
Package ‘stR’
February 17, 2022

Type Package

Title STR Decomposition

Version 0.5

Date 2022-02-14

Author Alexander Dokumentov, Rob J Hyndman

Maintainer Alexander Dokumentov <alexander.dokumentov@gmail.com>

URL https://bitbucket.org/alexanderdokumentov/strpackage

License GPL (>= 2)

Depends R (>= 3.5.0)

Imports compiler, Matrix, SparseM, quantreg, forecast, foreach, stats,
methods, graphics, grDevices

Description Methods for decomposing seasonal data: STR (a Seasonal-Trend decomposition proce-
dure based on Regression) and Robust STR. In some ways, STR is similar to Ridge Regres-
sion and Robust STR can be related to LASSO. They allow for multiple seasonal compo-
nents, multiple linear covariates with constant, flexible and seasonal influence. Seasonal pat-
terns (for both seasonal components and seasonal covariates) can be fractional and flexi-
ble over time; moreover they can be either strictly periodic or have a more complex topol-
ogy. The methods provide confidence intervals for the estimated components. The meth-
ods can be used for forecasting.

LazyData true

RoxygenNote 7.1.1

Suggests testthat, demography, knitr, rmarkdown, doParallel, seasonal,
rgl

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2022-02-17 12:02:03 UTC

1

https://bitbucket.org/alexanderdokumentov/strpackage

2 AutoSTR

R topics documented:
AutoSTR . 2
calls . 4
components . 5
electricity . 5
grocery . 6
heuristicSTR . 7
plot.STR . 12
plotBeta . 14
RSTRmodel . 16
seasadj.STR . 19
STR . 20
STRmodel . 25

Index 29

AutoSTR Automatic STR decomposition for time series data

Description

Automatically selects parameters for an STR decomposition of time series data. The time series
should be of class ts or msts.

Usage

AutoSTR(
data,
robust = FALSE,
gapCV = NULL,
lambdas = NULL,
reltol = 0.001,
confidence = NULL,
nsKnots = NULL,
trace = FALSE

)

Arguments

data A time series of class ts or msts.

robust When TRUE, Robust STR decomposition is used. Default is FALSE.

gapCV An optional parameter defining the length of the sequence of skipped values in
the cross validation procedure.

lambdas An optional parameter. A structure which replaces lambda parameters provided
with predictors. It is used as either a starting point for the optimisation of pa-
rameters or as the exact model parameters.

AutoSTR 3

reltol An optional parameter which is passed directly to optim() when optimising the
parameters of the model.

confidence A vector of percentiles giving the coverage of confidence intervals. It must be
greater than 0 and less than 1. If NULL, no confidence intervals are produced.

nsKnots An optional vector parameter, defining the number of seasonal knots (per period)
for each sesonal component.

trace When TRUE, tracing is turned on.

Value

A structure containing input and output data. It is an S3 class STR, which is a list with the following
components:

• output – contains decomposed data. It is a list of three components:

– predictors – a list of components where each component corresponds to the input pre-
dictor. Every such component is a list containing the following:

* data – fit/forecast for the corresponding predictor (trend, seasonal component, flexi-
ble or seasonal predictor).

* beta – beta coefficients of the fit of the coresponding predictor.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.
– random – a list with one component data, which contains residuals of the model fit.
– forecast – a list with two components:

* data – fit/forecast for the model.

* beta – beta coefficients of the fit.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.

• input – input parameters and lambdas used for final calculations.

– data – input data.
– predictors - input predictors.
– lambdas – smoothing parameters used for final calculations (same as input lambdas for

STR method).

• cvMSE – optional cross validated (leave one out) Mean Squared Error.

• optim.CV.MSE – best cross validated Mean Squared Error (n-fold) achieved during minimi-
sation procedure.

• nFold – the input nFold parameter.

• gapCV – the input gapCV parameter.

• method – always contains string "AutoSTR" for this function.

Author(s)

Alexander Dokumentov

4 calls

References

Dokumentov, A., and Hyndman, R.J. (2016) STR: A Seasonal-Trend Decomposition Procedure
Based on Regression www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-
15.pdf

See Also

STR

Examples

Decomposition of a multiple seasonal time series
decomp <- AutoSTR(calls)
plot(decomp)

Decomposition of a monthly time series
decomp <- AutoSTR(log(grocery))
plot(decomp)

calls Number of phone calls dataset

Description

Number of call arrivals per 5-minute interval handled on weekdays between 7:00 am and 9:05 pm
from March 3, 2003 in a large North American commercial bank.

Usage

calls

Format

A numerical time series of class msts and ts.

Source

Data file

References

Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing Alysha M.
De Livera, Rob J. Hyndman & Ralph D. Snyder (Journal of the American Statistical Association)

Examples

plot(calls, ylab = "Calls handled")

https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf
https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf
https://robjhyndman.com/data/callcenter.txt
https://www.tandfonline.com/doi/pdf/10.1198/jasa.2011.tm09771

components 5

components Extract STR components

Description

components extracts components as time series from the result of an STR decomposition.

Usage

components(object)

Arguments

object Result of STR decomposition.

Author(s)

Alexander Dokumentov

See Also

STRmodel, RSTRmodel, STR, AutoSTR

Examples

fit <- AutoSTR(log(grocery))
comp <- components(fit)
plot(comp)

electricity Electricity consumption dataset

Description

The data set provides information about electricity consumption in Victoria, Australia during the
115 days starting on 10th of January, 2000, and comprises the maximum electricity demand in
Victoria during 30-minute periods (48 observations per day). For each 30-minute period, the dataset
also provides the air temperature in Melbourne.

Usage

electricity

6 grocery

Format

An numerical matrix of class msts and ts.

Details

• Consumption column contains maximum electricity consumption during 30 minute periods

• Temperature column contains temperature in Melbourne during the corresponding 30 minute
interval

• Time column contains number of 30 minute interval in the dataset

• DailySeasonality column contains positions of 30 minute interval inside days

• WeeklySeasonality column contains positions of 30 minute interval inside weeks

• WorkingDaySeasonality column contains positions of 30 minute intervals inside working
day/holiday transition diagram

Examples

plot(electricity[,1:2], xlab="Weeks",
main="Electricity demand and temperature in Melbourne, Australia")

grocery Grocery and supermarkets turnover

Description

Turnover of supermarkets and grocery stores in New South Wales, Australia.

Usage

grocery

Format

An object of class ts.

References

Australian Bureau of Statistics, CAT 8501.0. (TABLE 11. Retail Turnover, State by Industry
Subgroup, Original)

Examples

plot(grocery, ylab = "NSW Grocery, $ 10^6")

http://tinyurl.com/hvx2vx2
http://tinyurl.com/hvx2vx2

heuristicSTR 7

heuristicSTR Automatic STR decomposition with heuristic search of the parameters

Description

Automatically selects parameters (lambda coefficients) for an STR decomposition of time series
data. Heuristic approach can give a better estimate compare to a standard optmisaton methods used
in STR.

If a parallel backend is registered for use before STR call, heuristicSTR will use it for n-fold cross
validation computations.

Usage

heuristicSTR(
data,
predictors,
confidence = NULL,
lambdas = NULL,
pattern = extractPattern(predictors),
nFold = 5,
reltol = 0.005,
gapCV = 1,
solver = c("Matrix", "cholesky"),
trace = FALSE,
ratioGap = 1e+12,
relCV = 0.01

)

Arguments

data Time series or a vector of length L.

predictors List of predictors.
According to the paradigm of this implementation, the trend, the seasonal com-
ponents, the flexible predictors and the seasonal predictors are all presented in
the same form (as predictors) and must be described in this list.
Every predictor is a list of the following structures:

• data – vector of length L (length of input data, see above). For trend or
for a seasonal component it is a vector of ones. For a flexible or a seasonal
predictor it is a vector of the predictor’s data.

• times – vector of length L of times of observations.
• seasons – vector of length L. It is a vector of ones for a trend or a flexible

predictor. It is vector assigning seasons to every observation (for a seasonal
component or a seasonal predictor). Seasons can be fractional for observa-
tions in between seasons.

8 heuristicSTR

• timeKnots – vector of times (time knots) where knots are positioned (for
a seasonal component or a seasonal predictor a few knots have the same
time; every knot is represented by time and season). Usually this vector
coincides with times vector described above, or timeKnots is a subset of
times vector.

• seasonalStructure – describes seasonal topology (which can have complex
structure) and seasonal knots.The seasonal topology is described by a list of
segments and seasonal knots, which are positioned inside the segments, on
borders of the segments or, when they are on on borders, they can connect
two or more segments.
seasonalStructure is a list of two elements:

– segments – a list of vectors representing segments. Each vector must
contain two ordered real values which represent left and right borders
of a segment. Segments should not intersect (inside same predictor).

– sKnots – a list of real values (vectors of length one) or vectors of
lengths two or greater (seasonal knots) defining seasons of the knots
(every knot is represented by time and season). All real values must
belong (be inside or on border of) segments listed in segments. If a
few values represent a single seasonal knot then all these values must
be on borders of some segments (or a single segment). In this case they
represent a seasonal knot which connects a few segments (or both sides
of one segment).

• lambdas – a vector with three values representing lambda (smoothing) pa-
rameters (time-time, season-season, time-season flexibility parameters) for
this predictor.

confidence A vector of percentiles giving the coverage of confidence intervals. It must be
greater than 0 and less than 1. If NULL, no confidence intervals are produced.

lambdas An optional parameter. A structure which replaces lambda parameters provided
with predictors. It is used as either a starting point for the optimisation of pa-
rameters or as the exact model parameters.

pattern An optional parameter which has the same structure as lambdas although with
a different meaning. All zero values correspond to lambda (smoothing) param-
eters which will not be estimated.

nFold An optional parameter setting the number of folds for cross validation.

reltol An optional parameter which is passed directly to optim() when optimising the
parameters of the model.

gapCV An optional parameter defining the length of the sequence of skipped values in
the cross validation procedure.

solver A vector with two string values. The only supported combinations are: c("Matrix",
"cholesky") (default), and c("Matrix", "qr"). The parameter is used to specify
a particular library and method to solve the minimisation problem during STR
decompositon.

trace When TRUE, tracing is turned on.

ratioGap Ratio to define hyperparameter bounds for one-dimensional search.

heuristicSTR 9

relCV Minimum improvement required after all predictors tried. It is used to exit
heuristic serach of lambda parameters.

Value

A structure containing input and output data. It is an S3 class STR, which is a list with the following
components:

• output – contains decomposed data. It is a list of three components:

– predictors – a list of components where each component corresponds to the input pre-
dictor. Every such component is a list containing the following:

* data – fit/forecast for the corresponding predictor (trend, seasonal component, flexi-
ble or seasonal predictor).

* beta – beta coefficients of the fit of the coresponding predictor.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.
– random – a list with one component data, which contains residuals of the model fit.
– forecast – a list with two components:

* data – fit/forecast for the model.

* beta – beta coefficients of the fit.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.

• input – input parameters and lambdas used for final calculations.

– data – input data.
– predictors - input predictors.
– lambdas – smoothing parameters used for final calculations (same as input lambdas for

STR method).

• cvMSE – optional cross validated (leave one out) Mean Squared Error.

• optim.CV.MSE or optim.CV.MAE – best cross validated Mean Squared Error or Mean Ab-
solute Error (n-fold) achieved during minimisation procedure.

• nFold – the input nFold parameter.

• gapCV – the input gapCV parameter.

• method – contains strings "STR" or "RSTR" depending on used method.

Author(s)

Alexander Dokumentov

References

Dokumentov, A., and Hyndman, R.J. (2016) STR: A Seasonal-Trend Decomposition Procedure
Based on Regression www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-
15.pdf

https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf
https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf

10 heuristicSTR

See Also

STR STRmodel AutoSTR

Examples

TrendSeasonalStructure <- list(segments = list(c(0,1)),
sKnots = list(c(1,0)))
WDSeasonalStructure <- list(segments = list(c(0,48), c(100,148)),

sKnots = c(as.list(c(1:47,101:147)), list(c(0,48,100,148))))

TrendSeasons <- rep(1, nrow(electricity))
WDSeasons <- as.vector(electricity[,"WorkingDaySeasonality"])

Data <- as.vector(electricity[,"Consumption"])
Times <- as.vector(electricity[,"Time"])
TempM <- as.vector(electricity[,"Temperature"])
TempM2 <- TempM^2

TrendTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 116)
SeasonTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 24)

TrendData <- rep(1, length(Times))
SeasonData <- rep(1, length(Times))

Trend <- list(name = "Trend",
data = TrendData,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,
lambdas = c(1500,0,0))

WDSeason <- list(name = "Dayly seas",
data = SeasonData,
times = Times,
seasons = WDSeasons,
timeKnots = SeasonTimeKnots,
seasonalStructure = WDSeasonalStructure,
lambdas = c(0.003,0,240))

StaticTempM <- list(name = "Temp Mel",
data = TempM,
times = Times,
seasons = NULL,
timeKnots = NULL,
seasonalStructure = NULL,
lambdas = c(0,0,0))

StaticTempM2 <- list(name = "Temp Mel^2",
data = TempM2,
times = Times,
seasons = NULL,
timeKnots = NULL,

heuristicSTR 11

seasonalStructure = NULL,
lambdas = c(0,0,0))

Predictors <- list(Trend, WDSeason, StaticTempM, StaticTempM2)

elec.fit <- heuristicSTR(data = Data,
predictors = Predictors,
gapCV = 48*7)

plot(elec.fit,
xTime = as.Date("2000-01-11")+((Times-1)/48-10),
forecastPanels = NULL)

##

TrendSeasonalStructure <- list(segments = list(c(0,1)),
sKnots = list(c(1,0)))
DailySeasonalStructure <- list(segments = list(c(0,48)),

sKnots = c(as.list(1:47), list(c(48,0))))
WeeklySeasonalStructure <- list(segments = list(c(0,336)),

sKnots = c(as.list(seq(4,332,4)), list(c(336,0))))
WDSeasonalStructure <- list(segments = list(c(0,48), c(100,148)),

sKnots = c(as.list(c(1:47,101:147)), list(c(0,48,100,148))))

TrendSeasons <- rep(1, nrow(electricity))
DailySeasons <- as.vector(electricity[,"DailySeasonality"])
WeeklySeasons <- as.vector(electricity[,"WeeklySeasonality"])
WDSeasons <- as.vector(electricity[,"WorkingDaySeasonality"])

Data <- as.vector(electricity[,"Consumption"])
Times <- as.vector(electricity[,"Time"])
TempM <- as.vector(electricity[,"Temperature"])
TempM2 <- TempM^2

TrendTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 116)
SeasonTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 24)
SeasonTimeKnots2 <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 12)

TrendData <- rep(1, length(Times))
SeasonData <- rep(1, length(Times))

Trend <- list(name = "Trend",
data = TrendData,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,
lambdas = c(1500,0,0))

WSeason <- list(name = "Weekly seas",
data = SeasonData,
times = Times,
seasons = WeeklySeasons,
timeKnots = SeasonTimeKnots2,
seasonalStructure = WeeklySeasonalStructure,

12 plot.STR

lambdas = c(0.8,0.6,100))
WDSeason <- list(name = "Dayly seas",

data = SeasonData,
times = Times,
seasons = WDSeasons,
timeKnots = SeasonTimeKnots,
seasonalStructure = WDSeasonalStructure,
lambdas = c(0.003,0,240))

TrendTempM <- list(name = "Trend temp Mel",
data = TempM,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,
lambdas = c(1e7,0,0))

TrendTempM2 <- list(name = "Trend temp Mel^2",
data = TempM2,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,

lambdas = c(0.01,0,0)) # Starting parameter is too far from the optimal value
Predictors <- list(Trend, WSeason, WDSeason, TrendTempM, TrendTempM2)

elec.fit <- heuristicSTR(data = Data,
predictors = Predictors,
gapCV = 48*7)

plot(elec.fit,
xTime = as.Date("2000-01-11")+((Times-1)/48-10),
forecastPanels = NULL)

plotBeta(elec.fit, predictorN = 4)
plotBeta(elec.fit, predictorN = 5)

plot.STR Plots the results of decomposition

Description

plot.STR plots results of STR decomposition.

Usage

S3 method for class 'STR'
plot(
x,
xTime = NULL,

plot.STR 13

dataPanels = 1,
predictorPanels = as.list(seq_along(x$output$predictors)),
randomPanels = length(x$output$predictors) + 1,
forecastPanels = length(x$output$predictors) + 2,
dataColor = "black",
predictorColors = rep("red", length(x$output$predictors)),
randomColor = "red",
forecastColor = "blue",
vLines = NULL,
xlab = "Time",
main = ifelse(x$method %in% c("STR", "STRmodel"), "STR decomposition",
"Robust STR decomposition"),

showLegend = TRUE,
...

)

Arguments

x Result of STR decomposition.

xTime Times for data to plot.

dataPanels Vector of panel numbers in which to plot the original data. Set to NULL to not
show data.

predictorPanels

A list of vectors of numbers where every such vector describes which panels
should be used for plotting the corresponding predictor.

randomPanels Vector of panel numbers in which to plot the residuals. Set to NULL to not show
residuals.

forecastPanels Vector of panel numbers in which to plot the fit/forecast. Set to NULL to not show
forecasts.

dataColor Color to plot data.
predictorColors

Vector of colors to plot components corresponding to the predictors.

randomColor Color to plot the residuals.

forecastColor Color to plot the fit/forecast.

vLines Vector of times where vertical lines will be plotted.

xlab Label for horizontal axis.

main Main heading for plot.

showLegend When TRUE (default) legend is shown at top of plot.

... Other parameters to be passed directly to plot and lines functions in the imple-
mentation.

Author(s)

Alexander Dokumentov

14 plotBeta

See Also

STRmodel, RSTRmodel, STR, AutoSTR

Examples

fit <- AutoSTR(log(grocery))
plot(fit, forecastPanels=0, randomColor="DarkGreen", vLines = 2000:2010, lwd = 2)

plotBeta Plots the varying beta coefficients of decomposition

Description

plotBeta plots the varying beta coefficients of STR decomposition. It plots coefficients only only
for independent seasons (one less season than defined).

Usage

plotBeta(
x,
xTime = NULL,
predictorN = 1,
dim = c(1, 2, 3),
type = "o",
pch = 20,
palette = function(n) rainbow(n, start = 0, end = 0.7)

)

Arguments

x Result of STR decomposition.
xTime Times for data to plot.
predictorN Predictor number in the decomposition to plot the corresponding beta coefficiets.
dim Dimensions to use to plot the beta coefficients. When 1, the standard charts

are used. When 2, graphics:::filled.contour function is used. When 3,
rgl:::persp3d is used. The default value is 1.

type Type of the graph for one dimensional plots.
pch Symbol code to plot points in 1-dimensional charts. Default value is 20.
palette Color palette for 2 - and 3 - dimentional plots.

Author(s)

Alexander Dokumentov

plotBeta 15

See Also

plot.STR

Examples

fit <- AutoSTR(log(grocery))
for(i in 1:2) plotBeta(fit, predictorN = i, dim = 2)

##

TrendSeasonalStructure <- list(segments = list(c(0,1)),
sKnots = list(c(1,0)))
DailySeasonalStructure <- list(segments = list(c(0,48)),

sKnots = c(as.list(1:47), list(c(48,0))))
WeeklySeasonalStructure <- list(segments = list(c(0,336)),

sKnots = c(as.list(seq(4,332,4)), list(c(336,0))))
WDSeasonalStructure <- list(segments = list(c(0,48), c(100,148)),

sKnots = c(as.list(c(1:47,101:147)), list(c(0,48,100,148))))

TrendSeasons <- rep(1, nrow(electricity))
DailySeasons <- as.vector(electricity[,"DailySeasonality"])
WeeklySeasons <- as.vector(electricity[,"WeeklySeasonality"])
WDSeasons <- as.vector(electricity[,"WorkingDaySeasonality"])

Data <- as.vector(electricity[,"Consumption"])
Times <- as.vector(electricity[,"Time"])
TempM <- as.vector(electricity[,"Temperature"])
TempM2 <- TempM^2

TrendTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 116)
SeasonTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 24)
SeasonTimeKnots2 <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 12)

TrendData <- rep(1, length(Times))
SeasonData <- rep(1, length(Times))

Trend <- list(name = "Trend",
data = TrendData,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,
lambdas = c(1500,0,0))

WSeason <- list(name = "Weekly seas",
data = SeasonData,
times = Times,
seasons = WeeklySeasons,
timeKnots = SeasonTimeKnots2,
seasonalStructure = WeeklySeasonalStructure,
lambdas = c(0.8,0.6,100))

16 RSTRmodel

WDSeason <- list(name = "Dayly seas",
data = SeasonData,
times = Times,
seasons = WDSeasons,
timeKnots = SeasonTimeKnots,
seasonalStructure = WDSeasonalStructure,
lambdas = c(0.003,0,240))

TrendTempM <- list(name = "Trend temp Mel",
data = TempM,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,
lambdas = c(1e7,0,0))

TrendTempM2 <- list(name = "Trend temp Mel^2",
data = TempM2,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,

lambdas = c(0.01,0,0)) # Starting parameter is too far from the optimal value
Predictors <- list(Trend, WSeason, WDSeason, TrendTempM, TrendTempM2)

elec.fit <- STR(data = Data,
predictors = Predictors,
gapCV = 48*7)

plot(elec.fit,
xTime = as.Date("2000-01-11")+((Times-1)/48-10),
forecastPanels = NULL)

plotBeta(elec.fit, predictorN = 4)
plotBeta(elec.fit, predictorN = 5) # Beta coefficients are too "wiggly"

RSTRmodel Robust STR decomposition

Description

Robust Seasonal-Trend decomposition of time series data using Regression (robust version of STRmodel).

Usage

RSTRmodel(
data,
predictors = NULL,
strDesign = NULL,
lambdas = NULL,

RSTRmodel 17

confidence = NULL,
nMCIter = 100,
control = list(nnzlmax = 1e+06, nsubmax = 3e+05, tmpmax = 50000),
reportDimensionsOnly = FALSE,
trace = FALSE

)

Arguments

data Time series or a vector of length L.

predictors List of predictors.
According to the paradigm of this implementation, the trend, the seasonal com-
ponents, the flexible predictors and the seasonal predictors are all presented in
the same form (as predictors) and must be described in this list.
Every predictor is a list of the following structures:

• data – vector of length L (length of input data, see above). For trend or
for a seasonal component it is a vector of ones. For a flexible or a seasonal
predictor it is a vector of the predictor’s data.

• times – vector of length L of times of observations.
• seasons – vector of length L. It is a vector of ones for a trend or a flexible

predictor. It is vector assigning seasons to every observation (for a seasonal
component or a seasonal predictor). Seasons can be fractional for observa-
tions in between seasons.

• timeKnots – vector of times (time knots) where knots are positioned (for
a seasonal component or a seasonal predictor a few knots have the same
time; every knot is represented by time and season). Usually this vector
coincides with times vector described above, or timeKnots is a subset of
times vector.

• seasonalStructure – describes seasonal topology (which can have complex
structure) and seasonal knots.The seasonal topology is described by a list of
segments and seasonal knots, which are positioned inside the segments, on
borders of the segments or, when they are on on borders, they can connect
two or more segments.
seasonalStructure is a list of two elements:

– segments – a list of vectors representing segments. Each vector must
contain two ordered real values which represent left and right borders
of a segment. Segments should not intersect (inside same predictor).

– sKnots – a list of real values (vectors of length one) or vectors of
lengths two or greater (seasonal knots) defining seasons of the knots
(every knot is represented by time and season). All real values must
belong (be inside or on border of) segments listed in segments. If a
few values represent a single seasonal knot then all these values must
be on borders of some segments (or a single segment). In this case they
represent a seasonal knot which connects a few segments (or both sides
of one segment).

18 RSTRmodel

• lambdas – a vector with three values representing lambda (smoothing) pa-
rameters (time-time, season-season, time-season flexibility parameters) for
this predictor.

strDesign An optional parameter used to create the design matrix. It is used internally in
the library to improve performance when the design matrix does not require full
recalculation.

lambdas An optional parameter. A structure which replaces lambda parameters provided
with predictors. It is used as either a starting point for the optimisation of pa-
rameters or as the exact model parameters.

confidence A vector of percentiles giving the coverage of confidence intervals. It must be
greater than 0 and less than 1. If NULL, no confidence intervals are produced.

nMCIter Number of Monte Carlo iterations used to estimate confidence intervals for Ro-
bust STR decomposition.

control Passed directly to rq.fit.sfn() during Robust STR decomposition.
reportDimensionsOnly

A boolean parameter. When TRUE the method constructs the design matrix
and reports its dimensions without proceeding further. It is mostly used for
debugging.

trace When TRUE, tracing is turned on.

Value

A structure containing input and output data. It is an S3 class STR, which is a list with the following
components:

• output – contains decomposed data. It is a list of three components:

– predictors – a list of components where each component corresponds to the input pre-
dictor. Every such component is a list containing the following:

* data – fit/forecast for the corresponding predictor (trend, seasonal component, flexi-
ble or seasonal predictor).

* beta – beta coefficients of the fit of the coresponding predictor.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.
– random – a list with one component data, which contains residuals of the model fit.
– forecast – a list with two components:

* data – fit/forecast for the model.

* beta – beta coefficients of the fit.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.

• input – input parameters and lambdas used for final calculations.

– data – input data.
– predictors - input predictors.
– lambdas – smoothing parameters used for final calculations (same as input lambdas for

STR method).

• method – always contains string "RSTRmodel" for this function.

seasadj.STR 19

Author(s)

Alexander Dokumentov

References

Dokumentov, A., and Hyndman, R.J. (2016) STR: A Seasonal-Trend Decomposition Procedure
Based on Regression www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-
15.pdf

See Also

STRmodel STR

Examples

n <- 70
trendSeasonalStructure <- list(segments = list(c(0,1)), sKnots = list(c(1,0)))
ns <- 5
seasonalStructure <- list(segments = list(c(0,ns)), sKnots = c(as.list(1:(ns-1)),list(c(ns,0))))
seasons <- (0:(n-1))%%ns + 1
trendSeasons <- rep(1, length(seasons))
times <- seq_along(seasons)
data <- seasons + times/4
set.seed(1234567890)
data <- data + rnorm(length(data), 0, 0.2)
data[20] <- data[20] + 3
data[50] <- data[50] - 5
plot(times, data, type = "l")
timeKnots <- times
trendData <- rep(1, n)
seasonData <- rep(1, n)
trend <- list(data = trendData, times = times, seasons = trendSeasons,
timeKnots = timeKnots, seasonalStructure = trendSeasonalStructure, lambdas = c(1,0,0))

season <- list(data = seasonData, times = times, seasons = seasons,
timeKnots = timeKnots, seasonalStructure = seasonalStructure, lambdas = c(1,0,1))

predictors <- list(trend, season)
rstr <- RSTRmodel(data, predictors, confidence = 0.8)
plot(rstr)

seasadj.STR Seasonal adjustment based on STR

Description

seasadj.STR extracts seasonally adjusted data by removing the seasonal components from the
result of STR decomposition.

https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf
https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf

20 STR

Usage

S3 method for class 'STR'
seasadj(object, include = c("Trend", "Random"), ...)

seasadj(object, ...)

Arguments

object Result of STR decomposition.

include Vector of component names to include in the result. The default is c("Trend","Random").

... Other arguments not currently used.

Author(s)

Alexander Dokumentov

See Also

STRmodel, RSTRmodel, STR, AutoSTR

Examples

fit <- AutoSTR(log(grocery))
plot(seasadj(fit))

STR Automatic STR decomposition

Description

Automatically selects parameters for an STR decomposition of time series data.

If a parallel backend is registered for use before STR call, STR will use it for n-fold cross validation
computations.

Usage

STR(
data,
predictors,
confidence = NULL,
robust = FALSE,
lambdas = NULL,
pattern = extractPattern(predictors),
nFold = 5,

STR 21

reltol = 0.005,
gapCV = 1,
solver = c("Matrix", "cholesky"),
nMCIter = 100,
control = list(nnzlmax = 1e+06, nsubmax = 3e+05, tmpmax = 50000),
trace = FALSE,
iterControl = list(maxiter = 20, tol = 1e-06)

)

Arguments

data Time series or a vector of length L.

predictors List of predictors.
According to the paradigm of this implementation, the trend, the seasonal com-
ponents, the flexible predictors and the seasonal predictors are all presented in
the same form (as predictors) and must be described in this list.
Every predictor is a list of the following structures:

• data – vector of length L (length of input data, see above). For trend or
for a seasonal component it is a vector of ones. For a flexible or a seasonal
predictor it is a vector of the predictor’s data.

• times – vector of length L of times of observations.
• seasons – vector of length L. It is a vector of ones for a trend or a flexible

predictor. It is vector assigning seasons to every observation (for a seasonal
component or a seasonal predictor). Seasons can be fractional for observa-
tions in between seasons.

• timeKnots – vector of times (time knots) where knots are positioned (for
a seasonal component or a seasonal predictor a few knots have the same
time; every knot is represented by time and season). Usually this vector
coincides with times vector described above, or timeKnots is a subset of
times vector.

• seasonalStructure – describes seasonal topology (which can have complex
structure) and seasonal knots.The seasonal topology is described by a list of
segments and seasonal knots, which are positioned inside the segments, on
borders of the segments or, when they are on on borders, they can connect
two or more segments.
seasonalStructure is a list of two elements:

– segments – a list of vectors representing segments. Each vector must
contain two ordered real values which represent left and right borders
of a segment. Segments should not intersect (inside same predictor).

– sKnots – a list of real values (vectors of length one) or vectors of
lengths two or greater (seasonal knots) defining seasons of the knots
(every knot is represented by time and season). All real values must
belong (be inside or on border of) segments listed in segments. If a
few values represent a single seasonal knot then all these values must
be on borders of some segments (or a single segment). In this case they

22 STR

represent a seasonal knot which connects a few segments (or both sides
of one segment).

• lambdas – a vector with three values representing lambda (smoothing) pa-
rameters (time-time, season-season, time-season flexibility parameters) for
this predictor.

confidence A vector of percentiles giving the coverage of confidence intervals. It must be
greater than 0 and less than 1. If NULL, no confidence intervals are produced.

robust When TRUE, Robust STR decomposition is used. Default is FALSE.

lambdas An optional parameter. A structure which replaces lambda parameters provided
with predictors. It is used as either a starting point for the optimisation of pa-
rameters or as the exact model parameters.

pattern An optional parameter which has the same structure as lambdas although with
a different meaning. All zero values correspond to lambda (smoothing) param-
eters which will not be estimated.

nFold An optional parameter setting the number of folds for cross validation.

reltol An optional parameter which is passed directly to optim() when optimising the
parameters of the model.

gapCV An optional parameter defining the length of the sequence of skipped values in
the cross validation procedure.

solver A vector with two string values. The only supported combinations are: c("Matrix",
"cholesky") (default), and c("Matrix", "qr"). The parameter is used to specify
a particular library and method to solve the minimisation problem during STR
decompositon.

nMCIter Number of Monte Carlo iterations used to estimate confidence intervals for Ro-
bust STR decomposition.

control Passed directly to rq.fit.sfn() during Robust STR decomposition.

trace When TRUE, tracing is turned on.

iterControl Control parameters for some experimental features. This should not be used by
an ordinary user.

Value

A structure containing input and output data. It is an S3 class STR, which is a list with the following
components:

• output – contains decomposed data. It is a list of three components:

– predictors – a list of components where each component corresponds to the input pre-
dictor. Every such component is a list containing the following:

* data – fit/forecast for the corresponding predictor (trend, seasonal component, flexi-
ble or seasonal predictor).

* beta – beta coefficients of the fit of the coresponding predictor.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.
– random – a list with one component data, which contains residuals of the model fit.

STR 23

– forecast – a list with two components:

* data – fit/forecast for the model.

* beta – beta coefficients of the fit.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.

• input – input parameters and lambdas used for final calculations.

– data – input data.
– predictors - input predictors.
– lambdas – smoothing parameters used for final calculations (same as input lambdas for

STR method).

• cvMSE – optional cross validated (leave one out) Mean Squared Error.

• optim.CV.MSE or optim.CV.MAE – best cross validated Mean Squared Error or Mean Ab-
solute Error (n-fold) achieved during minimisation procedure.

• nFold – the input nFold parameter.

• gapCV – the input gapCV parameter.

• method – contains strings "STR" or "RSTR" depending on used method.

Author(s)

Alexander Dokumentov

References

Dokumentov, A., and Hyndman, R.J. (2016) STR: A Seasonal-Trend Decomposition Procedure
Based on Regression www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-
15.pdf

See Also

STRmodel RSTRmodel AutoSTR

Examples

TrendSeasonalStructure <- list(segments = list(c(0,1)),
sKnots = list(c(1,0)))
WDSeasonalStructure <- list(segments = list(c(0,48), c(100,148)),

sKnots = c(as.list(c(1:47,101:147)), list(c(0,48,100,148))))

TrendSeasons <- rep(1, nrow(electricity))
WDSeasons <- as.vector(electricity[,"WorkingDaySeasonality"])

Data <- as.vector(electricity[,"Consumption"])
Times <- as.vector(electricity[,"Time"])
TempM <- as.vector(electricity[,"Temperature"])
TempM2 <- TempM^2

https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf
https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf

24 STR

TrendTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 116)
SeasonTimeKnots <- seq(from = head(Times, 1), to = tail(Times, 1), length.out = 24)

TrendData <- rep(1, length(Times))
SeasonData <- rep(1, length(Times))

Trend <- list(name = "Trend",
data = TrendData,
times = Times,
seasons = TrendSeasons,
timeKnots = TrendTimeKnots,
seasonalStructure = TrendSeasonalStructure,
lambdas = c(1500,0,0))

WDSeason <- list(name = "Dayly seas",
data = SeasonData,
times = Times,
seasons = WDSeasons,
timeKnots = SeasonTimeKnots,
seasonalStructure = WDSeasonalStructure,
lambdas = c(0.003,0,240))

StaticTempM <- list(name = "Temp Mel",
data = TempM,
times = Times,
seasons = NULL,
timeKnots = NULL,
seasonalStructure = NULL,
lambdas = c(0,0,0))

StaticTempM2 <- list(name = "Temp Mel^2",
data = TempM2,
times = Times,
seasons = NULL,
timeKnots = NULL,
seasonalStructure = NULL,
lambdas = c(0,0,0))

Predictors <- list(Trend, WDSeason, StaticTempM, StaticTempM2)

elec.fit <- STR(data = Data,
predictors = Predictors,
gapCV = 48*7)

plot(elec.fit,
xTime = as.Date("2000-01-11")+((Times-1)/48-10),
forecastPanels = NULL)

###

n <- 70
trendSeasonalStructure <- list(segments = list(c(0,1)), sKnots = list(c(1,0)))
ns <- 5
seasonalStructure <- list(segments = list(c(0,ns)), sKnots = c(as.list(1:(ns-1)),list(c(ns,0))))
seasons <- (0:(n-1))%%ns + 1
trendSeasons <- rep(1, length(seasons))

STRmodel 25

times <- seq_along(seasons)
data <- seasons + times/4
set.seed(1234567890)
data <- data + rnorm(length(data), 0, 0.2)
data[20] <- data[20]+3
data[50] <- data[50]-5
plot(times, data, type = "l")
timeKnots <- times
trendData <- rep(1, n)
seasonData <- rep(1, n)
trend <- list(data = trendData, times = times, seasons = trendSeasons,
timeKnots = timeKnots, seasonalStructure = trendSeasonalStructure, lambdas = c(1,0,0))

season <- list(data = seasonData, times = times, seasons = seasons,
timeKnots = timeKnots, seasonalStructure = seasonalStructure, lambdas = c(1,0,1))

predictors <- list(trend, season)
rstr <- STR(data, predictors, reltol = 0.0000001, gapCV = 10,

confidence = 0.95, nMCIter = 400, robust = TRUE)
plot(rstr)

STRmodel STR decomposition

Description

Seasonal-Trend decomposition of time series data using Regression.

Usage

STRmodel(
data,
predictors = NULL,
strDesign = NULL,
lambdas = NULL,
confidence = NULL,
solver = c("Matrix", "cholesky"),
reportDimensionsOnly = FALSE,
trace = FALSE

)

Arguments

data Time series or a vector of length L.

predictors List of predictors.
According to the paradigm of this implementation, the trend, the seasonal com-
ponents, the flexible predictors and the seasonal predictors are all presented in
the same form (as predictors) and must be described in this list.
Every predictor is a list of the following structures:

26 STRmodel

• data – vector of length L (length of input data, see above). For trend or
for a seasonal component it is a vector of ones. For a flexible or a seasonal
predictor it is a vector of the predictor’s data.

• times – vector of length L of times of observations.
• seasons – vector of length L. It is a vector of ones for a trend or a flexible

predictor. It is vector assigning seasons to every observation (for a seasonal
component or a seasonal predictor). Seasons can be fractional for observa-
tions in between seasons.

• timeKnots – vector of times (time knots) where knots are positioned (for
a seasonal component or a seasonal predictor a few knots have the same
time; every knot is represented by time and season). Usually this vector
coincides with times vector described above, or timeKnots is a subset of
times vector.

• seasonalStructure – describes seasonal topology (which can have complex
structure) and seasonal knots.The seasonal topology is described by a list of
segments and seasonal knots, which are positioned inside the segments, on
borders of the segments or, when they are on on borders, they can connect
two or more segments.
seasonalStructure is a list of two elements:

– segments – a list of vectors representing segments. Each vector must
contain two ordered real values which represent left and right borders
of a segment. Segments should not intersect (inside same predictor).

– sKnots – a list of real values (vectors of length one) or vectors of
lengths two or greater (seasonal knots) defining seasons of the knots
(every knot is represented by time and season). All real values must
belong (be inside or on border of) segments listed in segments. If a
few values represent a single seasonal knot then all these values must
be on borders of some segments (or a single segment). In this case they
represent a seasonal knot which connects a few segments (or both sides
of one segment).

• lambdas – a vector with three values representing lambda (smoothing) pa-
rameters (time-time, season-season, time-season flexibility parameters) for
this predictor.

strDesign An optional parameter used to create the design matrix. It is used internally in
the library to improve performance when the design matrix does not require full
recalculation.

lambdas An optional parameter. A structure which replaces lambda parameters provided
with predictors. It is used as either a starting point for the optimisation of pa-
rameters or as the exact model parameters.

confidence A vector of percentiles giving the coverage of confidence intervals. It must be
greater than 0 and less than 1. If NULL, no confidence intervals are produced.

solver A vector with two string values. The only supported combinations are: c("Matrix",
"cholesky") (default), and c("Matrix", "qr"). The parameter is used to specify
a particular library and method to solve the minimisation problem during STR
decompositon.

STRmodel 27

reportDimensionsOnly

A boolean parameter. When TRUE the method constructs the design matrix
and reports its dimensions without proceeding further. It is mostly used for
debugging.

trace When TRUE, tracing is turned on.

Value

A structure containing input and output data. It is an S3 class STR, which is a list with the following
components:

• output – contains decomposed data. It is a list of three components:

– predictors – a list of components where each component corresponds to the input pre-
dictor. Every such component is a list containing the following:

* data – fit/forecast for the corresponding predictor (trend, seasonal component, flexi-
ble or seasonal predictor).

* beta – beta coefficients of the fit of the coresponding predictor.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.
– random – a list with one component data, which contains residuals of the model fit.
– forecast – a list with two components:

* data – fit/forecast for the model.

* beta – beta coefficients of the fit.

* lower – optional (if requested) matrix of lower bounds of confidence intervals.

* upper – optional (if requested) matrix of upper bounds of confidence intervals.

• input – input parameters and lambdas used for final calculations.

– data – input data.
– predictors - input predictors.
– lambdas – smoothing parameters used for final calculations (same as input lambdas for

STR method).

• cvMSE – optional cross validated (leave one out) Mean Squared Error.

• method – always contains string "STRmodel" for this function.

Author(s)

Alexander Dokumentov

References

Dokumentov, A., and Hyndman, R.J. (2016) STR: A Seasonal-Trend Decomposition Procedure
Based on Regression www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-
15.pdf

See Also

AutoSTR

https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf
https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp13-15.pdf

28 STRmodel

Examples

n <- 50
trendSeasonalStructure <- list(segments = list(c(0,1)), sKnots = list(c(1,0)))
ns <- 5
seasonalStructure <- list(segments = list(c(0,ns)), sKnots = c(as.list(1:(ns-1)),list(c(ns,0))))
seasons <- (0:(n-1))%%ns + 1
trendSeasons <- rep(1, length(seasons))
times <- seq_along(seasons)
data <- seasons + times/4
plot(times, data, type = "l")
timeKnots <- times
trendData <- rep(1, n)
seasonData <- rep(1, n)
trend <- list(data = trendData, times = times, seasons = trendSeasons,
timeKnots = timeKnots, seasonalStructure = trendSeasonalStructure, lambdas = c(1,0,0))

season <- list(data = seasonData, times = times, seasons = seasons,
timeKnots = timeKnots, seasonalStructure = seasonalStructure, lambdas = c(10,0,0))

predictors <- list(trend, season)

str1 <- STRmodel(data, predictors)
plot(str1)

data[c(3,4,7,20,24,29,35,37,45)] <- NA
plot(times, data, type = "l")
str2 <- STRmodel(data, predictors)
plot(str2)

Index

∗ datasets
calls, 4
electricity, 5
grocery, 6

AutoSTR, 2, 5, 10, 14, 20, 23, 27

calls, 4
components, 5

electricity, 5

grocery, 6

heuristicSTR, 7

optim, 3, 8, 22

plot.STR, 12, 15
plotBeta, 14

rq.fit.sfn, 18, 22
RSTRmodel, 5, 14, 16, 20, 23

seasadj (seasadj.STR), 19
seasadj.STR, 19
STR, 4, 5, 7, 10, 14, 19, 20, 20
STRmodel, 5, 10, 14, 16, 19, 20, 23, 25

29

	AutoSTR
	calls
	components
	electricity
	grocery
	heuristicSTR
	plot.STR
	plotBeta
	RSTRmodel
	seasadj.STR
	STR
	STRmodel
	Index

