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1. Introduction 

1.1.Outline 

This study presents application examples of generalized spatial regression modeling for 

count data and continuous non-Gaussian data using the spmoran package (version 0.2.2 onward). 

Section 2 introduces the model. The subsequent sections demonstrate applications of the model for 

disease mapping, spatial prediction and uncertainty modeling, and hedonic analysis. 

 The R codes used in this vignette are available from https://github.com/dmuraka/spmoran. 

Another vignette focusing on Gaussian spatial regression modeling is also available from the same 

GitHub page (and Murakami 2017). 

 

1.2.Model 
We consider the following generalized spatial regression model (see Murakami et al., 2021): 

𝜑𝛉 = ,      = ∑ , 𝛽 ,𝐾
= + + 𝜀 ,      ~𝑁 0, ,     𝜀 ~𝑁 0, 𝜎 , (1) 

where 𝜑𝛉 ∙  is a transformation function normalizing the i-th explained variable . ,  is the k-th 

explanatory variable, 𝛽 ,   is a fixed or random coefficient, which may vary spatially and/or non-

spatially (the distribution for 𝛽 ,   is omitted from Eq. (1) for simplicity).   is a term capturing 

residual spatial dependence. Moran eigenvectors, which are spatial basis functions, are used to model 

the spatially dependent processes in 𝛽 ,  and . The model may be rewritten as follows: 

= 𝜑𝛉− ,     = ∑ , 𝛽 ,𝐾
= + + 𝜀 ,     ~𝑁 0, ,     𝜀 ~𝑁 0, 𝜎 . (2) 

Eq. (2) suggests that  is assumed to have a distribution that is obtained by transforming a Gaussian 

distributed  using the 𝜑𝛉− ∙  function. This model describes a wide variety of non-Gaussian data 

including count data by flexibly specifying the transformation function. 

 The transformation function is defined by concatenating D sub-transformation functions: 

𝜑𝛉 = 𝜑𝛉𝐷 (𝜑𝛉𝐷−  ⋯ 𝜑𝛉 𝜑𝛉  ⋯ ), (3) 

where 𝜑𝛉𝑑 ∙   is the d-th sub-transformation function depending on a set of parameters 𝛉𝑑 . For 

continuous explained variables, the spmoran package provides the following specifications for 𝜑𝛉 ∙  

(see Figure 1):  

(a) For non-negative , the Box-Cox transformation is available (left of Figure 1). 

(b) For non-Gaussian  (e.g., skew and fat-tail distribution), the SAL transformation Eq. (4) (Rios 

and Tobar, 2019), which is a non-linear transformation, is iterated D times to accurately normalize 

 (middle of Figure 1): 

https://github.com/dmuraka/spmoran


𝜑𝛉𝑑 = 𝜃𝑑, + 𝜃𝑑, sinh 𝜃𝑑, arcsinh − 𝜃𝑑, , (4) 

where 𝛉𝑑 ∈ {𝜃𝑑, , 𝜃𝑑, , 𝜃𝑑, , 𝜃𝑑, }. 

(c) For non-negative and non-Gaussian , the Box-Cox transformation is applied first, and the SAL 

transformation is iterated D times after that to accurately normalized  (right of Figure 1). 

 

 

Figure 1: Transformation functions for continuous variables 

 

 
Figure 2: Results of applying the iterative SAL transformations to simulated data generated from beta, 

skew t, and Gaussian mixture distributions. The top three panels represent histograms of the simulated 

non-Gaussian data, and the bottom nine panels show the histograms after the transformations. D is the 

number of transformations. 



 

As illustrated in Figure 2, the iteration of the SAL transformations converts a wide variety of non-

Gaussian data  to Gaussian data 𝜑𝛉  quite flexibly. Thus, the generalized regression model Eq. 

(1) is available for a wide variety of non-Gaussian data. 

This model Eq. (1) is also available for count data by applying a (log-)Gaussian 

transformation approximating a count data distribution. In the spmoran package, the following 

transformations are implemented: 

(d) For (over-dispersed) Poisson counts, a log-Gaussian approximation proposed by Murakami and 

Matsui (2021) is available (left of Figure 3). Based on them, accuracy of the approximate model 

is almost the same as the conventional over-dispersed Poisson regression. 

(e) For counts which do not obey the Poisson distribution, the log-Gaussian approximation is applied 

first to roughly normalize the data, and the SAL transformation is iterated after that to identify the 

most likely distribution (i.e., probability mass function) (right of Figure 3). 

 

 

Figure 3: Transformation functions for count variables 

 

 

 

 

 

 

 

 



1.3.Coding for specifying the transformation 

In the spmoran package, the transformation function 𝜑𝛉 ∙  in Eq. (1) is specified by using 

the nongauss_y function. Here is a code (blue part) to specify (a) for non-negative : 

 

 

 

y_nonneg = TRUE constraints the explained variables to not to have negative values. The output from 

the nongauss_y function is used as an input of the resf or resf_vc function to estimate Eq. (1). The 

transformation (b) for non-Gaussian  and (c) for non-negative and non-Gaussian  are specified 

as follows (D = 2 is assumed): 

 

 
 

 
 

where tr_num (=D) specifies the number of SAL transformations. Finally, the transformation (d) for 

over-dispersed Poisson counts and (e) for other counts are specified as follows: 

 

 

 



 
 

where y_type specifies data type (“count” for count variables and “continuous” for continuous 

variables (default)).  

The subsequent sections present application examples of the model for count data (Section 

2) and continuous data (Sections 3-4). 

 

 

 

2. Example 1: Disease mapping and regression with count data 

This section demonstrates a count regression modeling for epidemic data considering 

spatially varying coefficients, residual spatial dependence, and heterogeneity across years. The 

estimated model is used mainly for disease mapping and uncertainty modeling. 

 

2.1.Data 

This section uses sf, rgeos, CARBayesdata, spdep, spmoran packages:  

 

 

 

We employ the pollution-health data (pollutionhealthdata), which is available from the CARBayesdata 

package. The data consists of respiratory hospitalization data, air pollution, and covariate data for the 

Greater Glasgow (2007 - 2011) by 271 Intermediate Geographies (IG).  

 

 

 

 



Explained variable (y) is the number of hospitalization due to respiratory disease (observed). 

Explanatory variables (x) are the average particulate matter concentration (pm10), the percentage of 

working age people who are in receipt of Job Seekers Allowance, a benefit paid to unemployed people 

looking for work (jsa), and average property price (divided by 100,000) (price). Random effects by 

years are considered to estimate heterogeneity across years (xgroup). Besides, the expected numbers 

of hospitalizations based on Scotland-wide respiratory hospitalization rates (expected) is used as an 

offset variable. These variables are specified as follows:  

 

 

 

 A binary contiguity matrix, which is generated from the spatial polygons by IGs (GGHB.IG), 

is used for modeling spatial dependence: 

 

 

 

As explained, Moran eigenvectors are used to model spatially dependent process. Here is a code 

generating the eigenvectors from the W matrix:  

 

 
 

where cmat specifies a spatial proximity matrix, and s_id specifies zone ID (the i-th row of cmat and 

the element of s_id that appears in the i-th are associated). 

 

 

 

 

 

 

 

 

 



2.2.Model 
This section considers two specifications for y. The former (ng1) assumes y to obey an over-

dispersed Poisson distribution. The latter assumes a more general distribution, and estimates it through 

the SAL transformation (ng2): 

 

 
 

 
 

 The outputs ng1 and ng2 are used as inputs for the resf or resf_cv function. The resf function 

estimates spatial regression models without spatially varying coefficients (SVCs) while the resf_vc 

function estimates models with SVCs (see Murakami, 2017). Here, we estimate the following models:  

 

 

 

 

mod1 and mod2 assume constant coefficients while mod3 and mod4 assume SVCs on x. For the 

distribution of y, mod1 and mod3 assume an over-dispersed Poisson distribution while mod2 and mod3 

adjust the distribution using the SAL transformation to identify the most likely distribution. The BIC 

values are -260.1 (mod1), -256.2 (mod2), -274.2 (mod3), and -271.7 (mod4). mod3, which is an over-

dispersed Poisson SVC model, is selected as the best model. Note that the BIC is based on a Gaussian 

likelihood approximating the Poisson model, which is different from the conventional Poisson 

likelihood. 

 The estimation result of mod3 is as below. The intercept and coefficient on price are 

estimated spatially varying while the coefficients on jsa and pm10 are estimated constant. As shown 

in the bottom, the BIC of mod3 is considerably better than the BIC of the NULL model (74.9), which 

is a log-Gaussian model approximating the conventional Poisson regression: 



 

 

 

 

 

 

 

 



The estimated group effects are as follows: 

 
 

While regression coefficients for the transformed y is often difficult to interpret, marginal effect ,⁄  which quantifies the magnitude of change in i-th explained variable ( ) for one unit change 

in the k-th explanatory variable ( , ), can be evaluated using the coef_marginal function if the resf 

function is used while the coef_marginal_vc function if the resf_vc function is used: 

 

 

For example, the median of pm10 suggests that the number of hospitalizations increases 2.1441 for 

every 1.0 increase of pm10. 

The explained variables and the predicted values are plotted below. This result confirms 

accuracy of the model: 

 

 

 



In addition to the predicted values plotted above, the resf and resf_vc functions return quantiles of the 

predicted values, which are estimated based on the modeled probability density/mass function. They 

are displayed as follows: 

 

 

 

The quantiles are useful for evaluating uncertainty in disease mapping (see below). 

 

 

 

2.3.Regression and disease mapping 

The predicted values are available for disease mapping. Here, we consider mapping the 

patterns in 2007. Here is a code to create a dataset including observed counts in 2007 (obs), predicted 

counts and their standard errors (pred), estimated varying coefficients (b_est), and quantiles of the 

predicted values (pred_qt), and convert the dataset to sf format, which is a spatial data format, for 

mapping: 

 

 

 

The predicted counts are as mapped together with the observed counts below. The result suggests that 

the estimated model accurately identifies the spatial pattern underlying the respiratory disease. 

 

 

 

 

 

 

 



 

 

 

Here is a code to map percentile (0.025, 0.50, 0.975%) of the predicted values. This map suggests 

higher uncertainty in the central urban area while lower uncertainty in the suburban areas. 

 

 

 

 

 

 



Finally, the estimated spatially varying intercept and coefficients on price are plotted below: 

 

 

 

 

 
 

 

 

 

 

 

 



3. Example 2: Spatial prediction and uncertainty analysis for non-Gaussian 
data 

This section demonstrates a non-Gaussian spatial regression modeling for spatial 

interpolation and uncertainty modeling. 

 

 

3.1.Data 

This section uses the sf, automap, and spmoran packages:  

 

 

 

The meuse data, which we will use in this section, consists of heavy metal concentrations (cadmium, 

copper, lead, zinc) measured in a flood plain along the river Meuse and explanatory variates: 

 

 

 

We analyze the zinc concentration in ppm (zinc). As shown in the histogram below, the zinc data does 

not have a Gaussian distribution: 

 

 

 

 

 

 



Here is the spatial plot of the zinc concentration: 

 

We use dist (distance to river Meuse), ffreq2 (1 if flooding frequency class is 2, and 0 otherwise), and 

ffreq3 (1 if flooding frequency class is 3) for the explanatory variables: 

 

 

 

3.2.Model 
The Moran eigenvectors, which are the basis functions used for spatial process modeling, 

are constructed as below: 

  

 

 

We first estimate the classical Gaussian regression model using the resf function. The error statistics 

including the restricted log-likelihood (rlogLik), Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC) are as follows: 

 

 



 

Unfortunately, this model is not appropriate because of the non-Gaussianity of y. For non-

negative explained variables like zinc concentration, user can specify y_nonneg = TRUE in the 

nongauss_y function. If it is specified, the explanatory variable y is assumed to be non-negative, and 

the Box-Cox transformation is applied: 

 

 

 

The output ng1 is used as an output of the resf function to estimate a regression model with residual 

spatial dependence and Box-Cox transformation for y:  

 

 

 



 

The resf_vc function is available when assuming SVCs. The estimated skewness, excess kurtosis, and 

the Box-Cox parameter confirm non-Gaussianity of the data. BIC of the model (1983.114), which 

considers residual spatial dependence, is considerably better than the ordinary linear regression model 

(2192.428). Accuracy of the model is confirmed. 

 In addition to the Box-Cox transformation, the SAL transformation can be iterated to 

estimate the most likely probability density function (PDF) behind y. The number of iterations is 

specified by an argument tr_num. We compare models with tr_num=1 (ng2) and tr_num=2 (ng3): 

 

 

 
 

The following non-Gaussian models considering residual spatial dependence are estimated: 

 

 

 

Model accuracy can be compared using the BIC (or AIC) value. Based on the BIC, mod2, which 

applies the Box-Cox transformation first and a SAL transformation after that, is the best model. 

 



 

 

The estimated parameters are as follows: 

 

 

 
 

 



The estimated PDF for y can be plotted as follows: 

 

 

 

 

The estimated PDF is reasonably similar to the histogram of y.  

While regression coefficients for transformed y is often difficult to interpret, the marginal 

effect of each explanatory variable ( ,⁄  ) which quantifies the magnitude of change in i-th 

explained variable ( ) for one unit change in the k-th explanatory variable ( , ), is evaluated by using 

the coef_marginal function: 

 

 

 

For example, the median for ffreq2 suggests that areas with flooding frequency class 2 have 260.87 

ppm smaller zinc concentration on median than other areas. 

 

 

 

 



3.3.Spatial prediction and uncertainty analysis 

The estimated model (mod2) is applied to spatially predict the zinc concentration on 3,103 

grid points with 40 m × 40 m spacing (meuse.grid). Spatial coordinates (coords0) and the explanatory 

variables in the grids are used for the prediction: 

 
 

The Moran eigenvectors at the prediction sites are generated using the meigen0 function: 

 

 

 

The spatial prediction is performed using the predict0 function. If compute_quantile=TRUE, quantiles 

for the predicted values are evaluated based on the PDF estimated in Section 1.2: 

 

 

 

The outputs are as follows: 

 

 

 

The output includes the predicted values on the original scale (pred), the predicted value on the 

transformed scale (pred_transG), and the standard error (pred_transG_se). The estimated quantiles for 

the predicted values are displayed as follows: 

 

 

 

 



 To map the outputs, pred, pred_transG, pred_transG_se, quantiles for the predicted values 

(pred_quantile) are summarized into a data.frame object. As a measure of uncertainty, the length of 

the 95 % confidence interval for the predicted value (len95) is added. Besides, predicted values of a 

regression kriging, which is widely used for spatial prediction, is also added (kpred). The data.frame 

object is then converted to a sf object for mapping: 

 

 

 

Our prediction result (pred) and the kriging-based prediction result (kpred) are quite similar:   

 

 

 

 

 

 

 

 

 

 



As shown in the maps below showing the 2.5%, 50%, and 97.5% quantiles, the predicted values have 

larger uncertainty in the north area that faces the river Meuse: 

 

 

 

 

The map below is the length of the 95 % confidence interval (len95), which is another way to visualize 

the uncertainty in the original scale: 

.  

 

 

 



We can also visualize the predicted values in the transformed/normalized scale: 

 

 

 

 

As shown below, in the transformed scale, the predictive errors are large in the eastern central area 

where the samples are relatively limited (but, as far as we see the maps for len95 or the quantiles, this 

error has little impact in the original scale as a result of the rescaling/transformation to the real scale). 

 

 

 

 



3.4.Limitation 

The Moran eigenvector approach provides a kind of low rank approximation for spatial 

process modeling (just like fixed rank kriging and predictive process modeling; see Sun et al., 2012). 

While the modeling accuracy is good enough in many cases, it can provide overly smoothed spatial 

prediction result for very large samples (e.g., N > 10,000; see, Stein, 2014). For spatial prediction 

using large samples, it should be used with caution (at least, this approach is still useful even in such 

a case to understand underlying map patterns computationally efficiently). 

 

 

 

4. Example 3: Non-Gaussian spatial hedonic analysis 

This section demonstrates the importance of considering non-Gaussianity in hedonic 

housing price analysis. Gaussian and non-Gaussian spatial varying coefficient (SVC) models are use 

in this section. 

 

 

4.1.Data 

This section uses the spdep, sf, spmoran packages: 

 

 

 

This section analyzes the housing data for 506 census tracts in Boston in 1970. Explained variable (y) 

is the median housing value in USD 1000's (CMEDV). The explained variables whose coefficients 

are allowed to vary over space (x), those whose coefficients are assumed constant (xconst), and spatial 

coordinates (coords) are used in this analysis: 

 

 

 

Moran eigenvectors are extracted as follows: 

 

 



 

4.2.Model 
This section considers three transformations functions: 

 

 
 

 
 

 
 

Although ng3 is the most flexible, it can lead to overfitting. To identify the best model, the Gaussian 

SVC model (mod0) and non-Gaussian SVC models (mod1, mod2, mod3) are fitted, and their BIC 

values are compared: 

 

 

 

 

 

 

The resulting BICs are 3110.5 (mod0), 2950.5 (mod1), 2901.6 (mod2), 2931.4 (mod3), and 3178.4 for 

the ordinary liner regression model. mod2, which applies the Box-Cox transformation and a SAL 

transformation is selected as the best model.  

The parameters estimated from mod2 are as follows: 

 



 

 

 



The “Estimated probability distribution of y” section suggests that the data is positively skewed 

(skewness > 0) and fat tail (excess kurtosis > 0). The estimated probability density distribution can be 

visualized as follows: 

 

 

Marginal effect of each explanatory variable ( ,⁄ ) which quantifies the magnitude of change in 

i-th explained variable ( ) for one unit change in the k-th explanatory variable ( , ), is evaluated 

using the coef_marginal function if the resf function is used while the coef_marginal_vc function if 

the resf_vc function is used like our case: 

 

 

 



 

For example, the median of CRIM suggests that, on median, housing price decreases 0.24 (1,000 USD) 

for every 1.0 increase of CRIM (per capita crime rate). 

The estimated SVCs on x (CRIM, AGE, and Intercept) can be plotted using the plot_s 

function. For example, the SVC on CRIM, which is the first column of x, is mapped as follows: 

 

 

 

 

The output suggests the strong negative impact of CRIM in the central area. An argument pmax is 

useful to display statistically significant coefficients only. For example, here is the code to display the 

coefficients that are statistically significant at the 5 % level:  

 

 

 

 

This map demonstrates that the crime rate has statistically significant negative impact on housing price 

only in the central area. Alternatively, the SVCs can be plotted using the sf package as follows: 
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