master = "spark://HOST:PORT")
example_sdf <- copy_to(sc, tibble::tibble(a = 1, b = 2))
example_sdf["a"] %>% print()

End(Not run)

%->% 297

%->% Infix operator for composing a lambda expression

Description

Infix operator that allows a lambda expression to be composed in R and be translated to Spark SQL
equivalent using ’ dbplyr::translate_sql functionalities

Usage

params %->% ...

Arguments

params Parameter(s) of the lambda expression, can be either a single parameter or a
comma separated listed of parameters in the form of .(param1,param2,...)
(see examples)

... Body of the lambda expression, *must be within parentheses*

Details

Notice when composing a lambda expression in R, the body of the lambda expression *must always
be surrounded with parentheses*, otherwise a parsing error will occur.

Examples

Not run:

a %->% (mean(a) + 1) # translates to <SQL> `a` -> (AVG(`a`) OVER () + 1.0)

.(a, b) %->% (a < 1 && b > 1) # translates to <SQL> `a`,`b` -> (`a` < 1.0 AND `b` > 1.0)

End(Not run)

Index

∗ Spark data frames
sdf_copy_to, 174
sdf_distinct, 177
sdf_random_split, 185
sdf_register, 191
sdf_sample, 201
sdf_sort, 203
sdf_weighted_sample, 207

∗ Spark runtime configuration
spark_adaptive_query_execution,

213
spark_advisory_shuffle_partition_size,

214
spark_auto_broadcast_join_threshold,

218
spark_coalesce_initial_num_partitions,

218
spark_coalesce_min_num_partitions,

219
spark_coalesce_shuffle_partitions,

219
spark_session_config, 250

∗ Spark serialization routines
collect_from_rds, 11
spark_load_table, 231
spark_read, 232
spark_read_avro, 233
spark_read_binary, 234
spark_read_csv, 236
spark_read_delta, 237
spark_read_image, 238
spark_read_jdbc, 240
spark_read_json, 241
spark_read_libsvm, 242
spark_read_orc, 243
spark_read_parquet, 245
spark_read_source, 246
spark_read_table, 247
spark_read_text, 248

spark_save_table, 249
spark_write_avro, 254
spark_write_csv, 255
spark_write_delta, 256
spark_write_jdbc, 257
spark_write_json, 259
spark_write_orc, 260
spark_write_parquet, 261
spark_write_source, 263
spark_write_table, 264
spark_write_text, 265

∗ Spark statistical routines
sdf_rbeta, 187
sdf_rbinom, 188
sdf_rcauchy, 189
sdf_rchisq, 190
sdf_rexp, 192
sdf_rgamma, 193
sdf_rgeom, 194
sdf_rhyper, 195
sdf_rlnorm, 196
sdf_rnorm, 197
sdf_rpois, 198
sdf_rt, 198
sdf_runif, 199
sdf_rweibull, 200

∗ Spark stream serialization
stream_read_csv, 269
stream_read_delta, 271
stream_read_json, 272
stream_read_kafka, 273
stream_read_orc, 274
stream_read_parquet, 275
stream_read_socket, 276
stream_read_text, 277
stream_write_console, 282
stream_write_csv, 283
stream_write_delta, 285
stream_write_json, 286

298

INDEX 299

stream_write_kafka, 287
stream_write_memory, 289
stream_write_orc, 290
stream_write_parquet, 291
stream_write_text, 292

∗ feature transformers
ft_binarizer, 16
ft_bucketizer, 17
ft_chisq_selector, 19
ft_count_vectorizer, 21
ft_dct, 23
ft_elementwise_product, 24
ft_feature_hasher, 25
ft_hashing_tf, 27
ft_idf, 28
ft_imputer, 30
ft_index_to_string, 31
ft_interaction, 32
ft_lsh, 33
ft_max_abs_scaler, 36
ft_min_max_scaler, 38
ft_ngram, 39
ft_normalizer, 41
ft_one_hot_encoder, 42
ft_one_hot_encoder_estimator, 43
ft_pca, 45
ft_polynomial_expansion, 46
ft_quantile_discretizer, 48
ft_r_formula, 53
ft_regex_tokenizer, 50
ft_robust_scaler, 51
ft_sql_transformer, 55
ft_standard_scaler, 56
ft_stop_words_remover, 58
ft_string_indexer, 59
ft_tokenizer, 61
ft_vector_assembler, 62
ft_vector_indexer, 63
ft_vector_slicer, 64
ft_word2vec, 65

∗ interenal
spark_config_packages, 223

∗ ml algorithms
ml_aft_survival_regression, 91
ml_decision_tree_classifier, 102
ml_gbt_classifier, 115
ml_generalized_linear_regression,

119

ml_isotonic_regression, 124
ml_linear_regression, 134
ml_linear_svc, 137
ml_logistic_regression, 140
ml_multilayer_perceptron_classifier,

144
ml_naive_bayes, 148
ml_one_vs_rest, 151
ml_random_forest_classifier, 157

∗ ml clustering algorithms
ml_bisecting_kmeans, 98
ml_gaussian_mixture, 113
ml_kmeans, 126
ml_lda, 129

[.tbl_spark, 296
%->%, 297

augment.ml_model_aft_survival_regression
(ml_survival_regression_tidiers),
163

augment.ml_model_als (ml_als_tidiers),
97

augment.ml_model_bisecting_kmeans
(ml_unsupervised_tidiers), 165

augment.ml_model_decision_tree_classification
(ml_tree_tidiers), 163

augment.ml_model_decision_tree_regression
(ml_tree_tidiers), 163

augment.ml_model_gaussian_mixture
(ml_unsupervised_tidiers), 165

augment.ml_model_gbt_classification
(ml_tree_tidiers), 163

augment.ml_model_gbt_regression
(ml_tree_tidiers), 163

augment.ml_model_generalized_linear_regression
(ml_glm_tidiers), 123

augment.ml_model_isotonic_regression
(ml_isotonic_regression_tidiers),
126

augment.ml_model_kmeans
(ml_unsupervised_tidiers), 165

augment.ml_model_lda (ml_lda_tidiers),
134

augment.ml_model_linear_regression
(ml_glm_tidiers), 123

augment.ml_model_linear_svc
(ml_linear_svc_tidiers), 139

augment.ml_model_logistic_regression
(ml_logistic_regression_tidiers),

300 INDEX

143
augment.ml_model_multilayer_perceptron_classification

(ml_multilayer_perceptron_tidiers),
147

augment.ml_model_naive_bayes
(ml_naive_bayes_tidiers), 150

augment.ml_model_pca (ml_pca_tidiers),
152

augment.ml_model_random_forest_classification
(ml_tree_tidiers), 163

augment.ml_model_random_forest_regression
(ml_tree_tidiers), 163

checkpoint_directory, 11
collect_from_rds, 11, 231, 233–235,

237–240, 242–244, 246–250,
255–258, 260–265

compile_package_jars, 12, 220, 226
config, 221
connection_config, 12
copy_to.spark_connection, 13
cut, 17

distinct, 13, 13
download_scalac, 14
dplyr_hof, 14

ensure, 14

fill, 15, 15
filter, 15, 15
find_scalac, 15
ft_binarizer, 16, 18, 21, 22, 24, 25, 27–29,

31–33, 35, 37, 39–41, 43, 44, 46, 47,
49, 51, 52, 54, 56, 57, 59–61, 63–65,
67

ft_bucketed_random_projection_lsh
(ft_lsh), 33

ft_bucketizer, 17, 17, 21, 22, 24, 25, 27–29,
31–33, 35, 37, 39–41, 43, 44, 46, 47,
49, 51, 52, 54, 56, 57, 59–61, 63–65,
67

ft_chisq_selector, 17, 18, 19, 22, 24, 25,
27–29, 31–33, 35, 37, 39–41, 43, 44,
46, 47, 49, 51, 52, 54, 56, 57, 59–61,
63–65, 67

ft_count_vectorizer, 17, 18, 21, 21, 24, 25,
27–29, 31–33, 35, 37, 39–41, 43, 44,
46, 47, 49, 51, 52, 54, 56, 57, 59–61,
63–65, 67, 131

ft_dct, 17, 18, 21, 22, 23, 25, 27–29, 31–33,
35, 37, 39–41, 43, 44, 46, 47, 49, 51,
52, 54, 56, 57, 59–61, 63–65, 67

ft_discrete_cosine_transform (ft_dct),
23

ft_dplyr_transformer
(ft_sql_transformer), 55

ft_elementwise_product, 17, 18, 21, 22, 24,
24, 27–29, 31–33, 35, 37, 39–41, 43,
44, 46, 47, 49, 51, 52, 54, 56, 57,
59–61, 63–65, 67

ft_feature_hasher, 17, 18, 21, 22, 24, 25,
25, 28, 29, 31–33, 35, 37, 39–41, 43,
44, 46, 47, 49, 51, 52, 54, 56, 57,
59–61, 63–65, 67

ft_hashing_tf, 17, 18, 21, 22, 24, 25, 27, 27,
29, 31–33, 35, 37, 39–41, 43, 44, 46,
47, 49, 51, 52, 54, 56, 57, 59–61,
63–65, 67

ft_idf, 17, 18, 21, 22, 24, 25, 27, 28, 28,
31–33, 35, 37, 39–41, 43, 44, 46, 47,
49, 51, 52, 54, 56, 57, 59–61, 63–65,
67

ft_imputer, 17, 18, 21, 22, 24, 25, 27–29, 30,
32, 33, 35, 37, 39, 40, 42–44, 46, 47,
49, 51, 52, 54, 56, 57, 59–61, 63–65,
67

ft_index_to_string, 17, 18, 21, 22, 24, 25,
27–29, 31, 31, 33, 35, 37, 39, 40,
42–44, 46, 47, 49, 51, 52, 54, 56, 57,
59–61, 63–65, 67

ft_interaction, 17, 18, 21, 22, 24, 25,
27–29, 31, 32, 32, 35, 37, 39, 40,
42–44, 46, 47, 49, 51, 52, 54, 56, 57,
59–61, 63–65, 67

ft_lsh, 17, 18, 21, 22, 24, 25, 27–29, 31–33,
33, 37, 39, 40, 42–44, 46, 47, 49, 51,
52, 54, 56, 57, 59–61, 63–65, 67

ft_lsh_utils, 35
ft_max_abs_scaler, 17, 18, 21, 22, 24, 25,

27–29, 31–33, 35, 36, 39, 40, 42–44,
46, 47, 49, 51, 52, 54, 56, 57, 59–61,
63–65, 67

ft_min_max_scaler, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 38, 40, 42–44,
46, 47, 49, 51, 52, 54, 56, 57, 59–61,
63–65, 67

ft_minhash_lsh (ft_lsh), 33

INDEX 301

ft_ngram, 17, 18, 21, 22, 24, 25, 27–29,
31–33, 35, 37, 39, 39, 42–44, 46, 47,
49, 51, 52, 54, 56, 57, 59–61, 63–65,
67

ft_normalizer, 17, 18, 21, 22, 24, 25, 27–29,
31–33, 35, 37, 39, 40, 41, 43, 44, 46,
47, 49, 51, 52, 54, 56, 57, 59–61,
63–65, 67

ft_one_hot_encoder, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42, 42,
44, 46, 47, 49, 51, 52, 54, 56, 57,
59–61, 63–65, 67

ft_one_hot_encoder_estimator, 17, 18, 21,
22, 24, 25, 27–29, 31–33, 35, 37, 39,
40, 42, 43, 43, 46, 47, 49, 51, 52, 54,
56, 57, 59–61, 63–65, 67

ft_pca, 17, 18, 21, 22, 24, 25, 27–29, 31–33,
35, 37, 39, 40, 42–44, 45, 47, 49, 51,
52, 54, 56, 57, 59, 60, 62–65, 67

ft_polynomial_expansion, 17, 18, 21, 22,
24, 25, 27–29, 31–33, 35, 37, 39, 40,
42–44, 46, 46, 49, 51, 52, 54, 56, 57,
59, 60, 62–65, 67

ft_quantile_discretizer, 17, 18, 21, 22,
24, 25, 27–29, 31–33, 35, 37, 39, 40,
42–44, 46, 47, 48, 51, 52, 54, 56, 57,
59, 60, 62–65, 67

ft_r_formula, 17, 18, 20–22, 24, 25, 27–29,
31–33, 35, 37, 39, 40, 42–44, 46, 47,
49, 51–53, 53, 56, 57, 59, 60, 62–65,
67, 92, 93, 95, 98, 104, 105, 113,
114, 116, 117, 120, 121, 124, 127,
130, 131, 135, 137, 138, 140, 141,
145, 148, 149, 151, 159, 160

ft_regex_tokenizer, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,
46, 47, 49, 50, 52, 54, 56, 57, 59, 60,
62–65, 67

ft_robust_scaler, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,
46, 47, 49, 51, 51, 54, 56, 57, 59, 60,
62–65, 67

ft_sql_transformer, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,
46, 47, 50–52, 54, 55, 57, 59, 60,
62–65, 67

ft_standard_scaler, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,

46, 47, 50–52, 54, 56, 56, 59, 60,
62–65, 67

ft_stop_words_remover, 17, 18, 21, 22, 24,
25, 27–29, 31–33, 35, 37, 39, 40,
42–44, 46, 47, 50–52, 54, 56, 57, 58,
60, 62–65, 67, 107

ft_string_indexer, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,
46, 47, 50–52, 54, 56, 57, 59, 59,
62–65, 67

ft_string_indexer_model
(ft_string_indexer), 59

ft_tokenizer, 17, 18, 21, 22, 24, 25, 27–29,
31–33, 35, 37, 39, 40, 42–44, 46, 47,
50–52, 54, 56, 57, 59, 60, 61, 63–65,
67, 131

ft_vector_assembler, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,
46, 47, 50–52, 54, 56, 57, 59, 60, 62,
62, 64, 65, 67

ft_vector_indexer, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,
46, 47, 50–52, 54, 56, 57, 59, 60, 62,
63, 63, 65, 67

ft_vector_slicer, 17, 18, 21, 22, 24, 25,
27–29, 31–33, 35, 37, 39, 40, 42–44,
46, 47, 50–52, 54, 56, 57, 59, 60,
62–64, 64, 67

ft_word2vec, 17, 18, 21, 22, 24, 25, 27–29,
31–33, 35, 37, 39, 40, 42–44, 46, 47,
50–52, 54, 56, 57, 59, 60, 62–65, 65

full_join, 67, 67
full_join.tbl_spark (join.tbl_spark), 81

generic_call_interface, 67
get_spark_sql_catalog_implementation,

68
glance.ml_model_aft_survival_regression

(ml_survival_regression_tidiers),
163

glance.ml_model_als (ml_als_tidiers), 97
glance.ml_model_bisecting_kmeans

(ml_unsupervised_tidiers), 165
glance.ml_model_decision_tree_classification

(ml_tree_tidiers), 163
glance.ml_model_decision_tree_regression

(ml_tree_tidiers), 163
glance.ml_model_gaussian_mixture

(ml_unsupervised_tidiers), 165

302 INDEX

glance.ml_model_gbt_classification
(ml_tree_tidiers), 163

glance.ml_model_gbt_regression
(ml_tree_tidiers), 163

glance.ml_model_generalized_linear_regression
(ml_glm_tidiers), 123

glance.ml_model_isotonic_regression
(ml_isotonic_regression_tidiers),
126

glance.ml_model_kmeans
(ml_unsupervised_tidiers), 165

glance.ml_model_lda (ml_lda_tidiers),
134

glance.ml_model_linear_regression
(ml_glm_tidiers), 123

glance.ml_model_linear_svc
(ml_linear_svc_tidiers), 139

glance.ml_model_logistic_regression
(ml_logistic_regression_tidiers),
143

glance.ml_model_multilayer_perceptron_classification
(ml_multilayer_perceptron_tidiers),
147

glance.ml_model_naive_bayes
(ml_naive_bayes_tidiers), 150

glance.ml_model_pca (ml_pca_tidiers),
152

glance.ml_model_random_forest_classification
(ml_tree_tidiers), 163

glance.ml_model_random_forest_regression
(ml_tree_tidiers), 163

hive_context (spark-api), 210
hive_context_config, 68
hof_aggregate, 69
hof_array_sort, 70
hof_exists, 71
hof_filter, 71
hof_forall, 72
hof_map_filter, 73
hof_map_zip_with, 74
hof_transform, 75
hof_transform_keys, 76
hof_transform_values, 76
hof_zip_with, 77

inner_join, 78, 78
inner_join.tbl_spark (join.tbl_spark),

81

invoke, 78, 210, 230
invoke_new (invoke), 78
invoke_static (invoke), 78
is_ml_estimator (ml-transform-methods),

88
is_ml_transformer

(ml-transform-methods), 88

j_invoke, 83
j_invoke_new (j_invoke), 83
j_invoke_static (j_invoke), 83
jarray, 79
java_context (spark-api), 210
jfloat, 80
jfloat_array, 80
join.tbl_spark, 81

left_join, 83, 83
left_join.tbl_spark (join.tbl_spark), 81
list_sparklyr_jars, 84
livy_config, 84
livy_service_start, 85
livy_service_stop (livy_service_start),

85

ml-params, 86
ml-persistence, 87
ml-transform-methods, 88, 170
ml-tuning, 89
ml_aft_survival_regression, 91, 106, 119,

122, 125, 136, 138, 142, 146, 149,
152, 161

ml_als, 94
ml_als_tidiers, 97
ml_approx_nearest_neighbors

(ft_lsh_utils), 35
ml_approx_similarity_join

(ft_lsh_utils), 35
ml_association_rules (ml_fpgrowth), 112
ml_binary_classification_eval

(ml_evaluator), 109
ml_binary_classification_evaluator

(ml_evaluator), 109
ml_bisecting_kmeans, 98, 114, 128, 133
ml_chisquare_test, 99
ml_classification_eval (ml_evaluator),

109
ml_clustering_evaluator, 100
ml_compute_cost (ml_kmeans), 126

INDEX 303

ml_compute_silhouette_measure
(ml_kmeans), 126

ml_corr, 102
ml_cross_validator (ml-tuning), 89
ml_decision_tree

(ml_decision_tree_classifier),
102

ml_decision_tree_classifier, 93, 102,
119, 122, 125, 136, 138, 142, 146,
149, 152, 161

ml_decision_tree_regressor
(ml_decision_tree_classifier),
102

ml_default_stop_words, 59, 107
ml_describe_topics (ml_lda), 129
ml_evaluate, 108
ml_evaluator, 90, 109
ml_feature_importances, 111
ml_find_synonyms (ft_word2vec), 65
ml_fit (ml-transform-methods), 88
ml_fit_and_transform

(ml-transform-methods), 88
ml_fpgrowth, 112
ml_freq_itemsets (ml_fpgrowth), 112
ml_freq_seq_patterns (ml_prefixspan),

156
ml_gaussian_mixture, 99, 113, 128, 133
ml_gbt_classifier, 93, 106, 115, 122, 125,

136, 138, 142, 146, 149, 152, 161
ml_gbt_regressor (ml_gbt_classifier),

115
ml_generalized_linear_regression, 93,

106, 119, 119, 125, 136, 138, 142,
146, 149, 152, 161

ml_glm_tidiers, 123
ml_gradient_boosted_trees

(ml_gbt_classifier), 115
ml_is_set (ml-params), 86
ml_isotonic_regression, 93, 106, 119, 122,

124, 136, 138, 142, 146, 149, 152,
161

ml_isotonic_regression_tidiers, 126
ml_kmeans, 99, 114, 126, 133
ml_kmeans_cluster_eval, 129
ml_labels (ft_string_indexer), 59
ml_lda, 99, 114, 128, 129
ml_lda_tidiers, 134
ml_linear_regression, 93, 106, 119, 122,

125, 134, 138, 142, 146, 149, 152,
161

ml_linear_svc, 93, 106, 119, 122, 125, 136,
137, 142, 146, 149, 152, 161

ml_linear_svc_tidiers, 139
ml_load (ml-persistence), 87
ml_log_likelihood (ml_lda), 129
ml_log_perplexity (ml_lda), 129
ml_logistic_regression, 93, 106, 119, 122,

125, 136, 138, 140, 146, 149, 152,
161

ml_logistic_regression_tidiers, 143
ml_model_data, 143
ml_multiclass_classification_evaluator

(ml_evaluator), 109
ml_multilayer_perceptron

(ml_multilayer_perceptron_classifier),
144

ml_multilayer_perceptron_classifier,
93, 106, 119, 122, 125, 136, 138,
142, 144, 149, 152, 161

ml_multilayer_perceptron_tidiers, 147
ml_naive_bayes, 93, 106, 119, 122, 125, 136,

138, 142, 146, 148, 152, 161
ml_naive_bayes_tidiers, 150
ml_one_vs_rest, 93, 106, 119, 122, 125, 136,

138, 142, 146, 149, 151, 161
ml_param (ml-params), 86
ml_param_map (ml-params), 86
ml_params (ml-params), 86
ml_pca (ft_pca), 45
ml_pca_tidiers, 152
ml_pipeline, 153
ml_power_iteration, 153
ml_predict (ml-transform-methods), 88
ml_prefixspan, 156
ml_random_forest

(ml_random_forest_classifier),
157

ml_random_forest_classifier, 93, 106,
119, 122, 125, 136, 138, 142, 146,
149, 152, 157

ml_random_forest_regressor
(ml_random_forest_classifier),
157

ml_recommend (ml_als), 94
ml_regression_evaluator (ml_evaluator),

109

304 INDEX

ml_save, 93, 105, 118, 121, 125, 135, 138,
142, 146, 149, 152, 160

ml_save (ml-persistence), 87
ml_stage, 162
ml_stages (ml_stage), 162
ml_sub_models (ml-tuning), 89
ml_summary, 162
ml_survival_regression

(ml_aft_survival_regression),
91

ml_survival_regression_tidiers, 163
ml_topics_matrix (ml_lda), 129
ml_train_validation_split (ml-tuning),

89
ml_transform (ml-transform-methods), 88
ml_tree_feature_importance

(ml_feature_importances), 111
ml_tree_tidiers, 163
ml_uid, 165
ml_unsupervised_tidiers, 165
ml_validation_metrics (ml-tuning), 89
ml_vocabulary (ft_count_vectorizer), 21
mutate, 166, 166

NA, 166
na.replace, 166
nest, 166, 166
numeric_version, 252

pivot_longer, 167, 167
pivot_wider, 167, 167

random_string, 167
reactiveSpark, 168
register_extension, 169
registerDoSpark, 168
registered_extensions

(register_extension), 169
replace_na, 169, 169
right_join, 169, 169
right_join.tbl_spark (join.tbl_spark),

81

sdf-saveload, 170
sdf-transform-methods, 88, 170
sdf_along, 171
sdf_bind, 171
sdf_bind_cols (sdf_bind), 171
sdf_bind_rows (sdf_bind), 171

sdf_broadcast, 172
sdf_checkpoint, 173
sdf_coalesce, 173
sdf_collect, 174
sdf_copy_to, 174, 178, 186, 191, 201, 204,

208
sdf_crosstab, 175
sdf_debug_string, 176
sdf_describe, 176
sdf_dim, 177
sdf_distinct, 175, 177, 186, 191, 201, 204,

208
sdf_drop_duplicates, 178
sdf_expand_grid, 178
sdf_fit (sdf-transform-methods), 170
sdf_fit_and_transform

(sdf-transform-methods), 170
sdf_from_avro, 179
sdf_import (sdf_copy_to), 174
sdf_is_streaming, 180
sdf_last_index, 180
sdf_len, 181
sdf_load_parquet (sdf-saveload), 170
sdf_load_table (sdf-saveload), 170
sdf_ncol (sdf_dim), 177
sdf_nrow (sdf_dim), 177
sdf_num_partitions, 181
sdf_partition (sdf_random_split), 185
sdf_partition_sizes, 182
sdf_persist, 182
sdf_pivot, 183
sdf_predict, 101, 110
sdf_predict (sdf-transform-methods), 170
sdf_project, 184
sdf_quantile, 185
sdf_random_split, 175, 178, 185, 191, 201,

204, 208
sdf_rbeta, 187, 188–190, 193–200
sdf_rbinom, 188, 188, 189, 190, 193–200
sdf_rcauchy, 188, 189, 190, 193–200
sdf_rchisq, 188, 189, 190, 193–200
sdf_read_column, 190
sdf_register, 175, 178, 186, 191, 201, 204,

208
sdf_repartition, 191
sdf_residuals

(sdf_residuals.ml_model_generalized_linear_regression),
192

INDEX 305

sdf_residuals.ml_model_generalized_linear_regression,
192

sdf_rexp, 188–190, 192, 194–200
sdf_rgamma, 188–190, 193, 193, 194–200
sdf_rgeom, 188–190, 193, 194, 194, 195–200
sdf_rhyper, 188–190, 193, 194, 195,

196–200
sdf_rlnorm, 188–190, 193–195, 196,

197–200
sdf_rnorm, 188–190, 193–196, 197, 198–200
sdf_rpois, 188–190, 193–197, 198, 199, 200
sdf_rt, 188–190, 193–198, 198, 200
sdf_runif, 188–190, 193–199, 199, 200
sdf_rweibull, 188–190, 193–200, 200
sdf_sample, 175, 178, 186, 191, 201, 204, 208
sdf_save_parquet (sdf-saveload), 170
sdf_save_table (sdf-saveload), 170
sdf_schema, 201
sdf_separate_column, 202
sdf_seq, 203
sdf_sort, 175, 178, 186, 191, 201, 203, 208
sdf_sql, 204
sdf_to_avro, 204
sdf_transform (sdf-transform-methods),

170
sdf_unnest_longer, 205
sdf_unnest_wider, 206
sdf_weighted_sample, 175, 178, 186, 191,

201, 204, 207
sdf_with_sequential_id, 208
sdf_with_unique_id, 209
select, 209, 209
separate, 209, 209
spark-api, 210
spark-connections, 211
spark_adaptive_query_execution, 213,

214, 218–220, 250
spark_advisory_shuffle_partition_size,

214, 214, 218–220, 250
spark_apply, 214
spark_apply_bundle, 217
spark_apply_log, 217
spark_auto_broadcast_join_threshold,

214, 218, 219, 220, 250
spark_available_versions

(spark_install), 229
spark_coalesce_initial_num_partitions,

214, 218, 218, 219, 220, 250

spark_coalesce_min_num_partitions, 214,
218, 219, 219, 220, 250

spark_coalesce_shuffle_partitions, 214,
218, 219, 219, 250

spark_compilation_spec, 220
spark_config, 212, 221
spark_config_kubernetes, 222
spark_config_packages, 223
spark_config_settings, 223
spark_connect (spark-connections), 211
spark_connection, 224
spark_connection-class, 224
spark_connection_find, 224
spark_connection_is_open

(spark-connections), 211
spark_context (spark-api), 210
spark_context_config, 225
spark_dataframe, 225
spark_default_compilation_spec, 226
spark_dependency, 226
spark_dependency_fallback, 227
spark_disconnect (spark-connections),

211
spark_disconnect_all

(spark-connections), 211
spark_extension, 228
spark_get_checkpoint_dir

(checkpoint_directory), 11
spark_home_dir, 220
spark_home_set, 228
spark_install, 212, 229
spark_install_dir (spark_install), 229
spark_install_tar (spark_install), 229
spark_installed_versions

(spark_install), 229
spark_jobj, 225, 230
spark_jobj-class, 230
spark_load_table, 11, 231, 233–235,

237–240, 242–244, 246–250,
255–258, 260–265

spark_log, 232
spark_read, 11, 231, 232, 234, 235, 237–240,

242–244, 246–250, 255–258,
260–265

spark_read_avro, 11, 231, 233, 233, 235,
237–240, 242–244, 246–250,
255–258, 260–265

spark_read_binary, 11, 231, 233, 234, 234,

306 INDEX

237–240, 242–244, 246–250,
255–258, 260–265

spark_read_csv, 11, 231, 233–235, 236,
238–240, 242–244, 246–250,
255–258, 260–265

spark_read_delta, 11, 231, 233–235, 237,
237, 239, 240, 242–244, 246–250,
255–258, 260–265

spark_read_image, 11, 231, 233–235, 237,
238, 238, 240, 242–244, 246–250,
255–258, 260–265

spark_read_jdbc, 11, 231, 233–235,
237–239, 240, 242–244, 246–250,
255–258, 260–265

spark_read_json, 11, 231, 233–235,
237–240, 241, 243, 244, 246–250,
255–258, 260–265

spark_read_libsvm, 11, 231, 233–235,
237–240, 242, 242, 244, 246–250,
255–258, 260–265

spark_read_orc, 11, 231, 233–235, 237–240,
242, 243, 243, 246–250, 255–258,
260–265

spark_read_parquet, 11, 231, 233–235,
237–240, 242–244, 245, 247–250,
255–258, 260–265

spark_read_source, 11, 231, 233–235,
237–240, 242–244, 246, 246,
248–250, 255–258, 260–265

spark_read_table, 11, 231, 233–235,
237–240, 242–244, 246, 247, 247,
249, 250, 255–258, 260–265

spark_read_text, 11, 231, 233–235,
237–240, 242–244, 246–248, 248,
250, 255–258, 260–265

spark_save_table, 11, 231, 233–235,
237–240, 242–244, 246–249, 249,
255–258, 260–265

spark_session (spark-api), 210
spark_session_config, 214, 218–220, 250
spark_set_checkpoint_dir

(checkpoint_directory), 11
spark_statistical_routines, 251
spark_submit (spark-connections), 211
spark_table_name, 251
spark_uninstall (spark_install), 229
spark_version, 252
spark_version_from_home, 252

spark_web, 253
spark_write, 253
spark_write_avro, 11, 231, 233–235,

237–240, 242–244, 246–250, 254,
256–258, 260–265

spark_write_csv, 11, 231, 233–235,
237–240, 242–244, 246–250, 255,
255, 257, 258, 260–265

spark_write_delta, 11, 231, 233–235,
237–240, 242–244, 246–250, 255,
256, 256, 258, 260–265

spark_write_jdbc, 11, 231, 233–235,
237–240, 242–244, 246–250,
255–257, 257, 260–265

spark_write_json, 11, 231, 233–235,
237–240, 242–244, 246–250,
255–258, 259, 261–265

spark_write_orc, 11, 231, 233–235,
237–240, 242–244, 246–250,
255–258, 260, 260, 262–265

spark_write_parquet, 11, 231, 233–235,
237–240, 242–244, 246–250,
255–258, 260, 261, 261, 263–265

spark_write_rds, 262
spark_write_source, 11, 231, 233–235,

237–240, 242–244, 246–250,
255–258, 260–262, 263, 264, 265

spark_write_table, 11, 231, 233–235,
237–240, 242–244, 246–250,
255–258, 260–263, 264, 265

spark_write_text, 11, 231, 233–235,
237–240, 242–244, 246–250,
255–258, 260–264, 265

sparklyr::register_extension, 212
sparklyr_get_backend_port, 213
sql_variant, 227
src_databases, 266
stream_find, 266
stream_generate_test, 267
stream_id, 267
stream_lag, 268
stream_name, 269
stream_read_csv, 269, 271–277, 282, 284,

285, 287–289, 291–293
stream_read_delta, 270, 271, 272–277, 282,

284, 285, 287–289, 291–293
stream_read_json, 270, 271, 272, 273–277,

282, 284, 285, 287–289, 291–293

INDEX 307

stream_read_kafka, 270–272, 273, 274–277,
282, 284, 285, 287–289, 291–293

stream_read_orc, 270–273, 274, 275–277,
282, 284, 285, 287–289, 291–293

stream_read_parquet, 270–274, 275, 276,
277, 282, 284, 285, 287–289,
291–293

stream_read_socket, 270–275, 276, 277,
282, 284, 285, 287–289, 291–293

stream_read_text, 270–276, 277, 282, 284,
285, 287–289, 291–293

stream_render, 278
stream_stats, 279
stream_stop, 279
stream_trigger_continuous, 280, 280, 282,

284, 286, 288–290, 292, 293
stream_trigger_interval, 280, 280, 282,

284, 286, 288–290, 292, 293
stream_view, 281
stream_watermark, 281
stream_write_console, 270–277, 282, 284,

285, 287–289, 291–293
stream_write_csv, 270–277, 282, 283, 285,

287–289, 291–293
stream_write_delta, 270–277, 282, 284,

285, 287–289, 291–293
stream_write_json, 270–277, 282, 284, 285,

286, 288, 289, 291–293
stream_write_kafka, 270–277, 282, 284,

285, 287, 287, 289, 291–293
stream_write_memory, 270–277, 282, 284,

285, 287, 288, 289, 291–293
stream_write_orc, 270–277, 282, 284, 285,

287–289, 290, 292, 293
stream_write_parquet, 270–277, 282, 284,

285, 287–289, 291, 291, 293
stream_write_text, 270–277, 282, 284, 285,

287–289, 291, 292, 292

tbl_cache, 294
tbl_change_db, 294
tbl_uncache, 295
tibble, 205, 207
tidy.ml_model_aft_survival_regression

(ml_survival_regression_tidiers),
163

tidy.ml_model_als (ml_als_tidiers), 97
tidy.ml_model_bisecting_kmeans

(ml_unsupervised_tidiers), 165

tidy.ml_model_decision_tree_classification
(ml_tree_tidiers), 163

tidy.ml_model_decision_tree_regression
(ml_tree_tidiers), 163

tidy.ml_model_gaussian_mixture
(ml_unsupervised_tidiers), 165

tidy.ml_model_gbt_classification
(ml_tree_tidiers), 163

tidy.ml_model_gbt_regression
(ml_tree_tidiers), 163

tidy.ml_model_generalized_linear_regression
(ml_glm_tidiers), 123

tidy.ml_model_isotonic_regression
(ml_isotonic_regression_tidiers),
126

tidy.ml_model_kmeans
(ml_unsupervised_tidiers), 165

tidy.ml_model_lda (ml_lda_tidiers), 134
tidy.ml_model_linear_regression

(ml_glm_tidiers), 123
tidy.ml_model_linear_svc

(ml_linear_svc_tidiers), 139
tidy.ml_model_logistic_regression

(ml_logistic_regression_tidiers),
143

tidy.ml_model_multilayer_perceptron_classification
(ml_multilayer_perceptron_tidiers),
147

tidy.ml_model_naive_bayes
(ml_naive_bayes_tidiers), 150

tidy.ml_model_pca (ml_pca_tidiers), 152
tidy.ml_model_random_forest_classification

(ml_tree_tidiers), 163
tidy.ml_model_random_forest_regression

(ml_tree_tidiers), 163
transform_sdf, 295

unite, 295, 295
unnest, 296, 296

	checkpoint_directory
	collect_from_rds
	compile_package_jars
	connection_config
	copy_to.spark_connection
	distinct
	download_scalac
	dplyr_hof
	ensure
	fill
	filter
	find_scalac
	ft_binarizer
	ft_bucketizer
	ft_chisq_selector
	ft_count_vectorizer
	ft_dct
	ft_elementwise_product
	ft_feature_hasher
	ft_hashing_tf
	ft_idf
	ft_imputer
	ft_index_to_string
	ft_interaction
	ft_lsh
	ft_lsh_utils
	ft_max_abs_scaler
	ft_min_max_scaler
	ft_ngram
	ft_normalizer
	ft_one_hot_encoder
	ft_one_hot_encoder_estimator
	ft_pca
	ft_polynomial_expansion
	ft_quantile_discretizer
	ft_regex_tokenizer
	ft_robust_scaler
	ft_r_formula
	ft_sql_transformer
	ft_standard_scaler
	ft_stop_words_remover
	ft_string_indexer
	ft_tokenizer
	ft_vector_assembler
	ft_vector_indexer
	ft_vector_slicer
	ft_word2vec
	full_join
	generic_call_interface
	get_spark_sql_catalog_implementation
	hive_context_config
	hof_aggregate
	hof_array_sort
	hof_exists
	hof_filter
	hof_forall
	hof_map_filter
	hof_map_zip_with
	hof_transform
	hof_transform_keys
	hof_transform_values
	hof_zip_with
	inner_join
	invoke
	jarray
	jfloat
	jfloat_array
	join.tbl_spark
	j_invoke
	left_join
	list_sparklyr_jars
	livy_config
	livy_service_start
	ml-params
	ml-persistence
	ml-transform-methods
	ml-tuning
	ml_aft_survival_regression
	ml_als
	ml_als_tidiers
	ml_bisecting_kmeans
	ml_chisquare_test
	ml_clustering_evaluator
	ml_corr
	ml_decision_tree_classifier
	ml_default_stop_words
	ml_evaluate
	ml_evaluator
	ml_feature_importances
	ml_fpgrowth
	ml_gaussian_mixture
	ml_gbt_classifier
	ml_generalized_linear_regression
	ml_glm_tidiers
	ml_isotonic_regression
	ml_isotonic_regression_tidiers
	ml_kmeans
	ml_kmeans_cluster_eval
	ml_lda
	ml_lda_tidiers
	ml_linear_regression
	ml_linear_svc
	ml_linear_svc_tidiers
	ml_logistic_regression
	ml_logistic_regression_tidiers
	ml_model_data
	ml_multilayer_perceptron_classifier
	ml_multilayer_perceptron_tidiers
	ml_naive_bayes
	ml_naive_bayes_tidiers
	ml_one_vs_rest
	ml_pca_tidiers
	ml_pipeline
	ml_power_iteration
	ml_prefixspan
	ml_random_forest_classifier
	ml_stage
	ml_summary
	ml_survival_regression_tidiers
	ml_tree_tidiers
	ml_uid
	ml_unsupervised_tidiers
	mutate
	na.replace
	nest
	pivot_longer
	pivot_wider
	random_string
	reactiveSpark
	registerDoSpark
	register_extension
	replace_na
	right_join
	sdf-saveload
	sdf-transform-methods
	sdf_along
	sdf_bind
	sdf_broadcast
	sdf_checkpoint
	sdf_coalesce
	sdf_collect
	sdf_copy_to
	sdf_crosstab
	sdf_debug_string
	sdf_describe
	sdf_dim
	sdf_distinct
	sdf_drop_duplicates
	sdf_expand_grid
	sdf_from_avro
	sdf_is_streaming
	sdf_last_index
	sdf_len
	sdf_num_partitions
	sdf_partition_sizes
	sdf_persist
	sdf_pivot
	sdf_project
	sdf_quantile
	sdf_random_split
	sdf_rbeta
	sdf_rbinom
	sdf_rcauchy
	sdf_rchisq
	sdf_read_column
	sdf_register
	sdf_repartition
	sdf_residuals.ml_model_generalized_linear_regression
	sdf_rexp
	sdf_rgamma
	sdf_rgeom
	sdf_rhyper
	sdf_rlnorm
	sdf_rnorm
	sdf_rpois
	sdf_rt
	sdf_runif
	sdf_rweibull
	sdf_sample
	sdf_schema
	sdf_separate_column
	sdf_seq
	sdf_sort
	sdf_sql
	sdf_to_avro
	sdf_unnest_longer
	sdf_unnest_wider
	sdf_weighted_sample
	sdf_with_sequential_id
	sdf_with_unique_id
	select
	separate
	spark-api
	spark-connections
	sparklyr_get_backend_port
	spark_adaptive_query_execution
	spark_advisory_shuffle_partition_size
	spark_apply
	spark_apply_bundle
	spark_apply_log
	spark_auto_broadcast_join_threshold
	spark_coalesce_initial_num_partitions
	spark_coalesce_min_num_partitions
	spark_coalesce_shuffle_partitions
	spark_compilation_spec
	spark_config
	spark_config_kubernetes
	spark_config_packages
	spark_config_settings
	spark_connection
	spark_connection-class
	spark_connection_find
	spark_context_config
	spark_dataframe
	spark_default_compilation_spec
	spark_dependency
	spark_dependency_fallback
	spark_extension
	spark_home_set
	spark_install
	spark_jobj
	spark_jobj-class
	spark_load_table
	spark_log
	spark_read
	spark_read_avro
	spark_read_binary
	spark_read_csv
	spark_read_delta
	spark_read_image
	spark_read_jdbc
	spark_read_json
	spark_read_libsvm
	spark_read_orc
	spark_read_parquet
	spark_read_source
	spark_read_table
	spark_read_text
	spark_save_table
	spark_session_config
	spark_statistical_routines
	spark_table_name
	spark_version
	spark_version_from_home
	spark_web
	spark_write
	spark_write_avro
	spark_write_csv
	spark_write_delta
	spark_write_jdbc
	spark_write_json
	spark_write_orc
	spark_write_parquet
	spark_write_rds
	spark_write_source
	spark_write_table
	spark_write_text
	src_databases
	stream_find
	stream_generate_test
	stream_id
	stream_lag
	stream_name
	stream_read_csv
	stream_read_delta
	stream_read_json
	stream_read_kafka
	stream_read_orc
	stream_read_parquet
	stream_read_socket
	stream_read_text
	stream_render
	stream_stats
	stream_stop
	stream_trigger_continuous
	stream_trigger_interval
	stream_view
	stream_watermark
	stream_write_console
	stream_write_csv
	stream_write_delta
	stream_write_json
	stream_write_kafka
	stream_write_memory
	stream_write_orc
	stream_write_parquet
	stream_write_text
	tbl_cache
	tbl_change_db
	tbl_uncache
	transform_sdf
	unite
	unnest
	[.tbl_spark
	%->%
	Index

