Package 'spectralGraphTopology'

March 14, 2022
Title Learning Graphs from Data via Spectral Constraints
Version 0.2.3
Date 2022-03-12
Description In the era of big data and hyperconnectivity, learning
high-dimensional structures such as graphs from data has become a prominent task in machine learning and has found applications in many fields such as finance, health care, and networks. 'spectralGraphTopology' is an open source, documented, and well-tested R package for learning graphs from data. It provides implementations of state of the art algorithms such as Combinatorial Graph Laplacian Learning (CGL), Spectral Graph Learning (SGL), Graph Estimation based on Majorization-Minimization (GLE-MM), and Graph Estimation based on Alternating Direction Method of Multipliers (GLE-ADMM). In addition, graph learning has been widely employed for clustering, where specific algorithms are available in the literature. To this end, we provide an implementation of the Constrained Laplacian Rank (CLR) algorithm.

Maintainer Ze Vinicius jvmirca@gmail.com
URL https://github.com/dppalomar/spectralGraphTopology,
https://mirca.github.io/spectralGraphTopology/,
https://www.danielppalomar.com
BugReports https://github.com/dppalomar/spectralGraphTopology/issues

Depends

License GPL-3
Encoding UTF-8
LinkingTo Rcpp, RcppArmadillo, RcppEigen
Imports Rcpp (>=0.11.0), MASS, Matrix, progress, rlist
RoxygenNote 7.1.1
Suggests CVXR, bookdown, knitr, prettydoc, rmarkdown, R.rsp, testthat, patrick, corrplot, igraph, kernlab, pals, clusterSim, viridis, quadprog, matrixcalc
VignetteBuilder CVXR, knitr, rmarkdown, R.rsp
NeedsCompilation yes
Author Ze Vinicius [cre, aut],
Daniel P. Palomar [aut]
Repository CRAN
Date/Publication 2022-03-14 09:30:02 UTC
R topics documented:
spectralGraphTopology-package 2
A 3
accuracy 4
Astar 4
block_diag 5
cluster_k_component_graph 5
D 7
Dstar 8
fdr 8
fscore 9
L. 9
learn_bipartite_graph 10
learn_bipartite_k_component_graph 12
learn_combinatorial_graph_laplacian 16
learn_graph_sigrep 17
learn_k_component_graph 18
learn_laplacian_gle_admm 21
learn_laplacian_gle_mm 22
learn_smooth_approx_graph 23
learn_smooth_graph 24
Lstar 25
npv 25
recall 26
relative_error 26
specificity 27
Index 28
spectralGraphTopology-package
Package spectralGraphTopology

Description

This package provides estimators to learn k-component, bipartite, and k-component bipartite graphs from data by imposing spectral constraints on the eigenvalues and eigenvectors of the Laplacian and adjacency matrices. Those estimators leverages spectral properties of the graphical models as a prior information, which turn out to play key roles in unsupervised machine learning tasks such as community detection.

Functions

learn_k_component_graph learn_bipartite_graph learn_bipartite_k_component_graph cluster_k_component_g
learn_laplacian_gle_mm learn_laplacian_gle_admm L A

Help

For a quick help see the README file: GitHub-README.

Author(s)

Ze Vinicius and Daniel P. Palomar

References

S. Kumar, J. Ying, J. V. de Miranda Cardoso, and D. P. Palomar (2019). https://arxiv.org/abs/1904.09792
N., Feiping, W., Xiaoqian, J., Michael I., and H., Heng. (2016). The Constrained Laplacian Rank Algorithm for Graph-based Clustering, AAAI'16. http://dl.acm.org/citation.cfm?id=3016100.3016174
Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar. Optimization Algorithms for Graph Laplacian Estimation via ADMM and MM IEEE Trans. on Signal Processing, vol. 67, no. 16, pp. 4231-4244, Aug. 2019

A
Computes the Adjacency linear operator which maps a vector of weights into a valid Adjacency matrix.

Description

Computes the Adjacency linear operator which maps a vector of weights into a valid Adjacency matrix.

Usage

A(w)

Arguments

w weight vector of the graph

Value

Aw the Adjacency matrix

Examples

```
library(spectralGraphTopology)
Aw <- A(c(1, 0, 1))
Aw
```


Description

Computes the accuracy between two matrices

Usage

accuracy(Wtrue, West, eps = 1e-04)

Arguments

Wtrue	true matrix
West	estimated matrix
eps	real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore	

Examples

```
library(spectralGraphTopology)
X <- L(c(1, 0, 1))
accuracy (X, X)
```

Astar Computes the Astar operator.

Description

Computes the Astar operator.

Usage

Astar (M)

Arguments

M
matrix

Value

w vector

Description

Constructs a block diagonal matrix from a list of square matrices

Usage

block_diag(...)

Arguments

$$
\ldots \quad \text { list of matrices or individual matrices }
$$

Value

block diagonal matrix

Examples

library (spectralGraphTopology)
$X<-L(c(1,0,1))$
Y <- L(c(1, 0, 1, 0, 0, 1))
B <- block_diag(X, Y)
B

Description

Cluster a k-component graph from data using the Constrained Laplacian Rank algorithm
Cluster a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopolog for code examples.

Usage

```
cluster_k_component_graph(
    Y,
    k = 1,
    m = 5,
    lmd = 1,
    eigtol = 1e-09,
    edgetol = 1e-06,
    maxiter = 1000
)
```


Arguments

Y
k
m
lmd L2-norm regularization hyperparameter
eigtol value below which eigenvalues are considered to be zero
edgetol value below which edge weights are considered to be zero
maxiter the maximum number of iterations

Value

A list containing the following elements:

laplacian	the estimated Laplacian Matrix
adjacency	the estimated Adjacency Matrix
eigvals	the eigenvalues of the Laplacian Matrix
lmd_seq	sequence of lmd values at every iteration
elapsed_time	elapsed time at every iteration

Author(s)

Ze Vinicius and Daniel Palomar

References

Nie, Feiping and Wang, Xiaoqian and Jordan, Michael I. and Huang, Heng. The Constrained Laplacian Rank Algorithm for Graph-based Clustering, 2016, AAAI' 16. http://dl.acm.org/citation.cfm?id=3016100.3016174

Examples

```
    library(clusterSim)
    library(spectralGraphTopology)
    library(igraph)
    set.seed(1)
    \# number of nodes per cluster
    \(\mathrm{N}<-30\)
    \# generate datapoints
    twomoon <- shapes.two.moon(N)
    \# estimate underlying graph
    graph <- cluster_k_component_graph(twomoon\$data, k = 2)
    \# build network
    net <- graph_from_adjacency_matrix(graph\$adjacency, mode = "undirected", weighted = TRUE)
    \# colorify nodes and edges
    colors <- c("\#706FD3", "\#FF5252", "\#33D9B2")
    V(net)\$cluster <- twomoon\$clusters
    E(net)\$color <- apply(as.data.frame(get.edgelist(net)), 1,
                        function(x) ifelse(V(net)\$cluster[x[1]] == V(net)\$cluster[x[2]],
                    colors[V(net)\$cluster[x[1]]], '\#000000'))
    V(net)\$color <- c(colors[1], colors[2])[twomoon\$clusters]
    \# plot network
    plot(net, layout = twomoon\$data, vertex.label = NA, vertex.size = 3)
```

 D

Description

Computes the degree operator from the vector of edge weights.

Usage

$D(w)$

Arguments

w
vector

Value

Dw vector

Description

Computes the Dstar operator, i.e., the adjoint of the D operator.

Usage

Dstar(w)

Arguments

w
vector

Value

Dstar(w) vector

Description

Computes the false discovery rate between two matrices

Usage

fdr(Wtrue, West, eps = 1e-04)

Arguments

Wtrue	true matrix
West	estimated matrix
eps	real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore	

Examples

```
library(spectralGraphTopology)
X <- L(c(1, 0, 1))
fdr(X, X)
```

fscore Computes the fscore between two matrices

Description

Computes the fscore between two matrices

Usage

fscore(Wtrue, West, eps $=1 \mathrm{e}-04$)

Arguments

Wtrue true matrix

West estimated matrix
eps real number such that edges whose values are smaller than eps are not considered in the computation of the fscore

Examples

library(spectralGraphTopology)
$\mathrm{X}<-\mathrm{L}(\mathrm{c}(1,0,1))$
fscore(X, X)

L
Computes the Laplacian linear operator which maps a vector of weights into a valid Laplacian matrix.

Description

Computes the Laplacian linear operator which maps a vector of weights into a valid Laplacian matrix.

Usage

L(w)

Arguments

w
weight vector of the graph

Value

Lw the Laplacian matrix

Examples

library (spectralGraphTopology)
Lw <- L(c(1, 0, 1))
Lw
learn_bipartite_graph Learn a bipartite graph Learns a bipartite graph on the basis of an observed data matrix

Description

Learn a bipartite graph
Learns a bipartite graph on the basis of an observed data matrix

Usage

learn_bipartite_graph(S,
is_data_matrix = FALSE,
z = 0,
nu $=10000$,
alpha = 0,
w0 = "naive",
$\mathrm{m}=7$,
maxiter = 10000,
abstol $=1 \mathrm{e}-06$,
reltol = 1e-04,
record_weights = FALSE, verbose = TRUE
)

Arguments

S either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p is the number of nodes and n is the number of features (or data points per node)
is_data_matrix whether the matrix S should be treated as data matrix or sample covariance matrix
z the number of zero eigenvalues for the Adjancecy matrix
nu regularization hyperparameter for the term $\| A(w)$ - V Psi V'I॥^2_F
alpha L1 regularization hyperparameter
wo initial estimate for the weight vector the graph or a string selecting an appropriate method. Available methods are: "qp": finds w0 that minimizes \|ginv(S) L(w0)\|_F, w0 >=0; "naive": takes w0 as the negative of the off-diagonal elements of the pseudo inverse, setting to 0 any elements s.t. $\mathrm{w} 0<0$

m	in case is_data_matrix $=$ TRUE, then we build an affinity matrix based on Nie et. al. 2017, where m is the maximum number of possible connections for a given node
maxiter	the maximum number of iterations
abstol	absolute tolerance on the weight vector w
reltol	relative tolerance on the weight vector w
record_weights	whether to record the edge values at each iteration
verbose	whether to output a progress bar showing the evolution of the iterations

Value

A list containing possibly the following elements:

laplacian adjacency	the estimated Laplacian Matrix the estimated Adjacency Matrix w
psi	optimization variable accounting for the eigenvalues of the Adjacency matrix V
elapsed_time	elapsed time recorded at every iteration convergence
boolean flag to indicate whether or not the optimization converged	
obj_fun	values of the objective function at every iteration in case record_objective = TRUE
negloglike	values of the negative loglikelihood at every iteration in case record_objective = TRUE
w_seq	sequence of weight vectors at every iteration in case record_weights = TRUE

Author(s)

Ze Vinicius and Daniel Palomar

References

S. Kumar, J. Ying, J. V. M. Cardoso, D. P. Palomar. A unified framework for structured graph learning via spectral constraints. Journal of Machine Learning Research, 2020. http://jmlr.org/papers/v21/19276.html

Examples

```
library(spectralGraphTopology)
library(igraph)
library(viridis)
library(corrplot)
set.seed(42)
n1 <- 10
n2 <- 6
n <- n1 + n2
```

```
    pc <- . }
    bipartite <- sample_bipartite(n1, n2, type="Gnp", p = pc, directed=FALSE)
    # randomly assign edge weights to connected nodes
    E(bipartite)$weight <- runif(gsize(bipartite), min = 0, max = 1)
    # get true Laplacian and Adjacency
    Ltrue <- as.matrix(laplacian_matrix(bipartite))
    Atrue <- diag(diag(Ltrue)) - Ltrue
    # get samples
    Y <- MASS::mvrnorm(100 * n, rep(0, n), Sigma = MASS::ginv(Ltrue))
    # compute sample covariance matrix
    S <- cov(Y)
    # estimate Adjacency matrix
    graph <- learn_bipartite_graph(S, z = 4, verbose = FALSE)
    graph$adjacency[graph$adjacency < 1e-3] <- 0
    # Plot Adjacency matrices: true, noisy, and estimated
    corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square",
        addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
    corrplot(graph$adjacency / max(graph$adjacency), is.corr = FALSE,
        method = "square", addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
    # build networks
    estimated_bipartite <- graph_from_adjacency_matrix(graph$adjacency,
                                    mode = "undirected",
                            weighted = TRUE)
V(estimated_bipartite)$type <- c(rep(0, 10), rep(1, 6))
la = layout_as_bipartite(estimated_bipartite)
colors <- viridis(20, begin = 0, end = 1, direction = -1)
c_scale <- colorRamp(colors)
E(estimated_bipartite)$color = apply(
        c_scale(E(estimated_bipartite)$weight / max(E(estimated_bipartite)$weight)), 1,
                function(x) rgb(x[1]/255, x[2]/255, x[3]/255))
E(bipartite)$color = apply(c_scale(E(bipartite)$weight / max(E(bipartite)$weight)), 1,
                function(x) rgb(x[1]/255, x[2]/255, x[3]/255))
la = la[, c(2, 1)]
# Plot networks: true and estimated
plot(bipartite, layout = la, vertex.color=c("red","black")[V(bipartite)$type + 1],
    vertex.shape = c("square", "circle")[V(bipartite)$type + 1],
    vertex.label = NA, vertex.size = 5)
plot(estimated_bipartite, layout = la,
    vertex.color=c("red","black")[V(estimated_bipartite)$type + 1],
    vertex.shape = c("square", "circle")[V(estimated_bipartite)$type + 1],
    vertex.label = NA, vertex.size = 5)
```

learn_bipartite_k_component_graph

Learns a bipartite k-component graph Jointly learns the Laplacian and Adjacency matrices of a graph on the basis of an observed data matrix

Description

Learns a bipartite k-component graph

Jointly learns the Laplacian and Adjacency matrices of a graph on the basis of an observed data matrix

Usage

```
learn_bipartite_k_component_graph(
```

 S,
 is_data_matrix = FALSE,
 z = 0,
 \(\mathrm{k}=1\),
 w0 = "naive",
 \(\mathrm{m}=7\),
 alpha = 0,
 beta \(=10000\),
 rho = 0.01,
 fix_beta = TRUE,
 beta_max \(=1 \mathrm{e}+06\),
 nu \(=10000\),
 lb \(=0\),
 \(u b=10000\),
 maxiter \(=10000\),
 abstol = 1e-06,
 reltol \(=1 \mathrm{e}-04\),
 eigtol = 1e-09,
 record_weights = FALSE,
 record_objective = FALSE,
 verbose = TRUE
)

Arguments

S either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p is the number of nodes and n is the number of features (or data points per node)
is_data_matrix whether the matrix S should be treated as data matrix or sample covariance matrix
z the number of zero eigenvalues for the Adjancecy matrix
$k \quad$ the number of components of the graph
wo initial estimate for the weight vector the graph or a string selecting an appropriate method. Available methods are: "qp": finds w0 that minimizes \|ginv(S) L(w0)\|_F, w0 >=0; "naive": takes w0 as the negative of the off-diagonal elements of the pseudo inverse, setting to 0 any elements s.t. $\mathrm{w} 0<0$
$\mathrm{m} \quad$ in case is_data_matrix = TRUE, then we build an affinity matrix based on Nie et. al. 2017, where m is the maximum number of possible connections for a given node
alpha L1 regularization hyperparameter
beta regularization hyperparameter for the term \|L(w) - U Lambda U'I^2_F
rho how much to increase (decrease) beta in case fix_beta = FALSE

fix_beta	whether or not to fix the value of beta. In case this parameter is set to false, then beta will increase (decrease) depending whether the number of zero eigenvalues is lesser (greater) than k		
beta_max	maximum allowed value for beta		
nu	regularization hyperparameter for the term \\|IA(w) - V Psi V'l	^2_F	
lb	lower bound for the eigenvalues of the Laplacian matrix		
ub	upper bound for the eigenvalues of the Laplacian matrix		
maxiter	the maximum number of iterations		
abstol	absolute tolerance on the weight vector w		
reltol	relative tolerance on the weight vector w		
eigtol	value below which eigenvalues are considered to be zero		
record_we	whether to record the edge values at each iteration		
record_objective			
	whether to record the objective function values at each iteration		
verbose	whether to output a progress bar showing the evolution of the iterations		

Value

A list containing possibly the following elements:
laplacian the estimated Laplacian Matrix
adjacency the estimated Adjacency Matrix
w the estimated weight vector
psi optimization variable accounting for the eigenvalues of the Adjacency matrix
lambda optimization variable accounting for the eigenvalues of the Laplacian matrix
V eigenvectors of the estimated Adjacency matrix
U eigenvectors of the estimated Laplacian matrix
elapsed_time elapsed time recorded at every iteration
beta_seq sequence of values taken by beta in case fix_beta = FALSE
convergence boolean flag to indicate whether or not the optimization converged
obj_fun values of the objective function at every iteration in case record_objective $=$ TRUE
negloglike values of the negative loglikelihood at every iteration in case record_objective $=$ TRUE
w_seq sequence of weight vectors at every iteration in case record_weights $=$ TRUE

Author(s)

Ze Vinicius and Daniel Palomar

References

S. Kumar, J. Ying, J. V. M. Cardoso, D. P. Palomar. A unified framework for structured graph learning via spectral constraints. Journal of Machine Learning Research, 2020. http://jmlr.org/papers/v21/19276.html

Examples

```
library(spectralGraphTopology)
library(igraph)
library(viridis)
library(corrplot)
set.seed(42)
w <- c(1, 0, 0, 1, 0, 1) * runif(6)
Laplacian <- block_diag(L(w), L(w))
Atrue <- diag(diag(Laplacian)) - Laplacian
bipartite <- graph_from_adjacency_matrix(Atrue, mode = "undirected", weighted = TRUE)
n <- ncol(Laplacian)
Y <- MASS::mvrnorm(40 * n, rep(0, n), MASS::ginv(Laplacian))
graph <- learn_bipartite_k_component_graph(cov(Y), k=2, beta = 1e2, nu = 1e2, verbose = FALSE)
graph$adjacency[graph$adjacency < 1e-2] <- 0
# Plot Adjacency matrices: true, noisy, and estimated
corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square", addgrid.col = NA, tl.pos = "n",
    cl.cex = 1.25)
corrplot(graph$adjacency / max(graph$adjacency), is.corr = FALSE, method = "square",
        addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
# Plot networks
estimated_bipartite <- graph_from_adjacency_matrix(graph$adjacency, mode = "undirected",
                                    weighted = TRUE)
V(bipartite)$type <- rep(c(TRUE, FALSE), 4)
V(estimated_bipartite)$type <- rep(c(TRUE, FALSE), 4)
la = layout_as_bipartite(estimated_bipartite)
colors <- viridis(20, begin = 0, end = 1, direction = -1)
c_scale <- colorRamp(colors)
E(estimated_bipartite)$color = apply(
        c_scale(E(estimated_bipartite)$weight / max(E(estimated_bipartite)$weight)), 1,
                    function(x) rgb(x[1]/255, x[2]/255, x[3]/255))
E(bipartite)$color = apply(c_scale(E(bipartite)$weight / max(E(bipartite)$weight)), 1,
                            function(x) rgb(x[1]/255, x[2]/255, x[3]/255))
la= la[, c(2, 1)]
# Plot networks: true and estimated
plot(bipartite, layout = la,
    vertex.color = c("red","black")[V(bipartite)$type + 1],
    vertex.shape = c("square", "circle")[V(bipartite)$type + 1],
    vertex.label = NA, vertex.size = 5)
plot(estimated_bipartite, layout = la,
    vertex.color = c("red","black")[V(estimated_bipartite)$type + 1],
    vertex.shape = c("square", "circle")[V(estimated_bipartite)$type + 1],
    vertex.label = NA, vertex.size = 5)
```

learn_combinatorial_graph_laplacian
Learn the Combinatorial Graph Laplacian from data Learns a graph Laplacian matrix using the Combinatorial Graph Laplacian (CGL) algorithm proposed by Egilmez et. al. (2017)

Description

Learn the Combinatorial Graph Laplacian from data
Learns a graph Laplacian matrix using the Combinatorial Graph Laplacian (CGL) algorithm proposed by Egilmez et. al. (2017)

Usage

learn_combinatorial_graph_laplacian(
S,
A_mask = NULL,
alpha = 0, reltol = 1e-05, max_cycle $=10000$, regtype = 1, record_objective = FALSE, verbose = TRUE
)

Arguments

S
A_mask binary adjacency matrix of the graph
alpha L1-norm regularization hyperparameter
reltol minimum relative error considered for the stopping criteri
max_cycle maximum number of cycles
regtype type of L1-norm regularization. If reg_type $==1$, then all elements of the Laplacian matrix will be regularized. If reg_type $==2$, only the off-diagonal elements will be regularized
record_objective whether or not to record the objective function value at every iteration. Default is FALSE
verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE

Value

A list containing possibly the following elements
laplacian estimated Laplacian Matrix
elapsed_time elapsed time recorded at every iteration
frod_norm relative Frobenius norm between consecutive estimates of the Laplacian matrix
convergence whether or not the algorithm has converged within the tolerance and max number of iterations
obj_fun objective function value at every iteration, in case record_objective = TRUE

References

H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints", in IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017. Original MATLAB source code is available at: https://github.com/STACUSC/Graph_Learning
learn_graph_sigrep Learn graphs from a smooth signal representation approach This function learns a graph from a observed data matrix using the method proposed by Dong (2016).

Description

Learn graphs from a smooth signal representation approach
This function learns a graph from a observed data matrix using the method proposed by Dong (2016).

Usage

learn_graph_sigrep(
X,
alpha $=0.001$,
beta $=0.5$,
maxiter $=1000$,
ftol $=1 \mathrm{e}-04$, verbose $=$ TRUE
)

Arguments

X
alpha hyperparameter that controls the importance of the Dirichlet energy penalty
beta hyperparameter that controls the importance of the L2-norm regularization
maxiter maximum number of iterations
ftol relative error on the objective function to be used as the stopping criteria
verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE

Value

A list containing the following items

laplacian	estimated Laplacian Matrix
Y	a smoothed approximation of the data matrix X
convergence	whether or not the algorithm has converged within the tolerance and max num- ber of iterations
obj_fun	objective function value at every iteration, in case record_objective = TRUE

References

X. Dong, D. Thanou, P. Frossard and P. Vandergheynst, "Learning Laplacian Matrix in Smooth Graph Signal Representations," in IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6160-6173, Dec.1, 2016.

```
learn_k_component_graph
```

Learn the Laplacian matrix of a k-component graph Learns a kcomponent graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology for code examples.

Description

Learn the Laplacian matrix of a k-component graph
Learns a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopolog for code examples.

Usage

learn_k_component_graph(S,
is_data_matrix = FALSE,
$\mathrm{k}=1$,
w0 = "naive",
$l b=0$,
$u b=10000$,
alpha $=0$,
beta $=10000$,
beta_max = 1e+06,
fix_beta = TRUE,
rho = 0.01,
$\mathrm{m}=7$,
eps $=1 \mathrm{e}-04$,
maxiter $=10000$,
abstol = 1e-06,
reltol = 1e-04,

```
    eigtol = 1e-09,
    record_objective = FALSE,
    record_weights = FALSE,
    verbose = TRUE
)
```


Arguments

S
either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p is the number of nodes and n is the number of features (or data points per node)
is_data_matrix whether the matrix S should be treated as data matrix or sample covariance matrix
$k \quad$ the number of components of the graph
w0 initial estimate for the weight vector the graph or a string selecting an appropriate method. Available methods are: "qp": finds w0 that minimizes \|ginv(S) L(w0)\|_F, w0 >= 0; "naive": takes w0 as the negative of the off-diagonal elements of the pseudo inverse, setting to 0 any elements s.t. w0 <0
lb lower bound for the eigenvalues of the Laplacian matrix
ub upper bound for the eigenvalues of the Laplacian matrix
alpha reweighted 11-norm regularization hyperparameter
beta regularization hyperparameter for the term \|L(w) - U Lambda U'\|^2_F
beta_max maximum allowed value for beta
fix_beta whether or not to fix the value of beta. In case this parameter is set to false, then beta will increase (decrease) depending whether the number of zero eigenvalues is lesser (greater) than k
rho how much to increase (decrease) beta in case fix_beta $=$ FALSE
$\mathrm{m} \quad$ in case is_data_matrix $=$ TRUE, then we build an affinity matrix based on Nie et. al. 2017, where m is the maximum number of possible connections for a given node
eps small positive constant
maxiter the maximum number of iterations
abstol absolute tolerance on the weight vector w
reltol relative tolerance on the weight vector w
eigtol value below which eigenvalues are considered to be zero
record_objective
whether to record the objective function values at each iteration
record_weights whether to record the edge values at each iteration
verbose whether to output a progress bar showing the evolution of the iterations

Value

A list containing possibly the following elements:
laplacian the estimated Laplacian Matrix
adjacency the estimated Adjacency Matrix
w
lambda optimization variable accounting for the eigenvalues of the Laplacian matrix
U
elapsed_time eigenvectors of the estimated Laplacian matrix
beta_seq sequence of values taken by beta in case fix_beta $=$ FALSE elapsed time recorded at every iteration
convergence boolean flag to indicate whether or not the optimization converged
obj_fun values of the objective function at every iteration in case record_objective $=$ TRUE
negloglike values of the negative loglikelihood at every iteration in case record_objective $=$ TRUE
w_seq sequence of weight vectors at every iteration in case record_weights $=$ TRUE

Author(s)

Ze Vinicius and Daniel Palomar

References

S. Kumar, J. Ying, J. V. M. Cardoso, D. P. Palomar. A unified framework for structured graph learning via spectral constraints. Journal of Machine Learning Research, 2020. http://jmlr.org/papers/v21/19276.html

Examples

```
# design true Laplacian
Laplacian <- rbind(c(1, -1, 0, 0),
    c(-1, 1, 0, 0),
    c(0, 0, 1, -1),
    c(0, 0, -1, 1))
n <- ncol(Laplacian)
# sample data from multivariate Gaussian
Y <- MASS::mvrnorm(n * 500, rep(0, n), MASS::ginv(Laplacian))
# estimate graph on the basis of sampled data
graph <- learn_k_component_graph(cov(Y), k = 2, beta = 10)
graph$laplacian
```

learn_laplacian_gle_admm
Learn the weighted Laplacian matrix of a graph using the ADMM method

Description

Learn the weighted Laplacian matrix of a graph using the ADMM method

Usage

learn_laplacian_gle_admm(
S,
A_mask = NULL,
alpha $=0$,
rho = 1,
maxiter = 10000,
reltol = 1e-05,
record_objective = FALSE,
verbose = TRUE
)

Arguments

S
A_mask
alpha
rho ADMM convergence rate hyperparameter
maxiter the maximum number of iterations
reltol relative tolerance on the Laplacian matrix estimation
record_objective
whether or not to record the objective function. Default is FALSE
verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE

Value

A list containing possibly the following elements:
Laplacian the estimated Laplacian Matrix
Adjacency the estimated Adjacency Matrix
convergence boolean flag to indicate whether or not the optimization converged
obj_fun values of the objective function at every iteration in case record_objective $=$ TRUE

Author(s)

Ze Vinicius, Jiaxi Ying, and Daniel Palomar

References

Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar. Optimization Algorithms for Graph Laplacian Estimation via ADMM and MM. IEEE Trans. on Signal Processing, vol. 67, no. 16, pp. 4231-4244, Aug. 2019

```
    learn_laplacian_gle_mm
```

 Learn the weighted Laplacian matrix of a graph using the MM method

Description

Learn the weighted Laplacian matrix of a graph using the MM method

Usage

learn_laplacian_gle_mm(
S,
A_mask = NULL, alpha = 0, maxiter = 10000, reltol = 1e-05, record_objective = FALSE, verbose = TRUE
)

Arguments

S
A_mask the binary adjacency matrix of the graph
alpha L1 regularization hyperparameter
maxiter the maximum number of iterations
reltol relative tolerance on the weight vector w
record_objective
whether or not to record the objective function. Default is FALSE
verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE

Value

A list containing possibly the following elements:
laplacian the estimated Laplacian Matrix
Adjacency the estimated Adjacency Matrix
convergence boolean flag to indicate whether or not the optimization converged
obj_fun values of the objective function at every iteration in case record_objective $=$ TRUE

Author(s)

Ze Vinicius, Jiaxi Ying, and Daniel Palomar

References

Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar. Optimization Algorithms for Graph Laplacian Estimation via ADMM and MM. IEEE Trans. on Signal Processing, vol. 67, no. 16, pp. 4231-4244, Aug. 2019
learn_smooth_approx_graph
Learns a smooth approximated graph from an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology for code examples.

Description

Learns a smooth approximated graph from an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology for code examples.

Usage

learn_smooth_approx_graph(Y, m)

Arguments

$\mathrm{Y} \quad$ a p-by-n data matrix, where p is the number of nodes and n is the number of features (or data points per node)
m
the maximum number of possible connections for a given node used to build an affinity matrix

Value

A list containing the following elements:
laplacian the estimated Laplacian Matrix

Author(s)

Ze Vinicius and Daniel Palomar

References

Nie, Feiping and Wang, Xiaoqian and Jordan, Michael I. and Huang, Heng. The Constrained Laplacian Rank Algorithm for Graph-based Clustering, 2016, AAAI'16. http://dl.acm.org/citation.cfm?id=3016100.3016174
learn_smooth_graph Learn a graph from smooth signals This function learns a connected graph given an observed signal matrix using the method proposed by Kalofilias (2016).

Description

Learn a graph from smooth signals
This function learns a connected graph given an observed signal matrix using the method proposed by Kalofilias (2016).

Usage

learn_smooth_graph(
X,
alpha $=0.01$,
beta $=1 \mathrm{e}-04$,
step_size $=0.01$,
maxiter = 1000,
tol $=1 \mathrm{e}-04$
)

Arguments

X
alpha hyperparameter that controls the importance of the Dirichlet energy penalty
beta hyperparameter that controls the importance of the L2-norm regularization
step_size learning rate
maxiter maximum number of iterations
tol relative tolerance used as stopping criteria

References

V. Kalofolias, "How to learn a graph from smooth signals", in Proc. Int. Conf. Artif. Intell. Statist., 2016, pp. 920-929.
Lstar Computes the Lstar operator.

Description

Computes the Lstar operator.

Usage

Lstar(M)

Arguments

M matrix

Value

w vector

npv

 Computes the negative predictive value between two matrices
Description

Computes the negative predictive value between two matrices

Usage

$n p v($ Wtrue, West, eps $=1 \mathrm{e}-04)$

Arguments

Wtrue	true matrix
West	estimated matrix
eps	real number such that edges whose values are smaller than eps are not considered in the computation of the fscore

Examples

```
library(spectralGraphTopology)
X <- L(c(1, 0, 1))
npv(X, X)
```

```
recall
```


Description

Computes the recall between two matrices

Usage

recall(Wtrue, West, eps $=1 \mathrm{e}-04$)

Arguments

Wtrue true matrix
West estimated matrix
eps real number such that edges whose values are smaller than eps are not considered in the computation of the fscore

Examples

library (spectralGraphTopology)
$X<-L(c(1,0,1))$
$\operatorname{recall}(X, X)$
relative_error Computes the relative error between the true and estimated matrices

Description

Computes the relative error between the true and estimated matrices

Usage

relative_error(West, Wtrue)

Arguments

West estimated matrix
Wtrue true matrix

Examples

```
library(spectralGraphTopology)
X <- L(c(1, 0, 1))
relative_error(X, X)
```


specificity Computes the specificity between two matrices

Description

Computes the specificity between two matrices

Usage

specificity(Wtrue, West, eps = 1e-04)

Arguments

Wtrue	true matrix
West	estimated matrix
eps	real number such that edges whose values are smaller than eps are not considered in the computation of the fscore

Examples

```
library(spectralGraphTopology)
X <- L(c(1, 0, 1))
specificity(X, X)
```


Index

```
A, 3, 3
accuracy,4
Astar,4
block_diag, 5
cluster_k_component_graph, 3,5
D,7
Dstar, }
fdr, 8
fscore, }
L, 3,9
learn_bipartite_graph, 3,10
learn_bipartite_k_component_graph, 3,
    12
learn_combinatorial_graph_laplacian,
    16
learn_graph_sigrep, 17
learn_k_component_graph, 3,18
learn_laplacian_gle_admm, 3, 21
learn_laplacian_gle_mm, 3, 22
learn_smooth_approx_graph, 23
learn_smooth_graph, 24
Lstar, 25
npv, 25
recall, 26
relative_error,26
specificity,27
spectralGraphTopology-package, 2
```

