Package 'ssvd'

February 20, 2015
Type Package
Title Sparse SVD
Version 1.0
Date 2013-09-25
Author Dan Yang
Maintainer Dan Yang dyang@stat.rutgers.edu
Description Fast iterative thresholding sparse SVD, together with an initialization algorithm
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2013-09-26 17:23:50

R topics documented:

ssvd-package . 1
ssvd . 2
ssvd.initial . 4
ssvd.iter.thresh . 5
Index 7
ssvd-package Sparse SVD

Description

Obtain sparse SVD using fast iterative thresholding method, together with a fast initialization algorithm

Details

Package:	ssvd
Type:	Package
Version:	1.0
Date:	$2013-09-25$
License:	GPL $(>=2)$

There are three main functions of the package: ssvd, ssvd.initial, and ssvd.iter.thresh

Author(s)

Dan Yang dyang@stat.rutgers.edu

References

A Sparse SVD Method for High-dimensional Data

Examples

```
ssvd(matrix(rnorm(2^15), 2^7, 2^8), method = "method")
ans.initial <- ssvd.initial(matrix(rnorm(2^15), 2^7,2^8), method = "method")
ans.iter <- ssvd.iter.thresh(matrix(rnorm(2^15),2^7, 2^8),
u.old=ans.initial$u, v.old= ans.initial$v, method = "method")
```

ssvd Sparse SVD

Description

The function ssvd combines two functions ssvd.initial and ssvd.iter.thresh into one. Obtain sparse SVD using fast iterative thresholding method, together with a fast initialization algorithm

Usage

$\operatorname{ssvd}(x$, method $=c(" t h e o r y ", ~ " m e t h o d "), ~ a l p h a . m e t h o d=0.05, ~ a l p h a . t h e o r y=1.5$, huber.beta $=0.95$, sigma $=N A, r=1$, gamma. u = sqrt(2), gamma.v = sqrt(2), dothres $=$ "hard", tol $=1 \mathrm{e}-08$, n.iter $=100$, n.boot $=100$, non.orth $=$ FALSE)

Arguments

x
method

Input matrix, for which one would like to get a sparse SVD.
If method $=$ "theory", then a theoretical procedure is adopted which is based on normal assumption on the noise. If method = "method", then the function bypass the normal assumption by some robust statistics. These two choices typically give similar solutions, but "theory" is much faster.
\(\left.\left.$$
\begin{array}{ll}\text { alpha.method } & \begin{array}{l}\text { Alpha.method is the level of the hypothesis test when one performs Holm mul- } \\
\text { tiple hypothesis testing, which is used to select the candidate rows and columns } \\
\text { in the initialization step. The value is usually set to be } 0.05 .\end{array} \\
\text { alpha. theory } \\
\text { Alpha.theory is a scaler that is used when normal assumption is true, method="theory", } \\
\text { and a chisq tail bound is used to select the candidate rows and columns in the } \\
\text { initialization step. Most of the time, users should keep it as it is. }\end{array}
$$\right] \begin{array}{l}Huber.beta is a scaler which is the cut-off point in the Huber function. The hu-

berization is utilized to achieve robustness when normal assumption is violated

in the initialization step.

huber.beta\end{array}\right\}\)| Sigma is a scaler for the noise level. The user can set it to be NA, and the |
| :--- |
| function will estimate it automatically. |

Value
u
v
d
niter
sigma.hat
dist.u
dist.v

Author(s)

Dan Yang

References

A Sparse SVD Method for High-dimensional Data

See Also

ssvd.initial and ssvd.iter.thresh

Examples

$\operatorname{ssvd}\left(m a t r i x\left(r n o r m\left(2^{\wedge} 15\right), 2^{\wedge} 7,2^{\wedge} 8\right)\right.$, method $\left.=" m e t h o d "\right)$

Description

This function is used to initialize the sparse SVD iterative method. The function selects some rows and columns of the input matrix and perform regular SVD of the reduced the matrix with only selected rows and columns, which gives an initial solution to the sparse SVD problem.

Usage

ssvd.initial(x, method = c("theory", "method"), alpha.method = 0.05, alpha.theory $=1.5$, huber.beta $=0.95$, sigma $=$ NA, $r=1$)

Arguments

X
Input matrix, for which one would like to get a sparse SVD.
method If method = "theory", then a theoretical procedure is adopted which is based on normal assumption on the noise. If method = "method", then the function bypass the normal assumption by some robust statistics. These two choices typically give similar solutions, but "theory" is much faster.
alpha.method Alpha.method is the level of the hypothesis test when one performs Holm multiple hypothesis testing, which is used to select the candidate rows and columns. The value is usually set to be 0.05 .
alpha. theory Alpha.theory is a scaler that is used when normal assumption is true, method="theory", and a chisq tail bound is used to select the candidate rows and columns. Most of the time, users should keep it as it is.
huber.beta Huber.beta is a scaler which is the cut-off point in the Huber function. The huberization is utilized to achieve robustness when normal assumption is violated.
sigma Sigma is a scaler for the noise level. The user can set it to be NA, and the function will estimate it automatically.
r A scaler, the number of components, i.e., the number of singular vectors to be computed.

Value

u A matrix containing left singular vectors
v
A matrix containing right singular vectors
d A vector containing singular values
sigma.hat An estimate of the noise level

Author(s)

Dan Yang

References

A Sparse SVD Method for High-dimensional Data

Examples

ssvd.initial(matrix(rnorm(2^15), $\left.\left.2^{\wedge} 7,2^{\wedge} 8\right), \operatorname{method}=" m e t h o d^{\prime}\right)$
ssvd.iter.thresh Iterative thresholding sparse SVD

Description

The function computes sparse SVD by iterative thresholding algorithm with an initializtion as one of the inputs

Usage

```
ssvd.iter.thresh(x, method = c("theory", "method"), u.old, v.old,
gamma.u = sqrt(2), gamma.v = sqrt(2), dothres = "hard", r = ncol(u.old),
tol = 1e-08, n.iter = 100, n.boot = 100, sigma = NA, non.orth = FALSE)
```


Arguments

x
method
u.old
v.old A matrix that contains initial right singular vectors as the columns of the matrix.
gamma.u When the method="theory", gamma.u=sqrt(2) corresponds to the sqrt(2 $\log (\mathrm{p}))$, which is the largest magnitude of piid standard normals. If gamma.u is manually set to be smaller or larger than sqrt2, the left singular vectors will be denser or sparser respectively.
gamma.v When the method="theory", gamma.u=sqrt(2) corresponds to the $\operatorname{sqrt}(2 \log (\mathrm{p}))$, which is the largest magnitude of piid standard normals. If gamma.u is manually set to be smaller or larger than sqrt2, the right singular vectors will be denser or sparser respectively.
dothres Dothres has two choices, either "hard" or "soft", which means hard-thresholding or soft-thresholding
r A scaler, the number of components, i.e., the number of singular vectors to be computed.
tol The tolerance level that determines when the algorithm stops.
n.iter Maximum number of iterations allowed.
n. boot Number of bootstrap to estimate the threshold level when method = "method"
sigma
non.orth If non.orth=TRUE, then the last iteration of the algorithm will not involve orthoganolization, which should produce sparse solutions.

Value

u

V
d
niter
sigma.hat
dist.u
dist.v The distance between the right singular vectors of the last two iterations, can be used to see whether the algorithm indeed converges.

Author(s)

Dan Yang

References

A Sparse SVD Method for High-dimensional Data

Examples

```
ans.initial <- ssvd.initial(matrix(rnorm(2^15),2^7,2^8), method = "method")
ans.iter <- ssvd.iter.thresh(matrix(rnorm(2^15), 2^7, 2^8),
u.old=ans.initial$u, v.old= ans.initial$v, method = "method")
```


Index

*Topic SVD

ssvd, 2
ssvd-package, 1
ssvd.initial, 4
ssvd.iter.thresh, 5
*Topic initialization
ssvd.initial, 4
*Topic iterative
ssvd, 2
ssvd-package, 1
ssvd.initial, 4
ssvd.iter.thresh, 5
*Topic sparse
ssvd, 2
ssvd-package, 1
ssvd.initial, 4
ssvd.iter.thresh, 5
*Topic thresholding
ssvd, 2
ssvd-package, 1
ssvd.iter.thresh, 5
ssvd, 2
ssvd-package, 1
ssvd.initial, 4
ssvd.iter.thresh, 5

