Package 'sparsepca'

April 11, 2018

Type Package

Title Sparse Principal Component Analysis (SPCA)

2 robspca

robspca	Robust Sparse Principal Component Analysis (robspca).

Description

Implementation of robust SPCA, using variable projection as an optimization strategy.

Usage

```
robspca(X, k = NULL, alpha = 1e-04, beta = 1e-04, gamma = 100,
  center = TRUE, scale = FALSE, max_iter = 1000, tol = 1e-05,
  verbose = TRUE)
```

Arguments

X	array_like; a real (n,p) input matrix (or data frame) to be decomposed.
k	integer; specifies the target rank, i.e., the number of components to be computed.
alpha	float; Sparsity controlling parameter. Higher values lead to sparser components.
beta	float; Amount of ridge shrinkage to apply in order to improve conditioning.
gamma	float; Sparsity controlling parameter for the error matrix S. Smaller values lead to a larger amount of noise removeal.
center	bool; logical value which indicates whether the variables should be shifted to be zero centered (TRUE by default).
scale	bool; logical value which indicates whether the variables should be scaled to have unit variance (FALSE by default).
max_iter	integer; maximum number of iterations to perform before exiting.
tol	float; stopping tolerance for the convergence criterion.
verbose	bool; logical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components

robspca 3

are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.

Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concreatly, given an (n, p) data matrix X, robust SPCA attemps to minimize the following objective function:

$$f(A,B) = \frac{1}{2} ||X - XBA^{\top} - S||_F^2 + \psi(B) + \gamma ||S||_1$$

where B is the sparse weight matrix (loadings) and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_1 norm) or the elastic net (a combination of the ℓ_1 and ℓ_2 norm). The matrix S captures grossly corrupted outliers in the data.

The principal components Z are formed as

$$Z = XB$$

and the data can be approximately rotated back as

$$\tilde{X} = ZA^{\top}$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:

loadings array_like;

sparse loadings (weight) vector; (p, k) dimensional array.

transform array like;

the approximated inverse transform; (p, k) dimensional array.

scores array_like;

the principal component scores; (n, k) dimensional array.

sparse array_like;

sparse matrix capturing outliers in the data; (n, p) dimensional array.

eigenvalues array_like;

the approximated eigenvalues; (k) dimensional array.

center, scale array_like;

the centering and scaling used.

Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

References

1 N. B. Erichson, P. Zheng, K. Manohar, S. Brunton, J. N. Kutz, A. Y. Aravkin. "Sparse Principal Component Analysis via Variable Projection." Submitted to IEEE Journal of Selected Topics on Signal Processing (2018). (available at 'arXiv https://arxiv.org/abs/1804.00341).

4 rspca

See Also

```
rspca, spca
```

Examples

```
# Create artifical data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)

X <- cbind(V1,V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))

# Compute SPCA
out <- robspca(X, k=3, alpha=1e-3, beta=1e-5, gamma=5, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)</pre>
```

rspca

Randomized Sparse Principal Component Analysis (rspca).

Description

Randomized accelerated implementation of SPCA, using variable projection as an optimization strategy.

Usage

```
rspca(X, k = NULL, alpha = 1e-04, beta = 1e-04, center = TRUE,
  scale = FALSE, max_iter = 1000, tol = 1e-05, o = 20, q = 2,
  verbose = TRUE)
```

Arguments

X array_like;

a real (n, p) input matrix (or data frame) to be decomposed.

k integer;

specifies the target rank, i.e., the number of components to be computed.

alpha float;

Sparsity controlling parameter. Higher values lead to sparser components.

beta float:

Amount of ridge shrinkage to apply in order to improve conditioning.

center bool;

logical value which indicates whether the variables should be shifted to be zero

centered (TRUE by default).

rspca 5

scale bool;

logical value which indicates whether the variables should be scaled to have unit

variance (FALSE by default).

max_iter integer;

maximum number of iterations to perform before exiting.

tol float;

stopping tolerance for the convergence criterion.

o integer;

oversampling parameter (default o = 20).

q integer;

number of additional power iterations (default q=2).

verbose bool:

logical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.

Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concreatly, given an (n,p) data matrix X, SPCA attemps to minimize the following objective function:

$$f(A, B) = \frac{1}{2} ||X - XBA^{\top}||_F^2 + \psi(B)$$

where B is the sparse weight (loadings) matrix and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_1 norm) or the elastic net (a combination of the ℓ_1 and ℓ_2 norm). The principal components Z are formed as

$$Z = XB$$

and the data can be approximately rotated back as

$$\tilde{X} = ZA^{\top}$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:

loadings array_like

sparse loadings (weight) vector; (p, k) dimensional array.

6 rspca

transform array_like;

the approximated inverse transform; (p, k) dimensional array.

scores array_like;

the principal component scores; (n, k) dimensional array.

eigenvalues array_like;

the approximated eigenvalues; (k) dimensional array.

center, scale array_like;

the centering and scaling used.

Note

This implementation uses randomized methods for linear algebra to speedup the computations. o is an oversampling parameter to improve the approximation. A value of at least 10 is recommended, and o = 20 is set by default.

The parameter q specifies the number of power (subspace) iterations to reduce the approximation error. The power scheme is recommended, if the singular values decay slowly. In practice, 2 or 3 iterations achieve good results, however, computing power iterations increases the computational costs. The power scheme is set to q=2 by default.

If k > (min(n, p)/4), a the deterministic spca algorithm might be faster.

Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

References

- 1 N. B. Erichson, P. Zheng, K. Manohar, S. Brunton, J. N. Kutz, A. Y. Aravkin. "Sparse Principal Component Analysis via Variable Projection." Submitted to IEEE Journal of Selected Topics on Signal Processing (2018). (available at 'arXiv https://arxiv.org/abs/1804.00341).
- 1 N. B. Erichson, S. Voronin, S. Brunton, J. N. Kutz. "Randomized matrix decompositions using R." Submitted to Journal of Statistical Software (2016). (available at 'arXiv http://arxiv.org/abs/1608.02148).

See Also

```
spca, robspca
```

Examples

```
# Create artifical data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)

X <- cbind(V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))</pre>
```

spca 7

```
# Compute SPCA
out <- rspca(X, k=3, alpha=1e-3, beta=1e-3, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)</pre>
```

spca

Sparse Principal Component Analysis (spca).

Description

Implementation of SPCA, using variable projection as an optimization strategy.

Usage

```
spca(X, k = NULL, alpha = 1e-04, beta = 1e-04, center = TRUE,
    scale = FALSE, max_iter = 1000, tol = 1e-05, verbose = TRUE)
```

Arguments

X array like;

a real (n, p) input matrix (or data frame) to be decomposed.

k integer;

specifies the target rank, i.e., the number of components to be computed.

alpha float;

Sparsity controlling parameter. Higher values lead to sparser components.

beta float;

Amount of ridge shrinkage to apply in order to improve conditioning.

center bool

logical value which indicates whether the variables should be shifted to be zero

centered (TRUE by default).

scale bool:

logical value which indicates whether the variables should be scaled to have unit

variance (FALSE by default).

max_iter integer:

maximum number of iterations to perform before exiting.

tol float;

stopping tolerance for the convergence criterion.

verbose bool:

logical value which indicates whether progress is printed.

8 spca

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.

Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concreatly, given an (n, p) data matrix X, SPCA attemps to minimize the following objective function:

$$f(A, B) = \frac{1}{2} ||X - XBA^{\top}||_F^2 + \psi(B)$$

where B is the sparse weight (loadings) matrix and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_1 norm) or the elastic net (a combination of the ℓ_1 and ℓ_2 norm). The principal components Z are formed as

$$Z = XB$$

and the data can be approximately rotated back as

$$\tilde{X} = ZA^{\top}$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:

loadings array like;

sparse loadings (weight) vector; (p, k) dimensional array.

transform array_like;

the approximated inverse transform; (p, k) dimensional array.

scores array_like;

the principal component scores; (n, k) dimensional array.

eigenvalues array_like;

the approximated eigenvalues; (k) dimensional array.

center, scale array_like;

the centering and scaling used.

Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

spca 9

References

1 N. B. Erichson, P. Zheng, K. Manohar, S. Brunton, J. N. Kutz, A. Y. Aravkin. "Sparse Principal Component Analysis via Variable Projection." Submitted to IEEE Journal of Selected Topics on Signal Processing (2018). (available at 'arXiv https://arxiv.org/abs/1804.00341).

See Also

```
rspca, robspca
```

Examples

```
# Create artifical data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)

X <- cbind(V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))

# Compute SPCA
out <- spca(X, k=3, alpha=1e-3, beta=1e-3, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)</pre>
```

Index

```
robspca, 2, 6, 9
rspca, 4, 4, 9
spca, 4, 6, 7
```