Package ‘stplanr’

February 1, 2022
Type Package
Title Sustainable Transport Planning
Version 0.8.7
Maintainer Robin Lovelace <rob0@x@gmail.com>

Description Tools for transport planning with an emphasis on spatial transport
data and non-motorized modes. Enables common transport planning tasks including:
downloading and cleaning transport datasets; creating geographic " desire lines"
from origin-destination (OD) data; route assignment, locally and via
interfaces to routing services such as <https://cyclestreets.net/> and
calculation of route segment attributes such as bearing.
The package implements the 'travel flow aggregration' method
described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779>.
Further information on the package's aim and scope can be found
in the vignettes and in a paper in the R Journal
(Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>.
This package Suggests the 'pct’ package which at the time of writing
is unavailable on CRAN. You can install it from the repository
'itsleeds/pct' on GitHub.

License MIT + file LICENSE

BugReports https://github.com/ropensci/stplanr/issues

LazyData yes

Depends R (>=3.5.0)

Imports sp (>=1.3.1), curl (>=3.2), dplyr (>=0.7.6), httr (>=
1.3.1), jsonlite (>= 1.5), stringr (>= 1.3.1), maptools (>=
0.9.3), raster (>= 2.6.7), rgeos (>= 0.3.28), methods,
geosphere (>= 1.5.7), Repp (>=0.12.1), nabor (>= 0.5.0), rlang
(>=0.2.2), Iwgeom (>= 0.1.4), sf (>= 0.6.3), magrittr,
stheaders, data.table, pbapply

LinkingTo RcppArmadillo (>=0.9.100.5.0), Rcpp (>=0.12.18)

Suggests testthat (>= 2.0.0), knitr (>= 1.20), igraph (>= 1.2.2),
rmarkdown (>= 1.10), dodgr (>= 0.0.3), cyclestreets, leaflet,
rgdal, pct, tmap, openxlsx (>=4.1.0), osrm, geodist, mapsapi,
opentripplanner

https://cyclestreets.net/
https://doi.org/10.1177/2399808320942779
https://doi.org/10.32614/RJ-2018-053
https://github.com/ropensci/stplanr/issues

2 R topics documented:

VignetteBuilder knitr

URL https://github.com/ropensci/stplanr,
https://docs.ropensci.org/stplanr/

SystemRequirements GNU make

RoxygenNote 7.1.2

Encoding UTF-8

NeedsCompilation yes

Author Robin Lovelace [aut, cre] (<https://orcid.org/0000-0001-5679-6536>),
Richard Ellison [aut],
Malcolm Morgan [aut] (<https://orcid.org/0000-0002-9488-9183>),
Barry Rowlingson [ctb],
Nick Bearman [ctb],
Nikolai Berkoff [ctb],
Scott Chamberlain [rev] (Scott reviewed the package for rOpenSci, see
https://github.com/ropensci/onboarding/issues/10),
Mark Padgham [ctb],
Andrea Gilardi [ctb] (<https://orcid.org/0000-0002-9424-7439>)

Repository CRAN
Date/Publication 2022-02-01 16:40:02 UTC

R topics documented:

stplanr-package L. L e 5
angle_diff 5
as_sf fun . . . L e 6
bbox_scale e 7
calc_catchment e e 7
calc_catchment_sum e 10
calc_moving_catchment 12
calc_network_catchment e e 13
ca_local e 15
CONS . . o v v it e e e e e e e e e e e e e e e e e 16
destination_ZoMESt i e e e e e e e e 16
dist_google 17
find_network_nodes e e 19
oW . . . e e e e e 20
flowlines e e e e e 21
flow_dests e s e 22
geo_bb . . e 23
geo_bb_matrix 24
geo_buffer 24
ge0_Code e e e e e 25
geo_length. L e 26
geo_projected e e e e 26

gEO_SEleCt_aeq e e e e e e 27

https://github.com/ropensci/stplanr
https://docs.ropensci.org/stplanr/
https://orcid.org/0000-0001-5679-6536
https://orcid.org/0000-0002-9488-9183
https://orcid.org/0000-0002-9424-7439

R topics documented: 3

geo_toptail e e e 28
GSECHION o o L e e e e e e e e 29
ISHines e 30
is_linepoint 31
Line2df e e e e e 31
line2points L e e e 32
HNe2route e e e e e e 33
line2routeRetry L e e e 34
lineLabels e 35
line_bearing L 36
line_breakup L 37
line_length e 38
line_midpoint 38
line_sample 39
line_segment e e e e e e e 39
line_via e e 40
Lpoly . . . e 41
mats2line e e e e e e e e 42
nearest_cyclestreets e e e 42
nearest_google L 43
n_sample_length 44
N_VEILICES . . v v v v v e i e 45
od2line e e e 46
od2odf e e 47
odmatrix_to_od e e 48
od_aggregate_from 49
od_aggregate_to e e e e e e e 50
od_coordS e 51
od_coords2line e e e e e e e e 51
od_data_lines e 52
od_data_Toutes e e 53
od_data_sample e e e 53
od_dist. e e e 53
od_id e 54
od_id_order e 55
Od_ONEWAY o it e e e e e e e e e e e 56
od_to_odmatrixX e e e e e 57
ONEWAYZCO « « o v v v e e e e e e e e e e e e e e e 58
osm_net_example e e e e 59
overline e e e 60
overline_intersection oo e e 62
overline_spatial e 63
plot,sfNetwork, ANY-method 64
plot,SpatialLinesNetwork, ANY-method 65
points2flow 65
points2line L. e e e e e e e e e 66
points2odf 67

quadranto e 67

R topics documented:

read_table_builder e 68
TEPIOJECT .« . v v v i e e e e e e e e e 69
met_add node. 70
rnet_boundary_points 70
rmet_breakup_vVertices e e e e 71
rnet_cycleway_intersection oL e 73
ret_get nodes L. e e 74
TNEL_ZIOUP &« v o v v o e 74
TNEL_OVETPASS . « v v v v v e 76
met_roundabout L L 76
TOULE . . . o v o e i e e e e e e e e e e e e e e e e e 71
routes_fast L e 78
routes_SIOW L L e 79
route_average_gradient Lo 79
route_biKecitizens e e e 80
route_CYCIESIIEEtS o o e e e e e e 81
route_dodgr 83
TOUte_gOOZIE e e e e e e e 84
route_local e 84
route_nearest_POoint oL e e e e e e 85
route_NEtWOrk e e e 86
TOULE_OSITIL . o & v v v v e e e et e e e e e e e e e e e e e e e 87
route_rolling_average L. L e e e e 88
route_rolling_diff 88
route_rolling_gradient e 89
route_sequential_dist L. 90
route_slope_matrix 91
route_slope_vector e 92
route_Splito e e e e e 92
route_split_id e 93
route_transportapi_publico Lo 94
sfNetwork-class e e e 95
sIn2points 95
sln_add_node e 96
sln_clean_graph L 97
SpatialLinesNetwork e 97
SpatialLinesNetwork-class L o oL 98
stplanr-deprecatedo 99
summary,sfNetwork-method L L 99
summary,SpatialLinesNetwork-methodo, 99
sum_network_links L. 100
sum_network_routes L e e e e 101
toptailgs e e 102
toptail_buff 103
update_line_geometryo e e 104
weightfield 105
writeGeoJSON e 106

/o) 1< 107

stplanr-package 5

Index 108

stplanr-package stplanr: Sustainable Transport Planning with R

Description
The stplanr package provides functions to access and analyse data for transportation research, in-
cluding origin-destination analysis, route allocation and modelling travel patterns.

Interesting functions

* overline() - Aggregate overlaying route lines and data intelligently
* calc_catchment() - Create a ’catchment area’ to show the areas serving a destination

* route_cyclestreets() - Finds the fastest routes for cyclists between two places.

Author(s)

Robin Lovelace <rob@ox@gmail . com>

See Also

https://github.com/ropensci/stplanr

angle_diff Calculate the angular difference between lines and a predefined bear-
ing

Description

This function was designed to find lines that are close to parallel and perpendicular to some pre-
defined route. It can return results that are absolute (contain information on the direction of turn,
i.e. + or - values for clockwise/anticlockwise), bidirectional (which mean values greater than +/- 90
are impossible).

Usage
angle_diff(l, angle, bidirectional = FALSE, absolute = TRUE)

Arguments
1 A spatial lines object
angle an angle in degrees relative to North, with 90 being East and -90 being West.

(direction of rotation is ignored).

bidirectional Should the result be returned in a bidirectional format? Default is FALSE. If
TRUE, the same line in the oposite direction would have the same bearing

absolute If TRUE (the default) only positive values can be returned

https://github.com/ropensci/stplanr

6 as_sf fun

Details

Building on the convention used in bearing() and in many applications, North is definied as 0,
East as 90 and West as -90.

See Also

Other lines: geo_toptail(), is_linepoint(), 1line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment(), line_via(),mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), points2line(), toptail_buff (), toptailgs(),
update_line_geometry()

Examples

lib_versions <- sf::sf_extSoftVersion()
lib_versions
fails on some systems (with early versions of PROJ)
if (lib_versions[3] >= "6.3.1") {
Find all routes going North-South
lines_sf <- od2line(od_data_sample, zones = zones_sf)
angle_diff(lines_sf[2,], angle = 0)
angle_diff(lines_sf[2:3,], angle = 0)
a <- angle_diff(flowlines, angle = @, bidirectional = TRUE, absolute = TRUE)

plot(flowlines)
plot(flowlines[a < 15, 1, add = TRUE, lwd = 3, col = "red")
East-West
plot(flowlines[a > 75, 1, add = TRUE, 1lwd = 3, col = "green")
}
as_sf_fun Convert functions support sf/sp
Description
Convert functions support sf/sp
Usage
as_sf_fun(input, FUN, ...)
Arguments
input Input object - an sf or sp object
FUN A function that works on sp/sf data

Arguments passed to FUN

bbox_scale 7

bbox_scale Scale a bounding box

Description

Takes a bounding box as an input and outputs a bounding box of a different size, centred at the same
point.

Usage

bbox_scale(bb, scale_factor)

Arguments

bb Bounding box object

scale_factor = Numeric vector determining how much the bounding box will grow or shrink.
Two numbers refer to extending the bounding box in x and y dimensions, re-
spectively. If the value is 1, the output size will be the same as the input.

See Also

Other geo: geo_bb_matrix(), geo_bb(), quadrant(), reproject()

Examples

bb <- matrix(c(-1.55, 53.80, -1.50, 53.83), nrow = 2)
bb1 <- bbox_scale(bb, scale_factor = 1.05)

bb2 <- bbox_scale(bb, scale_factor = c(2, 1.05))

bb3 <- bbox_scale(bb, 0.1)

plot(x = bb2[1, 1, y = bb2[2, 1)

points(bb1[1, 1, bb1[2, 1)

points(bb3[1, 1, bb3[2, 1)

points(bb[1, 1, bb[2,], col = "red")

calc_catchment Calculate catchment area and associated summary statistics.

Description

Calculate catchment area and associated summary statistics.

Usage

calc_catchment(
polygonlayer,
targetlayer,

calccols,
distance =
projection

calc_catchment

500,
paste@("+proj=aea +lat_1=90 +lat_2=-18.416667 ",

"+lat_0=0 +lon_0=10 +x_0=0 +y_0=0 +ellps=GRS80",
" +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"),
retainAreaProportion = FALSE,

dissolve =
quadsegs =

Arguments

polygonlayer

targetlayer

calccols

distance

projection

FALSE,
NULL

A SpatialPolygonsDataFrame containing zones from which the summary statis-
tics for the catchment variable will be calculated. Smaller polygons will increase
the accuracy of the results.

A SpatialPolygonsDataFrame, SpatialLinesDataFrame, SpatialPointsDataFrame,
SpatialPolygons, SpatialLines or SpatialPoints object containing the specifica-

tions of the facility for which the catchment area is being calculated. If the

object contains more than one facility (e.g., multiple cycle paths) the aggregate

catchment area will be calculated.

A vector of column names containing the variables in the polygonlayer to be
used in the calculation of the summary statistics for the catchment area. If dis-
solve = FALSE, all other variables in the original SpatialPolygonsDataFrame for
zones that fall partly or entirely within the catchment area will be included in the
returned SpatialPolygonsDataFrame but will not be adjusted for the proportion
within the catchment area.

Defines the size of the catchment area as the distance around the targetlayer in
the units of the projection (default = 500 metres)

The proj4string used to define the projection to be used for calculating the catch-
ment areas or a character string ’austalbers’ to use the Australian Albers Equal
Area projection. Ignored if the polygonlayer is projected in which case the tar-
getlayer will be converted to the projection used by the polygonlayer. In all
cases the resulting object will be reprojected to the original coordinate system
and projection of the polygon layer. Default is an Albers Equal Area projec-
tion but for more reliable results should use a local projection (e.g., Australian
Albers Equal Area project).

retainAreaProportion

dissolve

Boolean value. If TRUE retains a variable in the resulting SpatialPolygons-
DataFrame containing the proportion of the original area within the catchment
area (Default = FALSE).

Boolean value. If TRUE collapses the underlying zones within the catchment
area into a single region with statistics for the whole catchment area.

calc_catchment 9

quadsegs Number of line segments to use to approximate a quarter circle. Parameter
passed to buffer functions, default is 5 for sp and 30 for sf.

Details

Calculates the catchment area of a facility (e.g., cycle path) using straight-line distance as well as
summary statistics from variables available in a SpatialPolygonsDataFrame with census tracts or
other zones. Assumes that the frequency of the variable is evenly distributed throughout the zone.
Returns a SpatialPolygonsDataFrame.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_moving_catchment(), calc_network_catchment(),
find_network_nodes(), gsection(), islines(), linelLabels(), overline_spatial(),overline(),
plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork, ANY-method, rnet_breakup_vertices(),

rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

Not run:
data_dir <- system.file("extdata”, package = "stplanr")
unzip(file.path(data_dir, "smallsal.zip"))
unzip(file.path(data_dir, "testcycleway.zip"))
salincome <- as(sf::read_sf("smallsal.shp"”), "Spatial”)
testcycleway <- as(sf::read_sf("testcycleway.shp”), "Spatial”)
cway_catch <- calc_catchment(

polygonlayer = salincome,

targetlayer = testcycleway,

calccols = c("Total"),

distance = 800,

projection = "austalbers”,

dissolve = TRUE
)
plot(salincome)
plot(cway_catch, add = TRUE, col = "green")
plot(testcycleway, col = "red”, add = TRUE)
salincome <- sf::read_sf("smallsal.shp")
testcycleway <- sf::read_sf("testcycleway.shp")
f <- list.files("."”, "testcycleway|smallsal")
file.remove(f)
cway_catch <- calc_catchment(

polygonlayer = salincome,

targetlayer = testcycleway,

calccols = c("Total"),

distance = 800,

projection = "austalbers”,

dissolve = TRUE
)
plot(salincome$geometry)
plot(testcycleway$geometry, col = "red”, add = TRUE)
plot(cway_catch["Total"], add = TRUE)

10

End(Not run)

calc_catchment _sum

calc_catchment_sum Calculate summary statistics for catchment area.

Description

Calculate summary statistics for catchment area.

Usage

calc_catchment_sum(

polygonlayer,
targetlayer,

calccols,
distance =
projection

500,
paste@("+proj=aea +lat_1=90 +lat_2=-18.416667",

" +lat_0=0 +lon_0=10 +x_0=0 +y_0=0",
" +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"),
retainAreaProportion = FALSE,

quadsegs = NA

)

Arguments

polygonlayer

targetlayer

calccols

distance

projection

A SpatialPolygonsDataFrame containing zones from which the summary statis-
tics for the catchment variable will be calculated. Smaller polygons will increase
the accuracy of the results.

A SpatialPolygonsDataFrame, SpatialLinesDataFrame, SpatialPointsDataFrame,
SpatialPolygons, SpatialLines or SpatialPoints object containing the specifica-

tions of the facility for which the catchment area is being calculated. If the

object contains more than one facility (e.g., multiple cycle paths) the aggregate

catchment area will be calculated.

A vector of column names containing the variables in the polygonlayer to be
used in the calculation of the summary statistics for the catchment area.

Defines the size of the catchment area as the distance around the targetlayer in
the units of the projection (default = 500 metres)

The proj4string used to define the projection to be used for calculating the catch-
ment areas or a character string ’austalbers’ to use the Australian Albers Equal
Area projection. Ignored if the polygonlayer is projected in which case the tar-
getlayer will be converted to the projection used by the polygonlayer. In all
cases the resulting object will be reprojected to the original coordinate system
and projection of the polygon layer. Default is an Albers Equal Area projec-
tion but for more reliable results should use a local projection (e.g., Australian
Albers Equal Area project).

calc_catchment_sum 11

retainAreaProportion
Boolean value. If TRUE retains a variable in the resulting SpatialPolygons-

DataFrame containing the proportion of the original area within the catchment
area (Default = FALSE).

quadsegs Number of line segments to use to approximate a quarter circle. Parameter
passed to buffer functions, default is 5 for sp and 30 for sf.

Details

Calculates the summary statistics for a catchment area of a facility (e.g., cycle path) using straight-
line distance from variables available in a SpatialPolygonsDataFrame with census tracts or other
zones. Assumes that the frequency of the variable is evenly distributed throughout the zone. Returns
either a single value if calccols is of length = 1, or a named vector otherwise.

See Also

Other rnet: SpatiallinesNetwork, calc_catchment(), calc_moving_catchment(), calc_network_catchment(),
find_network_nodes(), gsection(), islines(), lineLabels(), overline_spatial(),overline(),
plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

Not run:
data_dir <- system.file("extdata”, package = "stplanr")
unzip(file.path(data_dir, "smallsal.zip"))
unzip(file.path(data_dir, "testcycleway.zip"))
salincome <- rgdal::readOGR(".", "smallsal")
testcycleway <- rgdal::readOGR(".", "testcycleway")
calc_catchment_sum(

polygonlayer = salincome,

targetlayer = testcycleway,

calccols = c("Total"),

distance = 800,

projection = "austalbers”

)

calc_catchment_sum(
polygonlayer = salincome,
targetlayer = testcycleway,
calccols = c("Total"),
distance = 800,
projection = "austalbers”

)

End(Not run)

12

calc_moving_catchment

calc_moving_catchment Calculate summary statistics for all features independently.

Description

Calculate summary statistics for all features independently.

Usage
calc_moving_catchment(
polygonlayer,
targetlayer,
calccols,
distance = 500,
projection = "worldalbers”,
retainAreaProportion = FALSE
)
Arguments
polygonlayer A SpatialPolygonsDataFrame containing zones from which the summary statis-
tics for the catchment variable will be calculated. Smaller polygons will increase
the accuracy of the results.
targetlayer A SpatialPolygonsDataFrame, SpatialLinesDataFrame or SpatialPointsDataFrame
object containing the specifications of the facilities and zones for which the
catchment areas are being calculated.
calccols A vector of column names containing the variables in the polygonlayer to be
used in the calculation of the summary statistics for the catchment areas.
distance Defines the size of the catchment areas as the distance around the targetlayer in
the units of the projection (default = 500 metres)
projection The proj4string used to define the projection to be used for calculating the catch-

ment areas or a character string "austalbers’ to use the Australian Albers Equal
Area projection. Ignored if the polygonlayer is projected in which case the tar-
getlayer will be converted to the projection used by the polygonlayer. In all
cases the resulting object will be reprojected to the original coordinate system
and projection of the polygon layer. Default is an Albers Equal Area projec-
tion but for more reliable results should use a local projection (e.g., Australian
Albers Equal Area project).

retainAreaProportion

Boolean value. If TRUE retains a variable in the resulting SpatialPolygons-
DataFrame containing the proportion of the original area within the catchment
area (Default = FALSE).

calc_network catchment 13

Details

Calculates the summary statistics for a catchment area of multiple facilities or zones using straight-
line distance from variables available in a SpatialPolygonsDataFrame with census tracts or other
zones. Assumes that the frequency of the variable is evenly distributed throughout the zone. Returns
the original source dataframe with additional columns with summary variables.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_network_catchment(),
find_network_nodes(), gsection(), islines(), lineLabels(), overline_spatial(),overline(),
plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork, ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

Not run:
data_dir <- system.file("extdata”, package = "stplanr")
unzip(file.path(data_dir, "smallsal.zip"))
unzip(file.path(data_dir, "testcycleway.zip"))
salincome <- readOGR(".", "smallsal")
testcycleway <- readOGR(".", "testcycleway")
calc_moving_catchment(

polygonlayer = salincome,

targetlayer = testcycleway,

calccols = c("Total"),

distance = 800,

projection = "austalbers”

)

End(Not run)

calc_network_catchment

Calculate catchment area and associated summary statistics using net-
work.

Description

Calculate catchment area and associated summary statistics using network.

Usage

calc_network_catchment(
sln,
polygonlayer,
targetlayer,
calccols,
maximpedance = 1000,

14

distance =

calc_network catchment

100,

projection = paste@("+proj=aea +lat_1=90 +lat_2=-18.416667",
" +1at_0=0 +lon_0=10 +x_0=0 +y_0=0",
" +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"),
retainAreaProportion = FALSE,

dissolve =

Arguments

sln
polygonlayer

targetlayer

calccols

maximpedance
distance

projection

FALSE

The SpatialLinesNetwork to use.

A SpatialPolygonsDataFrame containing zones from which the summary statis-
tics for the catchment variable will be calculated. Smaller polygons will increase
the accuracy of the results.

A SpatialPolygonsDataFrame, SpatialLinesDataFrame or SpatialPointsDataFrame
object containing the specifications of the facilities and zones for which the
catchment areas are being calculated.

A vector of column names containing the variables in the polygonlayer to be
used in the calculation of the summary statistics for the catchment area. If dis-
solve = FALSE, all other variables in the original SpatialPolygonsDataFrame for
zones that fall partly or entirely within the catchment area will be included in the
returned SpatialPolygonsDataFrame but will not be adjusted for the proportion
within the catchment area.

The maximum value of the network’s weight attribute in the units of the weight
(default = 1000).

Defines the additional catchment area around the network in the units of the
projection. (default = 100 metres)

The proj4string used to define the projection to be used for calculating the catch-
ment areas or a character string ’austalbers’ to use the Australian Albers Equal
Area projection. Ignored if the polygonlayer is projected in which case the tar-
getlayer will be converted to the projection used by the polygonlayer. In all
cases the resulting object will be reprojected to the original coordinate system
and projection of the polygon layer. Default is an Albers Equal Area projec-
tion but for more reliable results should use a local projection (e.g., Australian
Albers Equal Area project).

retainAreaProportion

dissolve

Details

Boolean value. If TRUE retains a variable in the resulting SpatialPolygons-
DataFrame containing the proportion of the original area within the catchment
area (Default = FALSE).

Boolean value. If TRUE collapses the underlying zones within the catchment
area into a single region with statistics for the whole catchment area.

Calculates the catchment area of a facility (e.g., cycle path) using network distance (or other weight
variable) as well as summary statistics from variables available in a SpatialPolygonsDataFrame
with census tracts or other zones. Assumes that the frequency of the variable is evenly distributed
throughout the zone. Returns a SpatialPolygonsDataFrame.

ca_local 15

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
find_network_nodes(), gsection(), islines(), lineLabels(), overline_spatial(),overline(),
plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork, ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

Not run:
data_dir <- system.file("extdata”, package = "stplanr")
unzip(file.path(data_dir, "smallsal.zip"”), exdir = tempdir())
unzip(file.path(data_dir, "testcycleway.zip"), exdir = tempdir())
unzip(file.path(data_dir, "sydroads.zip”), exdir = tempdir())
salincome <- readOGR(tempdir(), "smallsal")
testcycleway <- readOGR(tempdir(), "testcycleway")
sydroads <- readOGR(tempdir(), "roads")
sydnetwork <- SpatiallinesNetwork(sydroads)
calc_network_catchment(

sln = sydnetwork,

polygonlayer = salincome,

targetlayer = testcycleway,

calccols = c("Total"),

maximpedance = 800,

distance = 200,

projection = "austalbers”,

dissolve = TRUE

)

End(Not run)

ca_local SpatialPointsDataFrame representing road traffic deaths

Description
This dataset represents the type of data downloaded and cleaned using stplanr functions. It repre-
sents a very small sample (with most variables stripped) of open data from the UK’s Stats19 dataset.
Usage

data(ca_local)

Format

A SpatialPointsDataFrame with 11 rows and 2 columns

16 destination_zones

cents Spatial points representing home locations

Description

These points represent population-weighted centroids of Medium Super Output Area (MSOA)
zones within a 1 mile radius of of my home when I was writing this package.

Usage

data(cents)

Format

A spatial dataset with 8 rows and 5 variables

Details

* geo_code the official code of the zone
* MSOA11NM name zone name

* percent_fem the percent female

* avslope average gradient of the zone

Cents was generated from the data repository pct-data: https://github.com/npct/pct-data. This data
was accessed from within the pct repo: https://github.com/npct/pct, using the following code:

Examples

Not run:
cents
plot(cents)

End(Not run)

destination_zones Example destinations data

Description
This dataset represents trip destinations on a different geographic level than the origins stored in the
object cents.

Usage

data(destination_zones)

dist_google 17

Format

A spatial dataset with 87 features

See Also

Other example data: flow_dests, flowlines, flow, route_network, routes_fast, routes_slow

Examples

Not run:

This is how the dataset was constructed - see

https://cowz.geodata.soton.ac.uk/download/

download.file(
"https://cowz.geodata.soton.ac.uk/download/files/COWZ_EW_2011_BFC.zip",
"COWZ_EW_2011_BFC.zip"

)

unzip("COWZ_EW_2011_BFC.zip")

wz <- raster::shapefile("COWZ_EW_2011_BFC.shp")

to_remove <- list.files(pattern = "COWZ", full.names = TRUE, recursive = TRUE)

file.remove(to_remove)

proj4string(wz)

wz <- sp::spTransform(wz, proj4string(zones))

destination_zones <- wz[zones,]

plot(destination_zones)

devtools::use_data(destination_zones)

head(destination_zones@data)

destinations <- rgeos::gCentroid(destinations, byid = TRUE)

destinations <- sp::SpatialPointsDataFrame(destinations, destination_zones@data)

devtools: :use_data(destinations, overwrite = TRUE)

destinations_sf <- sf::st_as_sf(destinations)

devtools: :use_data(destinations_sf)

End(Not run)

dist_google Return travel network distances and time using the Google Maps API

Description

Return travel network distances and time using the Google Maps API

Usage
dist_google(
from,
to,
google_api = Sys.getenv("GOOGLEDIST"),
g_units = "metric”,

mode = c("bicycling”, "walking"”, "driving”, "transit"),

18 dist_google

nn

arrival_time =

)
Arguments

from Two-column matrix or data frame of coordinates representing latitude and lon-
gitude of origins.

to Two-column matrix or data frame of coordinates representing latitude and lon-
gitude of destinations.

google_api String value containing the Google API key to use.

g_units Text string, either metric (default) or imperial.

mode Text string specifying the mode of transport. Can be bicycling (default), walk-

ing, driving or transit

arrival_time Time of arrival in date format.

Details

Absent authorization, the google API is limited to a maximum of 100 simultaneous queries, and so
will, for example, only returns values for up to 10 origins times 10 destinations.

Details

Estimate travel times accounting for the road network - see https://developers.google.com/
maps/documentation/distance-matrix/overview Note: Currently returns the json object re-
turned by the Google Maps API and uses the same origins and destinations.

See Also

Other od: od21line(), od2odf (), od_aggregate_from(), od_aggregate_to(), od_coords2line(),
od_coords(), od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(), points2flow(),
points2odf()

Examples

Not run:

Distances from one origin to one destination

from <- c(-46.3, -23.4)

to <- c(-46.4, -23.4)

dist_google(from = from, to = to, mode = "walking”) # not supported on last test
dist_google(from = from, to = to, mode = "driving")

dist_google(from = c(@, 52), to = c(@, 53))

data("cents")

Distances from between all origins and destinations

dists_cycle <- dist_google(from = cents, to = cents)

dists_drive <- dist_google(cents, cents, mode = "driving")
dists_trans <- dist_google(cents, cents, mode = "transit")
dists_trans_am <- dist_google(cents, cents,

mode = "transit”,

arrival_time = strptime(”2016-05-27 09:00:00",

https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/maps/documentation/distance-matrix/overview

find_network_nodes 19

format = "%Y-%m-%d %H:%M:%S", tz = "BST"
)
)
Find out how much longer (or shorter) cycling takes than walking
summary(dists_cycle$duration / dists_trans$duration)
Difference between travelling now and for 9am arrival
summary (dists_trans_am$duration / dists_trans$duration)
odf <- points2odf(cents)
odf <- chind(odf, dists)
head(odf)
flow <- points2flow(cents)
show the results for duration (thicker line = shorter)
plot(flow, lwd = mean(odf$duration) / odf$duration)
dist_google(c("Hereford"), c("Weobley”, "Leominster"”, "Kington"))
dist_google(c("Hereford”), c("Weobley”, "Leominster"”, "Kington"),
mode = "transit”, arrival_time = strptime(”2016-05-27 17:30:00",
format = "%Y-%m-%d %H:%M:%S", tz = "BST"
)
)

End(Not run)

find_network_nodes Find graph node ID of closest node to given coordinates

Description

Find graph node ID of closest node to given coordinates

Usage

find_network_nodes(sln, x, y = NULL, maxdist = 1000)

Arguments

sln SpatialLinesNetwork to search.

X Either the x (longitude) coordinate value, a vector of x values, a dataframe or
matrix with (at least) two columns, the first for coordinate for x (longitude)
values and a second for y (latitude) values, or a named vector of length two with
values of ’lat’ and ’lon’. The output of geo_code() either as a single result or as
multiple (using rbind()) can also be used.

y Either the y (latitude) coordinate value or a vector of y values.

maxdist The maximum distance within which to match the nodes to coordinates. If the

SpatialLinesNetwork is projected then distance should be in the same units as
the projection. If longlat, then distance is in metres. Default is 1000.

20 flow

Value

An integer value with the ID of the node closest to (x,y) with a value of NA the closest node is further
than maxdist from (x,y). If x is a vector, returns a vector of Node IDs.

Details

Finds the node ID of the closest point to a single coordinate pair (or a set of coordinates) from a
SpatialLinesNetwork.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment(), gsection(), islines(), lineLabels(), overline_spatial(),

overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

data(routes_fast)

rnet <- overline(routes_fast, attrib = "length")
sln <- SpatiallLinesNetwork(rnet)
find_network_nodes(sln, -1.516734, 53.828)

flow data frame of commuter flows

Description

This dataset represents commuter flows (work travel) between origin and destination zones (see
cents()). The data is from the UK and is available as open data: https://wicid.ukdataservice.
ac.uk/.

Usage
data(flow)

Format

A data frame with 49 rows and 15 columns

Details
The variables are as follows:
* Area.of.residence. id of origin zone

» Area.of.workplace id of destination zone

* All. Travel to work flows by all modes

https://wicid.ukdataservice.ac.uk/
https://wicid.ukdataservice.ac.uk/

flowlines 21

¢ [,4:15]. Flows for different modes

* id. unique id of flow

Although these variable names are unique to UK data, the data structure is generalisable and typical
of flow data from any source. The key variables are the origin and destination ids, which link to the
cents georeferenced spatial objects.

See Also

Other example data: destination_zones, flow_dests, flowlines, route_network, routes_fast,
routes_slow

Examples

Not run:

This is how the dataset was constructed - see

https://github.com/npct/pct - if download to ~/repos

flow <- readRDS("~/repos/pct/pct-data/national/flow.Rds")
data(cents)

o <- flow$Area.of.residence %in% cents$geo_code[-1]

d <- flow$Area.of.workplace %in% cents$geo_code[-1]

flow <- flow[o & d,] # subset flows with o and d in study area
library(devtools)

flow$id <- paste(flow$Area.of.residence, flow$Area.of.workplace)
use_data(flow, overwrite = TRUE)

Convert flows to spatial lines dataset
flowlines <- od2line(flow = flow, zones = cents)
use_data(flowlines, overwrite = TRUE)

Convert flows to routes
routes_fast <- line2route(l = flowlines, plan = "fastest")
routes_slow <- line2route(l = flowlines, plan = "quietest")

use_data(routes_fast)
use_data(routes_slow)
routes_fast_sf <- sf::st_as_sf(routes_fast)
routes_slow_sf <- sf::st_as_sf(routes_slow)

End(Not run)

flowlines spatial lines dataset of commuter flows

Description

Flow data after conversion to a spatial format with od21ine() (see flow()).

22 flow_dests

Format

A spatial lines dataset with 49 rows and 15 columns

See Also

Other example data: destination_zones, flow_dests, flow, route_network, routes_fast,
routes_slow

flow_dests data frame of invented commuter flows with destinations in a different
layer than the origins

Description

data frame of invented commuter flows with destinations in a different layer than the origins

Usage

data(flow_dests)

Format

A data frame with 49 rows and 15 columns

See Also

Other example data: destination_zones, flowlines, flow, route_network, routes_fast, routes_slow

Examples

Not run:

This is how the dataset was constructed

flow_dests <- flow

flow_dests$Area.of .workplace <- sample(x = destinations$WZ11CD, size = nrow(flow))
flow_dests <- dplyr::rename(flow_dests, WZ11CD = Area.of.workplace)
devtools::use_data(flow_dests)

End(Not run)

geo_bb 23

geo_bb Flexible function to generate bounding boxes

Description

Takes a geographic object or bounding box as an input and outputs a bounding box, represented as
a bounding box, corner points or rectangular polygon.

Usage

geo_bb(
shp,
scale_factor = 1,
distance = 0,
output = c("polygon”, "points"”, "bb")

Arguments

shp Spatial object (from sf or sp packages)

scale_factor Numeric vector determining how much the bounding box will grow or shrink.
Two numbers refer to extending the bounding box in x and y dimensions, re-
spectively. If the value is 1, the output size will be the same as the input.

distance Distance in metres to extend the bounding box by
output Type of object returned (polygon by default)

See Also
bb_scale

Other geo: bbox_scale(), geo_bb_matrix(), quadrant(), reproject()

Examples

Simple features implementation:

shp <- routes_fast_sf

shp_bb <- geo_bb(shp, distance = 100)

plot(shp_bb, col = "red”, reset = FALSE)

plot(geo_bb(routes_fast_sf, scale_factor = 0.8), col = "green”, add = TRUE)
plot(geo_bb(routes_fast_sf, output = "points"”), add = TRUE)
plot(routes_fast_sf$geometry, add = TRUE)

24 geo_buffer
geo_bb_matrix Create matrix representing the spatial bounds of an object
Description
Converts a range of spatial data formats into a matrix representing the bounding box
Usage
geo_bb_matrix(shp)
Arguments
shp Spatial object (from sf or sp packages)
See Also
Other geo: bbox_scale(), geo_bb(), quadrant(), reproject()
Examples
geo_bb_matrix(routes_fast)
geo_bb_matrix(routes_fast_sf)
geo_bb_matrix(cents[1, 1)
geo_bb_matrix(c(-2, 54))
geo_bb_matrix(sf::st_coordinates(cents_sf))
geo_buffer Perform a buffer operation on a temporary projected CRS
Description
This function solves the problem that buffers will not be circular when used on non-projected data.
Usage
geo_buffer(shp, dist = NULL, width = NULL, ...)
Arguments
shp A spatial object with a geographic CRS (e.g. WGS84) around which a buffer
should be drawn
dist The distance (in metres) of the buffer (when buffering simple features)
width The distance (in metres) of the buffer (when buffering sp objects)

Arguments passed to the buffer (see ?rgeos: : gBuffer or ?sf: :st_buffer for

details)

geo_code 25

Details

Requires recent version of PROJ (>= 6.3.0). Buffers on sf objects with geographic (lon/lat) coor-
dinates can also be done with the s2 package.

Examples

lib_versions <- sf::sf_extSoftVersion()
lib_versions
if (lib_versions[3] >= "6.3.1") {
buff_sf <- geo_buffer(routes_fast_sf, dist = 50)
plot(buff_sf$geometry)
geo_buffer(routes_fast_sf$geometry, dist = 50)
on legacy sp objects (not tested)
buff_sp <- geo_buffer(routes_fast, width = 100)
class(buff_sp)
plot(buff_sp, col = "red")

geo_code Convert text strings into points on the map

Description

Generate a lat/long pair from data using Google’s geolocation APL

Usage
geo_code(
address,
service = "nominatim”,
base_url = "https://maps.google.com/maps/api/geocode/json”,
return_all = FALSE,
pat = NULL
)
Arguments
address Text string representing the address you want to geocode
service Which service to use? Nominatim by default
base_url The base url to query
return_all Should the request return all information returned by Google Maps? The default
is FALSE: to return only two numbers: the longitude and latitude, in that order
pat The API key used. By default this is set to NULL and this is usually aquired
automatically through a helper, api_pat().
See Also

Other nodes: nearest_google()

https://r-spatial.github.io/s2/

26 geo_projected

Examples

Not run:

geo_code(address = "Hereford")

geo_code("LS7 3HB")

geo_code("hereford”, return_all = TRUE)

needs api key in .Renviron

geo_code("hereford”, service = "google”, pat = Sys.getenv("GOOGLE"), return_all = TRUE)

End(Not run)

geo_length Calculate line length of line with geographic or projected CRS

Description
Takes a line (represented in sf or sp classes) and returns a numeric value representing distance in
meters.

Usage
geo_length(shp)

Arguments

shp A spatial line object

Examples

lib_versions <- sf::sf_extSoftVersion()

lib_versions

if (lib_versions[3] >= "6.3.1") {
geo_length(routes_fast)
geo_length(routes_fast_sf)

3
geo_projected Perform GIS functions on a temporary, projected version of a spatial
object
Description

This function performs operations on projected data.

Usage

geo_projected(shp, fun, crs, silent, ...)

geo_select_aeq 27

Arguments
shp A spatial object with a geographic (WGS84) coordinate system
fun A function to perform on the projected object (e.g. the the rgeos or sf packages)
crs An optional coordinate reference system (if not provided it is set automatically
by geo_select_aeq())
silent A binary value for printing the CRS details (default: TRUE)
Arguments to pass to fun, e.g. byid = TRUE if the function is rgeos: : gLength ()
Examples

lib_versions <- sf::sf_extSoftVersion()
lib_versions
fails on some systems (with early versions of PROJ)
if (lib_versions[3] >= "6.3.1") {
shp <- routes_fast_sf[2:4,]
geo_projected(shp, sf::st_buffer, dist = 100)
3

geo_select_aeq Select a custom projected CRS for the area of interest

Description

This function takes a spatial object with a geographic (WGS84) CRS and returns a custom projected
CRS focussed on the centroid of the object. This function is especially useful for using units of
metres in all directions for data collected anywhere in the world.

Usage

geo_select_aeq(shp)

Arguments

shp A spatial object with a geographic (WGS84) coordinate system

Details

The function is based on this stackexchange answer: https://gis.stackexchange.com/questions/
121489

https://gis.stackexchange.com/questions/121489
https://gis.stackexchange.com/questions/121489

28 geo_toptail

Examples

sp: :bbox(routes_fast)

new_crs <- geo_select_aeq(routes_fast)

rf_projected <- sp::spTransform(routes_fast, new_crs)
sp: :bbox(rf_projected)

line_length <- rgeos::glength(rf_projected, byid = TRUE)
plot(line_length, rf_projected$length)

shp <- zones_sf

geo_select_aeq(shp)

geo_toptail Clip the first and last n metres of SpatialLines

Description

Takes lines and removes the start and end point, to a distance determined by the user.

Usage

geo_toptail(l, toptail_dist, ...)
Arguments

1 A SpatialLines object

toptail_dist The distance (in metres) to top and tail the line by. Can either be a single value
or a vector of the same length as the SpatialLines object.

Arguments passed to rgeos::gBuffer()

Details

Note: toptailgs() is around 10 times faster, but only works on data with geographic CRS’s due
to its reliance on the geosphere package.

See Also

Other lines: angle_diff (), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), line_via(), mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(),
update_line_geometry()

Examples

lib_versions <- sf::sf_extSoftVersion()
lib_versions
dont test due to issues with sp classes on some set-ups
if (lib_versions[3] >= "6.3.1") {
1 <- routes_fast[2:4, 1 # to run with sp classes
1 <- routes_fast_sf[2:4,]

gsection 29

1_top_tail <- geo_toptail(l, 300)

1_top_tail

plot(sf::st_geometry(l_top_tail))
plot(sf::st_geometry(geo_toptail(l, 600)), lwd = 9, add = TRUE)

gsection Function to split overlapping SpatialLines into segments

Description

Divides SpatialLinesDataFrame objects into separate Lines. Each new Lines object is the aggregate
of a single number of aggregated lines.

Usage
gsection(sl, buff_dist = 0)

Arguments
sl SpatialLinesDataFrame with overlapping Lines to split by number of overlap-
ping features.
buff_dist A number specifying the distance in meters of the buffer to be used to crop lines
before running the operation. If the distance is zero (the default) touching but
non-overlapping lines may be aggregated.
See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), islines(), lineLabels(), overline_spatial(),
overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

lib_versions <- sf::sf_extSoftVersion()
lib_versions
fails on some systems (with early versions of PROJ)
if (lib_versions[3] >= "6.3.1") {
sl <- routes_fast_sf[2:4,]
rsec <- gsection(sl)
length(rsec) # sections
plot(rsec, col = seq(length(rsec)))
rsec <- gsection(sl, buff_dist = 50)
length(rsec) # 4 features: issue
plot(rsec, col = seq(length(rsec)))
dont test due to issues with sp classes on some set-ups
sl <- routes_fast[2:4,]
rsec <- gsection(sl)

30 islines

rsec_buff <- gsection(sl, buff_dist = 1)

plot(sl[1], 1wd = 9, col = 1:nrow(sl))

plot(rsec, col = 5 + (1:1length(rsec)), add = TRUE, 1lwd = 3)

plot(rsec_buff, col = 5 + (1:length(rsec_buff)), add = TRUE, lwd = 3)

islines Do the intersections between two geometries create lines?

Description
This is a function required in overline(). It identifies whether sets of lines overlap (beyond shared
points) or not.

Usage

islines(gl, g2)

Arguments
g1 A spatial object
g2 A spatial object
See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), lineLabels(), overline_spatial(),
overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples
Not run:
rnet <- overline(routes_fast[c(2, 3, 22), 1, attrib = "length")
plot(rnet)
lines(routes_fast[22,], col = "red") # line without overlaps

islines(routes_fast[2,], routes_fast[3,])
islines(routes_fast[2, 1, routes_fast[22, 1)

sf implementation

islines(routes_fast_sf[2, 1, routes_fast_sf[3, 1)
islines(routes_fast_sf[2, 1, routes_fast_sf[22,])

End(Not run)

is_linepoint 31

is_linepoint Identify lines that are points

Description

OD matrices often contain “intrazonal’ flows, where the origin is the same point as the destination.
This function can help identify such intrazonal OD pairs, using 2 criteria: the total number of
vertices (2 or fewer) and whether the origin and destination are the same.

Usage

is_linepoint(1l)

Arguments

1 A spatial lines object

Details

Returns a boolean vector. TRUE means that the associated line is in fact a point (has no distance).
This can be useful for removing data that will not be plotted.

See Also

Other lines: angle_diff (), geo_toptail(), line2df (), line2points(), line_bearing(), line_breakup(),
line_midpoint(), line_sample(), line_segment(), line_via(),mats2line(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

data(flowlines)

islp <- is_linepoint(flowlines)
nrow(flowlines)

sum(islp)

Remove invisible 'linepoints'
nrow(flowlines[!islp, 1)

line2df Convert geographic line objects to a data.frame with from and to co-
ords

Description

This function returns a data frame with fx and fy and tx and ty variables representing the beginning
and end points of spatial line features respectively.

32 line2points

Usage
line2df (1)

Arguments

1 A spatial lines object

See Also

Other lines: angle_diff(), geo_toptail(), is_linepoint(), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), line_via(), mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), points2line(), toptail_buff (), toptailgs(),
update_line_geometry()

Examples

data(flowlines)

line2df(flowlines[5, 1) # beginning and end of a single straight line
line2df(flowlines) # on multiple lines

line2df(routes_fast[5:6, 1) # beginning and end of routes
line2df(routes_fast_sf[5:6, 1) # beginning and end of routes

line2points Convert a spatial (linestring) object to points

Description

The number of points will be double the number of lines with line2points. A closely related
function, line2pointsn returns all the points that were line vertices. The points corresponding
with a given line, i, will be (2*1):((2*1)+1). The last function, line2vertices, returns all the
points that are vertices but not nodes. If the input 1 object is composed by only 1 LINESTRING
with 2 POINTS, then it returns an empty sf object.

Usage

line2points(l, ids = rep(1:nrow(l)))
line2pointsn(l)
line2vertices(1l)

Arguments

1 An sf object or a SpatiallLinesDataFrame from the older sp package

ids Vector of ids (by default 1:nrow(1))

line2route 33

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), line_via(), mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), points2line(), toptail_buff (), toptailgs(),
update_line_geometry()

Examples

1 <- routes_fast_sf[2,]

lpoints <- line2points(l)
plot(1l$geometry)

plot(lpoints, add = TRUE)

test all vertices:
plot(1l$geometry)

lpoints2 <- line2pointsn(l)
plot(lpoints2$geometry, add = TRUE)

extract only internal vertices
1_internal_vertices <- line2vertices(l)
plot(sf::st_geometry(l), reset = FALSE)
plot(l_internal_vertices, add = TRUE)
The boundary points are missing

line2route Convert straight OD data (desire lines) into routes

Description

Convert straight OD data (desire lines) into routes

Usage

line2route(
1,
route_fun = stplanr::route_cyclestreets,
n_print = 10,
list_output = FALSE,
1_id = NA,
time_delay = 0,

)
Arguments
1 A spatial (linestring) object
route_fun A routing function to be used for converting the straight lines to routes od21ine ()

n_print A number specifying how frequently progress updates should be shown

34 line2routeRetry

list_output If FALSE (default) assumes spatial (linestring) object output. Set to TRUE to
save output as a list.

1_id Character string naming the id field from the input lines data, typically the origin
and destination ids pasted together. If absent, the row name of the straight lines
will be used.

time_delay Number or seconds to wait between each query

Arguments passed to the routing function, e.g. route_cyclestreets()

Details

See route_cyclestreets() and other route functions for details.

A parallel implementation of this was available until version 0.1.8.

See Also

Other routes: 1ine2routeRetry(), route_dodgr(), route_local(), route_osrm(), route_transportapi_public(),
route()

Examples

Not run:

does not run as requires API key

1 <- flowlines[2:5,]

r <- line2route(1l)

rq <- line2route(l = 1, plan = "quietest”, silent = TRUE)
rsc <- line2route(l = 1, route_fun = cyclestreets::journey)
plot(r)

plot(r, col = "red”, add = TRUE)

plot(rqg, col = "green"”, add = TRUE)

plot(rsc)

plot(l, add = T)

Plot for a single line to compare 'fastest' and 'quietest' route

n<-2

plot(1ln, 1)

lines(rln,], col = "red")
lines(rgln, 1, col = "green")

End(Not run)

line2routeRetry Convert straight spatial (linestring) object from flow data into routes
retrying on connection (or other) intermittent failures

Description

Convert straight spatial (linestring) object from flow data into routes retrying on connection (or
other) intermittent failures

lineLabels 35

Usage
line2routeRetry(lines, pattern = "*Error: ", n_retry = 3, ...)
Arguments
lines A spatial (linestring) object
pattern A regex that the error messages must not match to be retried, default "~Error: "
i.e. do not retry errors starting with "Error: "
n_retry Number of times to retry
Arguments passed to the routing function, e.g. route_cyclestreets()
Details

See line2route() for the version that is not retried on errors.

See Also

Other routes: 1ine2route(), route_dodgr(), route_local(), route_osrm(), route_transportapi_public(),
route()

Examples

Not run:
data(flowlines)
rf_list <- line2routeRetry(flowlines[1:2, 1, pattern = "nonexistanceerror”, silent = F)

End(Not run)

linelLabels Label SpatialLinesDataFrame objects

Description
This function adds labels to lines plotted using base graphics. Largely for illustrative purposes, not
designed for publication-quality graphics.

Usage
linelLabels(sl, attrib)

Arguments
sl A SpatialLinesDataFrame with overlapping elements
attrib A text string corresponding to a named variable in s1
Author(s)

Barry Rowlingson

36 line_bearing

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), overline_spatial(),

overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

line_bearing Find the bearing of straight lines

Description

This is a simple wrapper around the geosphere function bearing() to return the bearing (in degrees
relative to north) of lines.

Usage

line_bearing(l, bidirectional = FALSE)

Arguments

1 A spatial lines object

bidirectional Should the result be returned in a bidirectional format? Default is FALSE. If
TRUE, the same line in the oposite direction would have the same bearing

Details

Returns a boolean vector. TRUE means that the associated line is in fact a point (has no distance).
This can be useful for removing data that will not be plotted.

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_breakup(),
line_midpoint(), line_sample(), line_segment(), line_via(),mats2line(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

lib_versions <- sf::sf_extSoftVersion()

lib_versions

fails on some systems (with early versions of PROJ)

if (lib_versions[3] >= "6.3.1") {
bearings_sf_1_9 <- line_bearing(flowlines_sf[1:5, 1)
bearings_sf_1_9 # lines of @ length have NaN bearing
bearings_sp_1_9 <- line_bearing(flowlines[1:5,])
bearings_sp_1_9
plot(bearings_sf_1_9, bearings_sp_1_9)
line_bearing(flowlines_sf[1:5,], bidirectional = TRUE)
line_bearing(flowlines[1:5, 1, bidirectional = TRUE)

line_breakup 37

line_breakup Break up line objects into shorter segments

Description

This function breaks up a LINESTRING geometries into smaller pieces.

Usage

line_breakup(l, z)

Arguments
1 An sf object with LINESTRING geometry
z An sf object with POLYGON geometry or a number representing the resolution of
grid cells used to break up the linestring objects
Value

An sf object with LINESTRING geometry created after breaking up the input object.

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_midpoint(), line_sample(), line_segment(), line_via(), mats2line(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff (), toptailgs(),update_line_geometry()

Examples

library(sf)

z <- zones_sf$geometry

1 <- routes_fast_sf$geometry[2]

1_split <- line_breakup(l, z)

1

1_split

sf::st_length(l)
sum(sf::st_length(l_split))

plot(z)

plot(l, add = TRUE, 1wd = 9, col = "grey")
plot(l_split, add = TRUE, col = 1:length(l_split))

38 line_midpoint

line_length Calculate length of lines in geographic CRS

Description

Calculate length of lines in geographic CRS

Usage
line_length(l, byid = TRUE)

Arguments
1 A spatial lines object
byid Logical determining whether the length is returned per object (default is true)
line_midpoint Find the mid-point of lines
Description

This is a wrapper around SpatiallLinesMidPoints() that allows it to find the midpoint of lines
that are not projected, which have a lat/long CRS.

Usage

line_midpoint (1)

Arguments

1 A spatial lines object

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_sample(), line_segment (), line_via(),mats21line(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

data(routes_fast)
line_midpoint(routes_fast[2:5, 1)

line_sample 39

line_sample Sample n points along lines with density proportional to a weight

Description

Sample n points along lines with density proportional to a weight

Usage

line_sample(l, n, weights)

Arguments
1 The SpatialLines object along which to create sample points
n The total number of points to sample
weights The relative probabilities of lines being samples

See Also

Other lines: angle_diff (), geo_toptail(),is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_segment(), line_via(),mats2line(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

1 <- flowlines[2:5,]

n <- 100

1_lengths <- line_length(l)
weights <- 1$Al1

p <- line_sample(l, 50, weights)

plot(p)
p <- line_sample(l, 50, weights = 1:1length(l))
plot(p)
line_segment Divide SpatialLines dataset into regular segments
Description

Divide SpatialLines dataset into regular segments

Usage

line_segment(l, n_segments, segment_length = NA)

40 line_via

Arguments
1 A spatial lines object
n_segments The number of segments to divide the line into

segment_length The approximate length of segments in the output (overides n_segments if set)

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_via(),mats2line(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff (), toptailgs(), update_line_geometry()

Examples

data(routes_fast)

1 <- routes_fast[2,]

library(sp)

1_seg2 <- line_segment(l = 1, n_segments = 2)
plot(l_seg2, col = 1_seg2%$group, lwd = 50)

line_via Add geometry columns representing a route via intermediary points

Description
Takes an origin (A) and destination (B), represented by the linestring 1, and generates 3 extra
geometries based on points p:

Usage
line_via(l, p)

Arguments
1 A spatial lines object
p A spatial points object
Details

1. From A to P1 (P1 being the nearest point to A)
2. From P1 to P2 (P2 being the nearest point to B)
3. FromP2to B

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), mats2line(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

I_poly

Examples

library(sf)

1 <- flowlines_sf[2:4,]

p <- destinations_sf

lv <- line_via(l, p)

1lv

library(mapview)

mapview(lv) +

mapview(lv$leg_orig, col = "red")

plot(1v[3], 1lwd = 9, reset = FALSE)
plot(lv$leg_orig, col = "red”, lwd = 5, add = TRUE)
plot(lv$leg_via, col = "black”, add = TRUE)
plot(lv$leg_dest, col = "green”, lwd = 5, add = TRUE)

41

1_poly Line polygon

Description

This dataset represents road width for testing.

Usage

data(l_poly)

Format

A SpatialPolygon

Examples

Not run:

1 <- routes_fast[13,]

1_poly <- geo_projected(l, rgeos::gBuffer, 8)
plot(l_poly)

plot(routes_fast, add = TRUE)

allocate road width to relevant line
devtools::use_data(l_poly)

End(Not run)

42

nearest_cyclestreets

mats2line Convert 2 matrices to lines

Description

Convert 2 matrices to lines

Usage

mats2line(mat1, mat2, crs = NA)

Arguments

mat1 Matrix representing origins

mat2 Matrix representing destinations

crs Number representing the coordinate system of the data, e.g. 4326
See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment(), line_via(), n_sample_length(),
n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

ml <- matrix(c(1, 2, 1, 2), ncol = 2)
m2 <- matrix(c(9, 9, 9, 1), ncol = 2)
1 <- mats2line(ml, m2)

class(1)

1

1sf <- sf::st_sf(l, crs = 4326)
class(1sf)

plot(1lsf)

mapview: :mapview(1lsf)

nearest_cyclestreets Generate nearest point on the route network of a point using the Cy-

cleStreets.net

Description

Generate nearest point on the route network of a point using the CycleStreets.net

Usage

nearest_cyclestreets(shp = NULL, lat, lng, pat = api_pat("cyclestreet”))

nearest_google 43

Arguments
shp A spatial object
lat Numeric vector containing latitude coordinate for each coordinate to map. Also
accepts dataframe with latitude in the first column and longitude in the second
column.
Ing Numeric vector containing longitude coordinate for each coordinate to map.
pat The API key used. By default this is set to NULL and this is usually aquired
automatically through a helper, api_pat().
Details

Retrieve coordinates of the node(s) on the network mapped from coordinates passed to functions.

Note: there is now a dedicated cyclestreets package: https://github.com/Robinlovelace/cyclestreets

Examples

Not run:

nearest_cyclestreets(53, 0.02, pat = Sys.getenv("CYCLESTREETS"))
nearest_cyclestreets(cents[1,], pat = Sys.getenv("CYCLESTREETS"))
nearest_cyclestreets(cents_sf[1,], pat = Sys.getenv("CYCLESTREETS"))

End(Not run)

nearest_google Generate nearest point on the route network of a point using the
Google Maps API

Description

Generate nearest point on the route network of a point using the Google Maps API

Usage

nearest_google(lat, lng, google_api)

Arguments
lat Numeric vector containing latitude coordinate for each coordinate to map. Also
accepts dataframe with latitude in the first column and longitude in the second
column.
1ng Numeric vector containing longitude coordinate for each coordinate to map.
google_api String value containing the Google API key to use.
Details

Retrieve coordinates of the node(s) on the network mapped from coordinates passed to functions.

44 n_sample_length

See Also

Other nodes: geo_code()

Examples

Not run:
nearest_google(lat = 50.333, 1ng = 3.222, google_api = "api_key_here")

End(Not run)

n_sample_length Sample integer number from given continuous vector of line lengths
and probabilities, with total n

Description

Sample integer number from given continuous vector of line lengths and probabilities, with total n

Usage

n_sample_length(n, 1_lengths, weights)

Arguments
n Sum of integer values returned
1_lengths Numeric vector of line lengths
weights Relative probabilities of samples on lines
See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), line_via(), mats2line(),
n_vertices(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

n<-10

1_lengths <- 1:5

weights <- 9:5

(res <- n_sample_length(n, 1_lengths, weights))
sum(res)

n <- 100

1_lengths <- c(12, 22, 15, 14)

weights <- c(38, 10, 44, 34)

(res <- n_sample_length(n, 1_lengths, weights))
sum(res)

more examples:

n_sample_length(5, 1:5, c(@0.1, 0.9, 0, 0, @))

n_vertices 45

n_sample_length(5, 1:5, c(0.5, 0.3, 0.1, 9, @))

1 <- flowlines[2:6,]

1_lengths <- line_length(1l)

n <- n_sample_length(1@, 1l_lengths, weights = 1$All)

n_vertices Retrieve the number of vertices from a SpatialLines or SpatialPolygons
object

Description

Returns a vector of the same length as the number of lines, with the number of vertices per line or
polygon.

Usage

n_vertices(1l)

Arguments

1 A SpatialLines or SpatalPolygons object

Details

See https://gis.stackexchange.com/questions/58147/ for more information.

See Also

Other lines: angle_diff (), geo_toptail (), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), line_via(), mats2line(),
n_sample_length(), onewaygeo(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

n_vertices(routes_fast)
n_vertices(routes_fast_sf)

https://gis.stackexchange.com/questions/58147/

46

od2line

od2line

Convert origin-destination data to spatial lines

Description

Origin-destination ("OD’) flow data is often provided in the form of 1 line per flow with zone codes
of origin and destination centroids. This can be tricky to plot and link-up with geographical data.

This function makes the task easier.

Usage

od2line(
flow,
zones,
destinations = NULL,

zone_code = names(zones)[1],
origin_code = names(flow)[1],

dest_code = names(flow)[2],
zone_code_d = NA,
silent = FALSE

od2line2(flow, zones)

A data frame representing origin-destination data. The first two columns of this
data frame should correspond to the first column of the data in the zones. Thus
in cents(), the first column is geo_code. This corresponds to the first two

A spatial object representing origins (and destinations if no separate destinations

A spatial object representing destinations of travel flows.

Arguments
flow
columns of flow().
zones
object is provided) of travel.
destinations
zone_code

origin_code

dest_code

zone_code_d

silent

Name of the variable in zones containing the ids of the zone. By default this is
the first column names in the zones.

Name of the variable in flow containing the ids of the zone of origin. By default
this is the first column name in the flow input dataset.

Name of the variable in flow containing the ids of the zone of destination. By
default this is the second column name in the flow input dataset or the first
column name in the destinations if that is set.

Name of the variable in destinations containing the ids of the zone. By default
this is the first column names in the destinations.

TRUE by default, setting it to TRUE will show you the matching columns

od2odf 47

Details

Origin-destination (OD) data is often provided in the form of 1 line per OD pair, with zone codes of
the trip origin in the first column and the zone codes of the destination in the second column (see the
vignette(”stplanr-od")) for details. od21ine() creates a spatial (linestring) object representing
movement from the origin to the destination for each OD pair. It takes data frame containing origin
and destination cones (flow) that match the first column in a a spatial (polygon or point) object
(zones).

See Also

Other od: dist_google(), od2odf (), od_aggregate_from(), od_aggregate_to(), od_coords2line(),
od_coords (), od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(), points2flow(),
points2odf ()

Examples

od_data <- stplanr::flow[1:20,]

1 <- od2line(flow = od_data, zones = cents_sf)
plot(sf::st_geometry(cents_sf))

plot(l, lwd = 1$A1l / mean(1$All), add = TRUE)
1 <- od2line(flow = od_data, zones = cents)

When destinations are different
head(destinations[1:5])

od_data2 <- flow_dests[1:12, 1:3]

od_data2

flowlines_dests <- od2line(od_data2, cents_sf, destinations = destinations_sf)
flowlines_dests

plot(flowlines_dests)

od2odf Extract coordinates from OD data

Description

Extract coordinates from OD data

Usage
od2odf (flow, zones)

Arguments
flow A data frame representing origin-destination data. The first two columns of this
data frame should correspond to the first column of the data in the zones. Thus
in cents(), the first column is geo_code. This corresponds to the first two
columns of flow().
zones A spatial object representing origins (and destinations if no separate destinations

object is provided) of travel.

https://docs.ropensci.org/stplanr/articles/stplanr-od.html

48 odmatrix_to_od

Details

Origin-destination (OD) data is often provided in the form of 1 line per OD pair, with zone codes
of the trip origin in the first column and the zone codes of the destination in the second column (see
the vignette(”stplanr-od")) for details. od2odf() creates an ’origin-destination data frame’,
based on a data frame containing origin and destination cones (f1low) that match the first column in
a a spatial (polygon or point) object (zones).

The function returns a data frame with coordinates for the origin and destination.

See Also

Other od: dist_google(),od21ine(), od_aggregate_from(), od_aggregate_to(), od_coords2line(),
od_coords (), od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(), points2flow(),
points2odf ()

Examples

data(flow)
data(zones)
od2odf (flow[1:2, 1, zones)

odmatrix_to_od Convert origin-destination data from wide to long format

Description

This function takes a matrix representing travel between origins (with origin codes in the rownames
of the matrix) and destinations (with destination codes in the colnames of the matrix) and returns a
data frame representing origin-destination pairs.

Usage

odmatrix_to_od(odmatrix)

Arguments
odmatrix A matrix with row and columns representing origin and destination zone codes
and cells representing the flow between these zones.
Details

The function returns a data frame with rows ordered by origin and then destination zone code values
and with names orig, dest and flow.

See Also

Other od: dist_google(), od21ine(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_coords(), od_dist(), od_id, od_oneway(), od_to_odmatrix(), points2flow(),
points2odf ()

https://docs.ropensci.org/stplanr/articles/stplanr-od.html

od_aggregate_from 49

Examples

odmatrix <- od_to_odmatrix(flow)
odmatrix_to_od(odmatrix)

flow[1:9, 1:3]
odmatrix_to_od(od_to_odmatrix(flow[1:9, 1:31))

od_aggregate_from Summary statistics of trips originating from zones in OD data

Description

This function takes a data frame of OD data and returns a data frame reporting summary statistics
for each unique zone of origin.

Usage
od_aggregate_from(flow, attrib = NULL, FUN = sum, ..., col = 1)
Arguments
flow A data frame representing origin-destination data. The first two columns of this
data frame should correspond to the first column of the data in the zones. Thus
in cents(), the first column is geo_code. This corresponds to the first two
columns of flow().
attrib character, column names in sl to be aggregated
FUN A function to summarise OD data by
Additional arguments passed to FUN
col The column that the OD dataset is grouped by (1 by default, the first column
usually represents the origin)
Details

It has some default settings: the default summary statistic is sum() and the first column in the OD
data is assumed to represent the zone of origin. By default, if attrib is not set, it summarises all
numeric columns.

See Also
Other od: dist_google(), od2line(), od2odf (), od_aggregate_to(), od_coords2line(), od_coords(),
od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(), points2flow(), points2odf ()

Examples

od_aggregate_from(flow)

50 od_aggregate_to

od_aggregate_to Summary statistics of trips arriving at destination zones in OD data

Description

This function takes a data frame of OD data and returns a data frame reporting summary statistics
for each unique zone of destination.

Usage
od_aggregate_to(flow, attrib = NULL, FUN = sum, ..., col = 2)
Arguments
flow A data frame representing origin-destination data. The first two columns of this
data frame should correspond to the first column of the data in the zones. Thus
in cents(), the first column is geo_code. This corresponds to the first two
columns of flow().
attrib character, column names in sl to be aggregated
FUN A function to summarise OD data by
Additional arguments passed to FUN
col The column that the OD dataset is grouped by (1 by default, the first column
usually represents the origin)
Details

It has some default settings: it assumes the destination ID column is the 2nd and the default sum-
mary statistic is sum(). By default, if attrib is not set, it summarises all numeric columns.

See Also

Other od: dist_google(), od21line(), od2odf (), od_aggregate_from(), od_coords2line(),
od_coords (), od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(), points2flow(),
points2odf ()

Examples

od_aggregate_to(flow)

od_coords 51

od_coords Create matrices representing origin-destination coordinates

Description

This function takes a wide range of input data types (spatial lines, points or text strings) and returns
a matrix of coordinates representing origin (fx, fy) and destination (tx, ty) points.

Usage

od_coords(from = NULL, to = NULL, 1 = NULL)

Arguments
from An object representing origins (if lines are provided as the first argument, from
is assigned to 1)
to An object representing destinations
1 Only needed if from and to are empty, in which case this should be a spatial
object representing desire lines
See Also

Other od: dist_google(), od21ine(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(),
points2flow(), points2odf ()

Examples

od_coords(from = c(@, 52), to = c(1, 53)) # lon/lat coordinates
od_coords(from = cents[1, 1, to = cents[2, 1) # Spatial points
od_coords(cents_sf[1:3,], cents_sf[2:4, 1) # sf points

od_coords("Hereford”, "Leeds") # geocode locations
od_coords(flowlines[1:3, 1)

od_coords(flowlines_sf[1:3, 1)

od_coords2line Convert origin-destination coordinates into desire lines

Description

Convert origin-destination coordinates into desire lines

Usage

od_coords2line(odc, crs = 4326, remove_duplicates = TRUE)

52

od_data_lines

Arguments

odc A data frame or matrix representing the coordinates of origin-destination data.
The first two columns represent the coordinates of the origin (typically longitude
and latitude) points; the third and fourth columns represent the coordinates of
the destination (in the same CRS). Each row represents travel from origin to
destination.

crs A number representing the coordinate reference system of the result, 4326 by

default.
remove_duplicates

Should rows with duplicated rows be removed? TRUE by default.

See Also

Other od: dist_google(), od21ine(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords (), od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(), points2flow(),
points2odf ()

Examples

odf <- od_coords(l = flowlines_sf)
odlines <- od_coords2line(odf)
odlines <- od_coords2line(odf, crs = 4326)

plot(odlines)
x_coords <- 1:3
n <- 50

d <- data.frame(lapply(1:4, function(x) sample(x_coords, n, replace = TRUE)))
names(d) <- c("fx", "fy", "tx", "ty")

1 <- od_coords2line(d)

plot(1l)

nrow(l)

1_with_duplicates <- od_coords2line(d, remove_duplicates = FALSE)
plot(1l_with_duplicates)

nrow(1l_with_duplicates)

od_data_lines Example of desire line representations of origin-destination data from

UK Census

Description

Derived from od_data_sample showing movement between points represented in cents_sf

Format

A data frame (tibble) object

Examples

od_data_lines

od_data_routes 53

od_data_routes Example segment-level route data

Description
See data-raw/generate-data.Rmd for details on how this was created. The dataset shows routes
between origins and destinations represented in od_data_lines

Format

A data frame (tibble) object

Examples

od_data_routes

od_data_sample Example of origin-destination data from UK Census

Description

See data-raw/generate-data.Rmd for details on how this was created.

Format

A data frame (tibble) object

Examples

od_data_sample

od_dist Quickly calculate Euclidean distances of od pairs

Description

It is common to want to know the Euclidean distance between origins and destinations in OD data.
You can calculate this by first converting OD data to SpatialLines data, e.g. with od2line().
However this can be slow and overkill if you just want to know the distance. This function is a few
orders of magnitude faster.

Usage

od_dist(flow, zones)

54

Arguments

flow

Zones

Details

od_id

A data frame representing origin-destination data. The first two columns of this
data frame should correspond to the first column of the data in the zones. Thus
in cents(), the first column is geo_code. This corresponds to the first two
columns of flow().

A spatial object representing origins (and destinations if no separate destinations
object is provided) of travel.

Note: this function assumes that the zones or centroids in cents have a geographic (lat/lon) CRS.

See Also

Other od: dist_google(), od21line(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_coords(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(),
points2flow(), points2odf ()

Examples

data(flow)

data(cents)

od_dist(flow, cents)

od_id

Combine two ID values to create a single ID number

Description

Combine two ID values to create a single ID number

Usage

od_id_szudzik(x, y, ordermatters = FALSE)

od_id_max_min(x, y)

od_id_character(x, y)

Arguments

X

y

ordermatters

a vector of numeric, character, or factor values
a vector of numeric, character, or factor values

logical, does the order of values matter to pairing, default = FALSE

od_id_order 55

Details

In OD data it is common to have many ’oneway’ flows from "A to B" and "B to A". It can be useful
to group these an have a single ID that represents pairs of IDs with or without directionality, so they
contain twoway’ or bi-directional values.

od_id* functions take two vectors of equal length and return a vector of IDs, which are unique for
each combination but the same for twoway flows.

* the Szudzik pairing function, on two vectors of equal length. It returns a vector of ID numbers.

This function superseeds od_id_order as it is faster on large datasets

See Also

od_oneway

Other od: dist_google(), od2line(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_coords(), od_dist(), od_oneway(), od_to_odmatrix(), odmatrix_to_od(),
points2flow(), points2odf ()

Examples

(d <- od_data_sample[2:9, 1:2])

(id <- od_id_character(d[[1]], d[[211))
duplicated(id)

od_id_szudzik(d[[1]1], d[[2]11)
od_id_max_min(d[[11], d[[2]1])

od_id_order Generate ordered ids of OD pairs so lowest is always first This func-
tion is slow on large datasets, see szudzik_pairing for faster alterna-
tive
Description

Generate ordered ids of OD pairs so lowest is always first This function is slow on large datasets,
see szudzik_pairing for faster alternative

Usage

od_id_order(x, id1 = names(x)[1], id2 = names(x)[2])

Arguments
X A data frame or SpatialLinesDataFrame, representing an OD matrix
id1 Optional (it is assumed to be the first column) text string referring to the name
of the variable containing the unique id of the origin
id2 Optional (it is assumed to be the second column) text string referring to the name

of the variable containing the unique id of the destination

56 od_oneway

Examples

x <- data.frame(idl = c(1, 1, 2, 2, 3), id2 = c(1, 2, 3, 1, 4))
od_id_order(x) # 4th line switches id1 and id2 so stplanr.key is in order

od_oneway Aggregate od pairs they become non-directional

Description

For example, sum total travel in both directions.

Usage

od_oneway (
X,
attrib = names(x[-c(1:2)1)[vapply(x[-c(1:2)1, is.numeric, TRUE)],
id1 = names(x)[11],
id2 = names(x)[2],
stplanr.key = NULL

)
Arguments

X A data frame or SpatialLinesDataFrame, representing an OD matrix

attrib A vector of column numbers or names, representing variables to be aggregated.
By default, all numeric variables are selected. aggregate

id1 Optional (it is assumed to be the first column) text string referring to the name
of the variable containing the unique id of the origin

id2 Optional (it is assumed to be the second column) text string referring to the name

of the variable containing the unique id of the destination

stplanr.key Optional key of unique OD pairs regardless of the order, e.g., as generated by
od_id_max_min() or od_id_szudzik()

Details

Flow data often contains movement in two directions: from point A to point B and then from B to
A. This can be problematic for transport planning, because the magnitude of flow along a route can
be masked by flows the other direction. If only the largest flow in either direction is captured in an
analysis, for example, the true extent of travel will by heavily under-estimated for OD pairs which
have similar amounts of travel in both directions. Flows in both direction are often represented by
overlapping lines with identical geometries (see flowlines()) which can be confusing for users
and are difficult to plot.

Value

oneway outputs a data frame (or sf data frame) with rows containing results for the user-selected
attribute values that have been aggregated.

od_to_odmatrix 57

See Also

Other od: dist_google(), od21ine(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_coords(), od_dist(), od_id, od_to_odmatrix(), odmatrix_to_od(),
points2flow(), points2odf ()

Examples

(od_min <- od_data_sample[c(1, 2, 9), 1:61)

(od_oneway <- od_oneway(od_min))

(od_oneway_old = onewayid(od_min, attrib = 3:6)) # old implementation
nrow(od_oneway) < nrow(od_min) # result has fewer rows

sum(od_min$all) == sum(od_oneway$all) # but the same total flow

od_oneway(od_min, attrib = "all")

attrib <- which(vapply(flow, is.numeric, TRUE))

flow_oneway <- od_oneway(flow, attrib = attrib)

colSums(flow_oneway[attrib]) == colSums(flow[attrib]) # test if the colSums are equal
Demonstrate the results from oneway and onewaygeo are identical

flow_oneway_geo <- onewaygeo(flowlines, attrib = attrib)

flow_oneway_sf <- od_oneway(flowlines_sf)

par(mfrow = c(1, 2))

plot(flow_oneway_geo, lwd = flow_oneway_geo$All / mean(flow_oneway_geo$All))
plot(flow_oneway_sf$geometry, lwd = flow_oneway_sf$All / mean(flow_oneway_sf$All))
par(mfrow = c(1, 1))

od_max_min <- od_oneway(od_min, stplanr.key = od_id_character(od_min[[1]], od_min[[2]1]))
cor(od_max_minall, od_onewayall)

benchmark performance

bench::mark(check = FALSE, iterations = 3,

onewayid(flowlines_sf, attrib),

od_oneway(flowlines_sf)

#)

od_to_odmatrix Convert origin-destination data from long to wide format

Description

This function takes a data frame representing travel between origins (with origin codes in name_orig,
typically the 1st column) and destinations (with destination codes in name_dest, typically the sec-

ond column) and returns a matrix with cell values (from attrib, the third column by default)

representing travel between origins and destinations.

Usage

od_to_odmatrix(flow, attrib = 3, name_orig = 1, name_dest = 2)

58 onewaygeo

Arguments
flow A data frame representing flows between origin and destinations
attrib A number or character string representing the column containing the attribute
data of interest from the flow data frame
name_orig A number or character string representing the zone of origin
name_dest A number or character string representing the zone of destination
See Also

Other od: dist_google(), od21ine(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_coords(),od_dist(), od_id, od_oneway(), odmatrix_to_od(), points2flow(),
points2odf ()

Examples

od_to_odmatrix(flow)
od_to_odmatrix(flow[1:9, 1)
od_to_odmatrix(flow[1:9,], attrib = "Bicycle")

onewaygeo Aggregate flows so they become non-directional (by geometry - the
slow way)

Description

Flow data often contains movement in two directions: from point A to point B and then from B to
A. This can be problematic for transport planning, because the magnitude of flow along a route can
be masked by flows the other direction. If only the largest flow in either direction is captured in an
analysis, for example, the true extent of travel will by heavily under-estimated for OD pairs which
have similar amounts of travel in both directions. Flows in both direction are often represented by
overlapping lines with identical geometries (see flowlines()) which can be confusing for users
and are difficult to plot.

Usage

onewaygeo(x, attrib)

Arguments
X A dataset containing linestring geometries
attrib A text string containing the name of the line’s attribute to aggregate or a numeric
vector of the columns to be aggregated
Details

This function aggregates directional flows into non-directional flows, potentially halving the number
of lines objects and reducing the number of overlapping lines to zero.

osm_net_example 59

Value

onewaygeo outputs a SpatialLinesDataFrame with single lines and user-selected attribute values
that have been aggregated. Only lines with a distance (i.e. not intra-zone flows) are included

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), line_via(),mats2line(),
n_sample_length(), n_vertices(), points2line(), toptail_buff(), toptailgs(), update_line_geometry()

Examples

plot(flowlines[1:30, 1, lwd = flowlines$On.foot[1:30])

singlines <- onewaygeo(flowlines[1:30,], attrib = which(names(flowlines) == "On.foot"))
plot(singlines, lwd = singlines$0On.foot / 2, col = "red”, add = TRUE)
Not run:

plot(flowlines, lwd = flowlines$All / 10)

singlelines <- onewaygeo(flowlines, attrib = 3:14)

plot(singlelines, lwd = singlelines$All / 20, col = "red”, add = TRUE)
sum(singlelines$All) == sum(flowlines$All)

nrow(singlelines)

singlelines_sf <- onewaygeo(flowlines_sf, attrib = 3:14)
sum(singlelines_sf$All) == sum(flowlines_sf$All)
summary(singlelines$All == singlelines_sf$All)

End(Not run)

osm_net_example Example of OpenStreetMap road network

Description

Example of OpenStreetMap road network

Format

An sf object

Examples

osm_net_example

60

overline

overline

Convert series of overlapping lines into a route network

Description

This function takes a series of overlapping lines and converts them into a single route network.

This function is intended as a replacement for overline() and is significantly faster especially on
large datasets. However, it also uses more memory.

Usage

overline(

)

sl,

attrib,
ncores = 1,
simplify = TRUE,

regionalise = 1e+05,

quiet = ifelse(nrow(sl) < 1000, TRUE,
fun = sum

overline2(

sl,

attrib,
ncores = 1,
simplify = TRUE,

regionalise = 1e+0@5,

quiet = ifelse(nrow(sl) < 1000, TRUE,
fun = sum

FALSE),

FALSE),

integer, during simplification regonalisation is used if the number of segments

Should the the function omit messages? NULL by default, which means the out-

)
Arguments
sl A spatial object representing routes on a transport network
attrib character, column names in sl to be aggregated
ncores integer, how many cores to use in parallel processing, default = 1
simplify logical, if TRUE group final segments back into lines, default = TRUE
regionalise
exceeds this value
quiet
put will only be shown if s1 has more than 1000 rows.
fun

Named list of functions to summaries the attributes by? sum is the default.

list(sum = sum,average = mean) will summarise all attributes by sum and

mean.

overline 61

Details

The function can be used to estimate the amount of transport flow’ at the route segment level based
on input datasets from routing services, for example linestring geometries created with the route ()
function.

The overline() function breaks each line into many straight segments and then looks for dupli-
cated segments. Attributes are summed for all duplicated segments, and if simplify is TRUE the
segments with identical attributes are recombined into linestrings.

The following arguments only apply to the sf implementation of overline():

* ncores, the number of cores to use in parallel processing

* simplify, should the final segments be converted back into longer lines? The default setting
is TRUE. simplify = FALSE results in straight line segments consisting of only 2 vertices (the
start and end point), resulting in a data frame with many more rows than the simplified results
(see examples).

* regionalise the threshold number of rows above which regionalisation is used (see details).
For sf objects Regionalisation breaks the dataset into a 10 x 10 grid and then performed the simpli-
fication across each grid. This significantly reduces computation time for large datasets, but slightly

increases the final file size. For smaller datasets it increases computation time slightly but reduces
memory usage and so may also be useful.

A known limitation of this method is that overlapping segments of different lengths are not aggre-
gated. This can occur when lines stop halfway down a road. Typically these errors are small, but
some artefacts may remain within the resulting data.

For very large datasets nrow(x) > 1000000, memory usage can be significant. In these cases is is
possible to overline subsets of the dataset, rbind the results together, and then overline again, to
produce a final result.

Multicore support is only enabled for the regionalised simplification stage as it does not help with
other stages.

Value

An sf object representing a route network

Author(s)

Barry Rowlingson

Malcolm Morgan

References

Morgan M and Lovelace R (2020). Travel flow aggregation: Nationally scalable methods for inter-
active and online visualisation of transport behaviour at the road network level. Environment and
Planning B: Urban Analytics and City Science. July 2020. doi: 10.1177/2399808320942779.

Rowlingson, B (2015). Overlaying lines and aggregating their values for overlapping segments. Re-
producible question from https://gis.stackexchange.com. See https://gis.stackexchange.
com/questions/139681/.

https://doi.org/10.1177/2399808320942779
https://gis.stackexchange.com
https://gis.stackexchange.com/questions/139681/
https://gis.stackexchange.com/questions/139681/

62

overline_intersection

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), linelLabels(),
overline_spatial(), plot,SpatiallLinesNetwork,ANY-method, plot, sfNetwork, ANY-method,
rnet_breakup_vertices(), rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment(), find_network_nodes(), gsection(), islines(), lineLabels(),
overline_spatial(), plot,SpatialLinesNetwork, ANY-method, plot, sfNetwork, ANY-method,
rnet_breakup_vertices(), rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

sl <- routes_fast_sf[2:4,]

s1$All <- flowlines$All[2:4]

rnet <- overline(sl = sl, attrib = "All")

nrow(sl)

nrow(rnet)

plot(rnet)

rnet_mean <- overline(sl, c("All"”, "av_incline"), fun = list(mean = mean, sum = sum))
plot(rnet_mean, lwd = rnet_mean$All_sum / mean(rnet_mean$All_sum))
rnet_sf_raw <- overline(sl, attrib = "length”, simplify = FALSE)
nrow(rnet_sf_raw)

summary(n_vertices(rnet_sf_raw))

plot(rnet_sf_raw)

rnet_sf_raw$n <- 1:nrow(rnet_sf_raw)

plot(rnet_sf_raw[10:25, 1)

legacy implementation based on sp data

sl <- routes_fast[2:4,]

rnetl <- overline(sl = sl, attrib = "length")

rnet2 <- overline(sl = sl, attrib = "length”, buff_dist = 1)

plot(rnetl, lwd = rneti$length / mean(rneti$length))

plot(rnet2, lwd = rnet2$length / mean(rnet2$length))

overline_intersection Convert series of overlapping lines into a route network

Description

This function takes overlapping LINESTRINGs stored in an sf object and returns a route network
composed of non-overlapping geometries and aggregated values.

Usage

overline_intersection(sl, attrib, fun = sum)

overline_spatial

Arguments

sl
attrib

fun

Examples

63

An sf LINESTRING object with overlapping elements
character, column names in sl to be aggregated

Named list of functions to summaries the attributes by? sum is the default.
list(sum = sum,average = mean) will summarise all attributes by sum and
mean.

routes_fast_sf$value <- 1

sl <- routes_fast_sf[4:6,]

attrib <- c("value”, "length")

rnet <- overline_intersection(sl = sl, attrib)

plot(rnet, lwd = rnet$value)

A larger example

sl <- routes_fast_sf[4:7,]

rnet <- overline_intersection(sl = sl, attrib = c("”value”, "length"))
plot(rnet, lwd = rnet$value)

rnet_sf <- overline(routes_fast_sf[4:7, 1, attrib = c("value”, "length"))
plot(rnet_sf, lwd = rnet_sf$value)

An even larger example (not shown, takes time to run)

rnet = overline_intersection(routes_fast_sf, attrib = c("value”, "length"))

rnet_sf <- overline(routes_fast_sf, attrib = c("value”, "length"), buff_dist = 10)
plot(rnet$geometry, lwd = rnet$value *x 2, col = "grey”)

plot(rnet_sf$geometry, 1wd = rnet_sf$value, add = TRUE)

overline_spatial

Spatial aggregation of routes represented with sp classes

Description

This function, largely superseded by sf implementations, still works but is not particularly fast.

Usage

overline_spatial(sl, attrib, fun = sum, na.zero = FALSE, buff_dist = 0)

Arguments

sl

attrib

fun

na.zero

SpatialLinesDataFrame with overlapping Lines to split by number of overlap-
ping features.

character, column names in sl to be aggregated

Named list of functions to summaries the attributes by? sum is the default.
list(sum=sum,average = mean) will summarise all attributes by sum and
mean.

Sets whether aggregated values with a value of zero are removed.

64 plot,sfNetwork, AN'Y-method

buff_dist A number specifying the distance in meters of the buffer to be used to crop lines
before running the operation. If the distance is zero (the default) touching but
non-overlapping lines may be aggregated.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), linelLabels(),

overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

plot,sfNetwork, ANY-method
Plot an sfNetwork

Description

Plot an sfNetwork

Usage
S4 method for signature 'sfNetwork,ANY'
plot(x, component = "sl1", ...)
Arguments
X The sfNetwork to plot
component The component of the network to plot. Valid values are "sl" for the geographic

(sf) representation or "graph" for the graph representation.

Arguments to pass to relevant plot function.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment(), find_network_nodes(), gsection(), islines(), lineLabels(),
overline_spatial(),overline(),plot,SpatiallLinesNetwork, ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

sln_sf <- SpatiallinesNetwork(route_network_sf)
plot(sln_sf)

plot,SpatialLinesNetwork, AN Y-method 65

plot,SpatiallLinesNetwork,ANY-method
Plot a SpatialLinesNetwork

Description

Plot a SpatialLinesNetwork

Usage
S4 method for signature 'SpatiallLinesNetwork,ANY'
plot(x, component = "sl1", ...)
Arguments
X The SpatialLinesNetwork to plot
component The component of the network to plot. Valid values are "s1" for the geographic

(SpatialLines) representation or "graph" for the graph representation.

Arguments to pass to relevant plot function.

See Also

Other rnet: SpatiallinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), lineLabels(),
overline_spatial(),overline(), plot,sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

sln <- SpatiallLinesNetwork(route_network)
plot(sln)
plot(sln, component = "graph")

points2flow Convert a series of points into geographical flows

Description
Takes a series of geographical points and converts them into a spatial (linestring) object representing
the potential flows, or ’spatial interaction’, between every combination of points.

Usage
points2flow(p)

66 points2line

Arguments

p A spatial (point) object

See Also

Other od: dist_google(), od21line(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_coords(),od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(),
points2odf ()

Examples

data(cents)

plot(cents)

flow <- points2flow(cents)
plot(flow, add = TRUE)

flow_sf <- points2flow(cents_sf)
plot(flow_sf)

points2line Convert a series of points, or a matrix of coordinates, into a line

Description

This is a simple wrapper around spLines() that makes the creation of Spatiallines objects easy
and intuitive

Usage
points2line(p)

Arguments

p A spatial (points) obect or matrix representing the coordinates of points.

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment(), line_via(),mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), toptail_buff (), toptailgs(), update_line_geometry()

Examples

p <- matrix(1:4, ncol = 2)
library(sp)

1 <- points2line(p)

plot(l)

1 <- points2line(cents)
plot(1l)

p <- line2points(routes_fast)

points2odf 67

1 <- points2line(p)

plot(l)
1_sf <- points2line(cents_sf)
plot(l_sf)
points2odf Convert a series of points into a dataframe of origins and destinations
Description

Takes a series of geographical points and converts them into a data.frame representing the potential
flows, or ’spatial interaction’, between every combination of points.

Usage

points2odf(p)

Arguments

p A spatial points object

See Also

Other od: dist_google(), od21ine(), od2odf (), od_aggregate_from(), od_aggregate_to(),
od_coords2line(), od_coords(),od_dist(), od_id, od_oneway(), od_to_odmatrix(), odmatrix_to_od(),
points2flow()

Examples

data(cents)

df <- points2odf(cents)

cents_centroids <- rgeos::gCentroid(cents, byid = TRUE)
df2 <- points2odf(cents_centroids)

df3 <- points2odf(cents_sf)

quadrant Split a spatial object into quadrants

Description

Split a spatial object (initially tested on SpatialPolygons) into quadrants.

Usage

quadrant(sp_obj, number_out = FALSE)

68 read_table_builder

Arguments

sp_obj Spatial object

number_out Should the output be numbers from 1:4 (FALSE by default)
Details

Returns a character vector of NE, SE, SW, NW corresponding to north-east, south-east quadrants
respectively. If number_out is TRUE, returns numbers from 1:4, respectively.

See Also
Other geo: bbox_scale(), geo_bb_matrix(), geo_bb(), reproject()

Examples

data(zones)

sp_obj <- zones

(quads <- quadrant(sp_obj))

plot(sp_obj, col = factor(quads))

points(rgeos::gCentroid(sp_obj), col = "white")

edge cases (e.g. when using rasters) lead to NAs

sp_obj <- raster::rasterToPolygons(raster::raster(ncol = 3, nrow = 3))
(quads <- quadrant(sp_obj))

plot(sp_obj, col = factor(quads))

read_table_builder Import and format Australian Bureau of Statistics (ABS) TableBuilder
files

Description

Import and format Australian Bureau of Statistics (ABS) TableBuilder files

Usage

read_table_builder(dataset, filetype = "csv", sheet = 1, removeTotal = TRUE)

Arguments

dataset Either a dataframe containing the original data from TableBuilder or a character
string containing the path of the unzipped TableBuilder file.

filetype A character string containing the filetype. Valid values are ’csv’, ’legacycsv’
and ’xIsx’ (default = ’csv’). Required even when dataset is a dataframe. Use
’legacycsv’ for csv files derived from earlier versions of TableBuilder for which
csv outputs were csv versions of the xIsx files. Current csv output from Table-
Builder follow a more standard csv format.

sheet An integer value containing the index of the sheet in the xIsx file (default = 1).

removeTotal A boolean value. If TRUE removes the rows and columns with totals (default =

TRUE).

reproject 69

Details

The Australian Bureau of Statistics (ABS) provides customised tables for census and other datasets
in a format that is difficult to use in R because it contains rows with additional information. This
function imports the original (unzipped) TableBuilder files in .csv or .xlsx format before creating
an R dataframe with the data.

Examples

data_dir <- system.file("extdata”, package = "stplanr")
t1 <- read_table_builder(file.path(data_dir, "SAl1Population.csv"))
if (requireNamespace("openxlsx")) {
t2 <- read_table_builder(file.path(data_dir, "SA1Population.xlsx"),
filetype = "xlsx", sheet = 1, removeTotal = TRUE
)
3
f <- file.path(data_dir, "SAlPopulation.csv")
salpop <- read.csv(f, stringsAsFactors = TRUE, header = FALSE)
t3 <- read_table_builder(salpop)

reproject Reproject lat/long spatial object so that they are in units of Im

Description

Many GIS functions (e.g. finding the area)

Usage

reproject(shp, crs = geo_select_aeq(shp))

Arguments
shp A spatial object with a geographic (WGS84) coordinate system
crs An optional coordinate reference system (if not provided it is set automatically
by geo_select_aeq()).
See Also

Other geo: bbox_scale(), geo_bb_matrix(), geo_bb(), quadrant()

Examples

data(routes_fast)
rf_aeq <- reproject(routes_fast[1:3, 1)
rf_osgh <- reproject(routes_fast[1:3,], 27700)

70 rnet_boundary_points

rnet_add_node Add a node to route network

Description

Add a node to route network

Usage

rnet_add_node(rnet, p)

Arguments

rnet A route network of the type generated by overline()

p A point represented by an sf object the will split the route
Examples

sample_routes <- routes_fast_sf[2:6, NULL]

sample_routes$value <- rep(1:3, length.out = 5)

rnet <- overline2(sample_routes, attrib = "value")

p <- sf::st_sfc(sf::st_point(c(-1.540, 53.826)), crs = sf::st_crs(rnet))
r_split <- route_split(rnet, p)

plot(rnet$geometry, lwd = rnet$value * 5, col = "grey")

plot(p, cex = 9, add = TRUE)

plot(r_split, col = 1:nrow(r_split), add = TRUE, lwd = r_split$value)

rnet_boundary_points Get points at the beginner and end of linestrings

Description

Get points at the beginner and end of linestrings
Usage

rnet_boundary_points(rnet)

rnet_boundary_df (rnet)

rnet_boundary_unique(rnet)

rnet_boundary_points_lwgeom(rnet)

rnet_duplicated_vertices(rnet, n = 2)

rnet_breakup_ vertices 71

Arguments
rnet An sf or sfc object with LINESTRING geometry representing a route network.
n The minimum number of time a vertex must be duplicated to be returned
Examples

has_sfheaders <- requireNamespace("”sfheaders"”, quietly = TRUE)
if(has_sfheaders) {

rnet <- rnet_roundabout

bp1 <- rnet_boundary_points(rnet)

bp2 <- line2points(rnet) # slower version with lwgeom

bp3 <- rnet_boundary_points_lwgeom(rnet) # slower version with lwgeom
bp4 <- rnet_boundary_unique(rnet)

nrow(bp1)

nrow(bp3)

identical(sort(sf::st_coordinates(bp1)), sort(sf::st_coordinates(bp2)))
identical (sort(sf::st_coordinates(bp3)), sort(sf::st_coordinates(bp4)))

plot(rnet$geometry)
plot(bp3, add = TRUE)
3

rnet_breakup_vertices Break up an sf object with LINESTRING geometry.

Description

This function breaks up a LINESTRING geometry into multiple LINESTRING(s). It is used mainly
for preserving routability of an sfNetwork object that is created using Open Street Map data. See
details, stplanr/issues/282, and stplanr/issues/416.

Usage

rnet_breakup_vertices(rnet, verbose = FALSE)

Arguments
rnet An sf or sfc object with LINESTRING geometry representing a route network.
verbose Boolean. If TRUE, the function prints additional messages.

Details

A LINESTRING geometry is broken-up when one of the two following conditions are met:

1. two or more LINESTRINGS share a POINT which is a boundary point for some LINESTRING(s),
but not all of them (see the rnet_roundabout example);

2. two or more LINESTRINGS share a POINT which is not in the boundary of any LINESTRING
(see the rnet_cycleway_intersection example).

https://github.com/ropensci/stplanr/issues/282
https://github.com/ropensci/stplanr/issues/416

72 rnet_breakup_vertices

The problem with the first example is that, according to algorithm behind SpatiallinesNetwork(),
two LINESTRINGS are connected if and only if they share at least one point in their boundaries.
The roads and the roundabout are clearly connected in the "real" world but the corresponding
LINESTRING objects do not share two distinct boundary points. In fact, by Open Street Map
standards, a roundabout is represented as a closed and circular LINESTRING, and this implies that
the roundabout is not connected to the other roads according to SpatiallLinesNetwork() defini-
tion. By the same reasoning, the roads in the second example are clearly connected in the "real"
world, but they do not share any point in their boundaries. This function is used to solve this type
of problem.

Value

An sf or sfc object with LINESTRING geometry created after breaking up the input object.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), lineLabels(),
overline_spatial(),overline(),plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork, ANY-method,
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

library(sf)
def_par <- par(no.readonly = TRUE)
par(mar = rep(@, 4))

Check the geometry of the roundabout example. The dots represent the

boundary points of the LINESTRINGS. The "isolated” red point in the

top-left is the boundary point of the roundabout, and it is not shared

with any other street.

plot(st_geometry(rnet_roundabout), lwd = 2, col = rainbow(nrow(rnet_roundabout)))
boundary_points <- st_geometry(line2points(rnet_roundabout))

points_cols <- rep(rainbow(nrow(rnet_roundabout)), each = 2)
plot(boundary_points, pch = 16, add = TRUE, col = points_cols, cex = 2)

Clean the roundabout example.

rnet_roundabout_clean <- rnet_breakup_vertices(rnet_roundabout)
plot(st_geometry(rnet_roundabout_clean), 1lwd = 2, col = rainbow(nrow(rnet_roundabout_clean)))
boundary_points <- st_geometry(line2points(rnet_roundabout_clean))

points_cols <- rep(rainbow(nrow(rnet_roundabout_clean)), each = 2)

plot(boundary_points, pch = 16, add = TRUE, col = points_cols)

The roundabout is now routable since it was divided into multiple pieces

(one for each colour), which, according to SpatiallLinesNetwork() function,

are connected.

Check the geometry of the overpasses example. This example is used to test
that this function does not create any spurious intersection.
plot(st_geometry(rnet_overpass), lwd = 2, col = rainbow(nrow(rnet_overpass)))
boundary_points <- st_geometry(line2points(rnet_overpass))

points_cols <- rep(rainbow(nrow(rnet_overpass)), each = 2)
plot(boundary_points, pch = 16, add = TRUE, col = points_cols, cex = 2)

rnet_cycleway_intersection 73

At the moment the network is not routable since one of the underpasses is
not connected to the other streets.

Check interactively.
mapview: :mapview(rnet_overpass)

Clean the network. It should not create any spurious intersection between

roads located at different heights.

rnet_overpass_clean <- rnet_breakup_vertices(rnet_overpass)
plot(st_geometry(rnet_overpass_clean), lwd = 2, col = rainbow(nrow(rnet_overpass_clean)))
Check interactively.

mapview: :mapview(rnet_overpass)

Check the geometry of the cycleway_intersection example. The black dots
represent the boundary points and we can see that the two roads are not
connected according to SpatiallLinesNetwork() function.

plot(
rnet_cycleway_intersection$geometry,
lwd = 2,
col = rainbow(nrow(rnet_cycleway_intersection)),
cex = 2
)

plot(st_geometry(line2points(rnet_cycleway_intersection)), pch = 16, add = TRUE)
Check interactively
mapview: :mapview(rnet_overpass)

Clean the rnet object and plot the result.
rnet_cycleway_intersection_clean <- rnet_breakup_vertices(rnet_cycleway_intersection)

plot(
rnet_cycleway_intersection_clean$geometry,
lwd = 2,
col = rainbow(nrow(rnet_cycleway_intersection_clean)),
cex = 2
)

plot(st_geometry(line2points(rnet_cycleway_intersection_clean)), pch = 16, add = TRUE)

par(def_par)

rnet_cycleway_intersection
Example of cycleway intersection data showing problems for Spa-
tialLinesNetwork objects

Description

See data-raw/rnet_cycleway_intersection for details on how this was created.

Format

A sf object

74

Examples

rnet_cycleway_intersection

rnet_group

rnet_get_nodes Extract nodes from route network

Description

Extract nodes from route network

Usage

rnet_get_nodes(rnet, p = NULL)

Arguments

rnet A route network of the type generated by overline()

p A point represented by an sf object the will split the route
Examples

rnet_get_nodes(route_network_sf)

rnet_group Assign segments in a route network to groups

Description

This function assigns linestring features, many of which in an sf object can form route networks,
into groups. By default, the function igraph: :clusters() is used to determine group membership,

but any igraph::cluster®() function can be used. See examples and the web page igraph.org/r/doc/communities.html

for more information. From that web page, the following clustering functions are available:

Usage

rnet_group(rnet, ...)

Default S3 method:
rnet_group(rnet, ...)

S3 method for class 'sfc'
rnet_group(
rnet,
cluster_fun = igraph::clusters,
d = NULL,

https://igraph.org/r/doc/communities.html

rnet_group 75

as.undirected = TRUE,

)

S3 method for class 'sf'
rnet_group(
rnet,
cluster_fun = igraph::clusters,
d = NULL,
as.undirected = TRUE,

)
S3 method for class 'sfNetwork'
rnet_group(rnet, cluster_fun = igraph::clusters, ...)
Arguments
rnet An sf, sfc, or sfNetwork object representing a route network.

Arguments passed to other methods.

cluster_fun The clustering function to use. Various clustering functions are available in the
igraph package. Default: igraph::clusters().

d Optional distance variable used to classify segments that are close (within a
certain distance specified by d) to each other but not necessarily touching

as.undirected Coerce the graph created internally into an undirected graph with igraph: :as.undirected()?
TRUE by default, which enables use of a wider range of clutering functions.

Details

cluster_edge_betweenness, cluster_fast_greedy, cluster_label_prop, cluster_leading_eigen, cluster_louvain, clus-
ter_optimal, cluster_spinglass, cluster_walktrap

Value

If the input rnet is an sf/sfc object, it returns an integer vector reporting the groups of each net-
work element. If the input is an sfNetwork object, it returns an sfNetwork object with an extra
column called rnet_group representing the groups of each network element. In the latter case, the
connectivity of the spatial object is derived from the sfNetwork object.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), linelLabels(),
overline_spatial(),overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork, ANY-method,
rnet_breakup_vertices(), sln2points(), sum_network_links(), sum_network_routes()

76 rnet_roundabout

Examples

rnet <- rnet_breakup_vertices(stplanr::osm_net_example)
rnet$group <- rnet_group(rnet)

plot(rnet["group”])

mapview: :mapview(rnet["group"])

rnet$group_25m <- rnet_group(rnet, d = 25)
plot(rnet["group_25m"1)

rnet$group_walktrap <- rnet_group(rnet, igraph::cluster_walktrap)
plot(rnet["group_walktrap”])

rnet$group_louvain <- rnet_group(rnet, igraph::cluster_louvain)
plot(rnet["group_louvain”])

rnet$group_fast_greedy <- rnet_group(rnet, igraph::cluster_fast_greedy)
plot(rnet["group_fast_greedy”])

show sfNetwork implementation
sfn <- SpatiallLinesNetwork(rnet)
sfn <- rnet_group(sfn)
plot(sfn@sl["rnet_group”])

rnet_overpass Example of overpass data showing problems for SpatialLinesNetwork
objects

Description

See data-raw/rnet_overpass.R for details on how this was created.

Format

A sf object

Examples

rnet_overpass

rnet_roundabout Example of roundabout data showing problems for SpatialLinesNet-
work objects

Description

See data-raw/rnet_roundabout.R for details on how this was created.

Format

A sf object

route

Examples

rnet_roundabout

77

route

Plan routes on the transport network

Description

Takes origins and destinations, finds the optimal routes between them and returns the result as a
spatial (sf or sp) object. The definition of optimal depends on the routing function used

Usage
route(
from = NULL,
to = NULL,
1 = NULL,
route_fun =
wait = 0,
n_print = 10,
list_output =
cl = NULL,
)
Arguments
from
to
1
route_fun
wait
n_print

list_output

cl

See Also

cyclestreets:: journey,

FALSE,

An object representing origins (if lines are provided as the first argument, from
is assigned to 1)

An object representing destinations

Only needed if from and to are empty, in which case this should be a spatial
object representing desire lines

A routing function to be used for converting the straight lines to routes od21ine ()

How long to wait between routes? 0 seconds by default, can be useful when
sending requests to rate limited APIs.

A number specifying how frequently progress updates should be shown

If FALSE (default) assumes spatial (linestring) object output. Set to TRUE to
save output as a list.

Cluster

Arguments passed to the routing function, e.g. route_cyclestreets()

Other routes: 1ine2routeRetry(), line2route(), route_dodgr(), route_local(), route_osrm(),
route_transportapi_public()

78

Examples

library(sf)
1 = od_data_lines[2,]

if(curl::has_internet()) {
r_walk = route(l = 1, route_fun =
r_bike = route(l = 1, route_fun =
plot(r_walk$geometry)
plot(r_bike$geometry, col = "blue”, add = TRUE)
r_bc = route(l = 1, route_fun = route_bikecitizens)
plot(r_bc)
route(l = 1, route_fun =
library(osrm)
r_osrm <- route(
1=1,
route_fun = osrmRoute,
returnclass = "sf"
)
nrow(r_osrm)
plot(r_osrm)
sln <- stplanr::SpatialLinesNetwork(route_network_sf)
calculate shortest paths
plot(sln)
plot(1l$geometry, add = TRUE)
r_local <- stplanr::route(
1=1,
route_fun =
sln = sln

)
plot(r_local["all"], add = TRUE, lwd = 5)

route_bikecitizens, wait = 1)

stplanr::route_local,

}

route_osrm, osrm.profile
route_osrm, osrm.profile

= "foot")
= "bike")

routes_fast

routes_fast

spatial lines dataset of commuter flows on the travel network

Description

Simulated travel route allocated to the transport network representing the *fastest’ between cents()

objects with od21ine() (see flow()).

Usage

data(routes_fast)

Format

A spatial lines dataset with 49 rows and 15 columns

routes_slow 79

See Also

Other example data: destination_zones, flow_dests, flowlines, flow, route_network, routes_slow

routes_slow spatial lines dataset of commuter flows on the travel network

Description
Simulated travel route allocated to the transport network representing the ’quietest’ between cents ()
objects with od21ine() (see flow()).

Usage

data(routes_slow)

Format

A spatial lines dataset 49 rows and 15 columns

See Also

Other example data: destination_zones, flow_dests, flowlines, flow, route_network, routes_fast

route_average_gradient
Return average gradient across a route

Description

This function assumes that elevations and distances are in the same units.

Usage

route_average_gradient(elevations, distances)

Arguments
elevations Elevations, e.g. those provided by the cyclestreets package
distances Distances, e.g. those provided by the cyclestreets package
See Also

Other route_funs: route_rolling_average(), route_rolling_diff(), route_rolling_gradient(),
route_sequential_dist(), route_slope_matrix(), route_slope_vector()

80

Examples

route_bikecitizens

r1 <- od_data_routes[od_data_routes$route_number == 2,]

elevations <- ri1$elevations

distances <- ri1$distances

route_average_gradient(elevations, distances) # an average of a 4% gradient

route_bikecitizens Get a route from the BikeCitizens web service

Description

See bikecitizens.net for an interactive version of the routing engine used by BikeCitizens.

Usage

route_bikecitizens(

from = NULL,
to = NULL,

base_url = "https://map.bikecitizens.net/api/v1/locations/route.json”,
cccode = "gb-leeds”,

routing_profile = "balanced”,

bike_profile = "citybike",

from_lat = 53
from_lon = -1

.8265,
.576195,

to_lat = 53.80025,
to_lon = -1.51577

Arguments

from
to
base_url

cccode

routing_profile

bike_profile
from_lat
from_lon
to_lat

to_lon

A numeric vector representing the start point
A numeric vector representing the end point
The base URL for the routes

The city code for the routes

What type of routing to use?
What type of bike?

Latitude of origin

Longitude of origin

Latitude of destination

Longitude of destination

https://map.bikecitizens.net/gb-leeds#/!/1/1/53.8265,-1.576195/53.80025,-1.51577

route_cyclestreets 81

Examples

if(curl::has_internet()) {
route_bikecitizens()

1ldf <- od_coords(stplanr::od_data_lines[2, 1)
r <- route_bikecitizens(1ldf)

plot(r)

3

route_cyclestreets Plan a single route with CycleStreets.net

Description

Provides an R interface to the CycleStreets.net cycle planning API, a route planner made by cyclists
for cyclists. The function returns a SpatialLinesDataFrame object representing the an estimate of
the fastest, quietest or most balance route. Currently only works for the United Kingdom and
part of continental Europe, though other areas may be requested by contacting CycleStreets. See
https://www.cyclestreets.net/api/for more information.

Usage

route_cyclestreets(
from,
to,
plan = "fastest”,
silent = TRUE,

pat = NULL,
base_url = "https://www.cyclestreets.net”,
reporterrors = TRUE,
save_raw = "FALSE"
)
Arguments
from Text string or coordinates (a numeric vector of length = 2 representing latitude
and longitude) representing a point on Earth.
to Text string or coordinates (a numeric vector of length = 2 representing latitude
and longitude) representing a point on Earth. This represents the destination of
the trip.
plan Text strong of either "fastest" (default), "quietest" or "balanced"
silent Logical (default is FALSE). TRUE hides request sent.
pat The API key used. By default this is set to NULL and this is usually aquired

automatically through a helper, api_pat().

https://www.cyclestreets.net/api/

82 route_cyclestreets
base_url The base url from which to construct API requests (with default set to main
server)

reporterrors Boolean value (TRUE/FALSE) indicating if cyclestreets (TRUE by default).
should report errors (FALSE by default).

save_raw Boolean value which returns raw list from the json if TRUE (FALSE by default).

Details

This function uses the online routing service CycleStreets.net to find routes suitable for cyclists
between origins and destinations. Requires an internet connection, a CycleStreets.net API key and
origins and destinations within the UK (and various areas beyond) to run.

Note that if from and to are supplied as character strings (instead of lon/lat pairs), Google’s geo-
coding services are used via geo_code().

You need to have an api key for this code to run. Loading a locally saved copy of the api key text
string before running the function, for example, will ensure it is available on any computer:

mytoken <- readLines("~/Dropbox/dotfiles/cyclestreets-api-key-rl") Sys.setenv(CYCLESTREETS = my-

token)

if you want the API key to be available in future sessions, set it using the .Renviron file with
usethis::edit_r_environ()

Read more about the .Renviron here: ?.Renviron

See Also

line2route

Examples

Not run:
from <- c(-1.55, 53.80) # geo_code("leeds")
to <- c(-1.76, 53.80) # geo_code("bradford uk")
json_output <- route_cyclestreets(from = from, to = to, plan = "quietest”, save_raw = TRUE)
str(json_output) # what does cyclestreets give you?
rf_lb <- route_cyclestreets(from, to, plan = "fastest"”)
rf_lb@data
plot(rf_lb)
(rf_lb$length / (1000 * 1.61)) / # distance in miles
(rf_1b$time / (60 * 60)) # time in hours - average speed here: ~8mph

End(Not run)

route_dodgr 83

route_dodgr Route on local data using the dodgr package

Description

Route on local data using the dodgr package

Usage

route_dodgr(from = NULL, to = NULL, 1 = NULL, net = NULL)

Arguments
from An object representing origins (if lines are provided as the first argument, from
is assigned to 1)
to An object representing destinations
1 Only needed if from and to are empty, in which case this should be a spatial
object representing desire lines
net sf object representing the route network
See Also
Other routes: 1ine2routeRetry(), line2route(), route_local(), route_osrm(), route_transportapi_public(),
route()
Examples

if (requireNamespace("dodgr"”)) {
from <- c(-1.5327, 53.8006) # from <- geo_code("pedallers arms leeds")
to <- c(-1.5279, 53.8044) # to <- geo_code("gzing")
next 4 lines were used to generate ‘stplanr::osm_net_example®
pts <- rbind(from, to)
colnames(pts) <- c("X", "Y")
net <- dodgr::dodgr_streetnet(pts = pts, expand = 0.1)
osm_net_example <- net[c("highway"”, "name"”, "lanes", "maxspeed”)]
<- route_dodgr(from, to, net = osm_net_example)
plot(osm_net_example$geometry)
plot(r$geometry, add = TRUE, col = "red”, 1lwd = 5)

SO O H OHF O

84 route_local

route_google Find shortest path using Google services

Description

Find the shortest path using Google’s services. See the mapsapi package for details.

Usage
route_google(from, to, mode = "walking”, key = Sys.getenv(”"GOOGLE"), ...)
Arguments
from An object representing origins (if lines are provided as the first argument, from
is assigned to 1)
to An object representing destinations
mode Mode of transport, walking (default), bicycling, transit, or driving
key Google key. By defaultitis Sys.getenv("GOOGLE"). Setit with: usethis::edit_r_environ().
Arguments passed to the routing function, e.g. route_cyclestreets()
Examples
Not run:

from <- "university of leeds"”

to <- "pedallers arms leeds”

r <- route(from, to, route_fun = cyclestreets::journey)

plot(r)

r_google <- route(from, to, route_fun = mapsapi::mp_directions) # fails
r_googlel <- route_google(from, to)

plot(r_googlel)

r_google <- route(from, to, route_fun = route_google)

End(Not run)

route_local Plan a route with local data

Description

This function returns the shortest path between locations in, or near to, segements on a Spatiall inesNetwork.

Usage

route_local(sln, from, to, 1 = NULL, ...)

route_nearest_point 85

Arguments
sln The SpatialLinesNetwork or sfNetwork to use.
from An object representing origins (if lines are provided as the first argument, from
is assigned to 1)
to An object representing destinations
1 Only needed if from and to are empty, in which case this should be a spatial
object representing desire lines
Arguments to pass to sum_network_links
See Also
Other routes: 1ine2routeRetry(), line2route(), route_dodgr (), route_osrm(), route_transportapi_public(),
route()
Examples

from <- c(-1.535181, 53.82534)

to <- c(-1.52446, 53.80949)

sln <- SpatiallinesNetwork(route_network_sf)

r <- route_local(sln, from, to)

plot(sln)

plot(r$geometry, add = TRUE, col = "red”, lwd = 5)
plot(cents[c(3, 4), 1, add = TRUE)

r2 <- route_local(sln = sln, cents_sf[3, 1, cents_sf[4, 1)
plot(r2$geometry, add = TRUE, col = "blue”, lwd = 3)
1 <- flowlines_sf[3:5, 1]

r3 <- route_local(l =1, sln = sln)
plot(r2$geometry, add = TRUE, col = "blue”, lwd = 3)

route_nearest_point Find nearest route to a given point

Description
This function was written as a drop-in replacement for sf: :st_nearest_feature(), which only
works with recent versions of GEOS.

Usage

route_nearest_point(r, p, id_out = FALSE)

Arguments
r The input route object from which the nearest route is to be found
p The point whose nearest route will be found

id_out Should the index of the matching feature be returned? FALSE by default

86 route_network

Examples

r <- routes_fast_sf[2:6, NULL]J

p <- sf::st_sfc(sf::st_point(c(-1.540, 53.826)), crs = sf::st_crs(r))
route_nearest_point(r, p, id_out = TRUE)

r_nearest <- route_nearest_point(r, p)

plot(r$geometry)

plot(p, add = TRUE)

plot(r_nearest, lwd = 5, add = TRUE)

route_network spatial lines dataset representing a route network

Description

The flow of commuters using different segments of the road network represented in the flowlines()
and routes_fast() datasets

Usage

data(route_network)

Format

A spatial lines dataset 80 rows and 1 column

See Also

Other example data: destination_zones, flow_dests, flowlines, flow, routes_fast, routes_slow

Examples

Not run:

Generate route network

route_network <- overline(routes_fast, "All"”, fun = sum)
route_network_sf <- sf::st_as_sf(route_network)

End(Not run)

route_osrm 87

route_osrm Plan routes on the transport network using the OSRM server

Description

This function is a simplified and (because it uses GeoJSON not binary polyline format) slower
R interface to OSRM routing services compared with the excellent osrm: : osrmRoute() function
(which can be used via the route()) function.

Usage
route_osrm(
from,
to,
osrm.server = "https://routing.openstreetmap.de/",
osrm.profile = "foot”
)
Arguments
from An object representing origins (if lines are provided as the first argument, from
is assigned to 1)
to An object representing destinations
osrm.server The base URL of the routing server. getOption("osrm.server") by default.

osrm.profile The routing profile to use, e.g. "car", "bike" or "foot" (when using the rout-
ing.openstreetmap.de test server). getOption("osrm.profile") by default.

profile Which routing profile to use? One of "foot" (default) "bike" or "car" for the
default open server.

See Also

Other routes: 1ine2routeRetry(), line2route(), route_dodgr(), route_local(), route_transportapi_public(),
route()

Examples

11 = od_data_lines[49,]

11m = od_coords(11)

from = 11m[, 1:2]

to = 11m[, 3:4]

if(curl::has_internet()) {

r_foot = route_osrm(from, to)

r_bike = route_osrm(from, to, osrm.profile = "bike")
r_car = route_osrm(from, to, osrm.profile = "car")
plot(r_foot$geometry, lwd = 9, col = "grey")
plot(r_bike, col = "blue"”, add = TRUE)

88 route_rolling_diff

plot(r_car, col = "red"”, add = TRUE)
3

route_rolling_average Return smoothed averages of vector

Description
This function calculates a simple rolling mean in base R. It is useful for calculating route character-
istics such as mean distances of segments and changes in gradient.

Usage

route_rolling_average(x, n = 3)

Arguments
X Numeric vector to smooth
n The window size of the smoothing function. The default, 3, will take the mean
of values before, after and including each value.
See Also

Other route_funs: route_average_gradient(), route_rolling_diff(), route_rolling_gradient(),
route_sequential_dist(), route_slope_matrix(), route_slope_vector()

Examples

y <- od_data_routes$elevations[od_data_routes$route_number == 2]
y

route_rolling_average(y)

route_rolling_average(y, n = 1)

route_rolling_average(y, n = 2)

route_rolling_average(y, n = 3)

route_rolling_diff Return smoothed differences between vector values

Description
This function calculates a simple rolling mean in base R. It is useful for calculating route character-
istics such as mean distances of segments and changes in gradient.

Usage
route_rolling_diff(x, lag = 1, abs = TRUE)

route_rolling_gradient 89

Arguments
X Numeric vector to smooth
lag The window size of the smoothing function. The default, 3, will take the mean
of values before, after and including each value.
abs Should the absolute (always positive) change be returned? True by default
See Also

Other route_funs: route_average_gradient(), route_rolling_average(), route_rolling_gradient(),
route_sequential_dist(), route_slope_matrix(), route_slope_vector()

Examples
r1 <- od_data_routes[od_data_routes$route_number == 2,]
y <- ri1selevations
route_rolling diff(y, lag = 1)
route_rolling_diff(y, lag = 2)

ri$elevations_diff_1 <- route_rolling_diff(y, lag = 1)
ri$elevations_diff_n <- route_rolling_diff(y, lag = 1, abs = FALSE)

d <- cumsum(ri$distances) - ri1$distances / 2

diff_above_mean <- ri1$elevations_diff_1 + mean(y)

diff_above_mean_n <- ri1$elevations_diff_n + mean(y)

plot(c(@, cumsum(ri$distances)), c(y, y[length(y)]1), ylim = c(80, 130))
lines(c(@, cumsum(ri$distances)), c(y, y[length(y)1))

points(d, diff_above_mean)

points(d, diff_above_mean_n, col = "blue")

abline(h = mean(y))

route_rolling_gradient
Calculate rolling average gradient from elevation data at segment
level

Description

Calculate rolling average gradient from elevation data at segment level

Usage

route_rolling_gradient(elevations, distances, lag = 1, n = 2, abs = TRUE)

Arguments
elevations Elevations, e.g. those provided by the cyclestreets package
distances Distances, e.g. those provided by the cyclestreets package
lag The window size of the smoothing function. The default, 3, will take the mean

of values before, after and including each value.

90 route_sequential_dist

n The window size of the smoothing function. The default, 3, will take the mean
of values before, after and including each value.
abs Should the absolute (always positive) change be returned? True by default
See Also

Other route_funs: route_average_gradient(), route_rolling_average(), route_rolling_diff(),
route_sequential_dist(), route_slope_matrix(), route_slope_vector()

Examples

r1 <- od_data_routes[od_data_routes$route_number == 2,]

y <- ri1$elevations

distances <- ri1$distances

route_rolling_gradient(y, distances)

route_rolling_gradient(y, distances, abs = FALSE)
route_rolling_gradient(y, distances, n = 3)
route_rolling_gradient(y, distances, n = 4)

ri$elevations_diff_1 <- route_rolling_diff(y, lag = 1)
ri$rolling_gradient <- route_rolling_gradient(y, distances, n = 2)
ri$rolling_gradient3 <- route_rolling_gradient(y, distances, n = 3)
ri$rolling_gradient4 <- route_rolling_gradient(y, distances, n = 4)
d <- cumsum(ri$distances) - ri1$distances / 2

diff_above_mean <- ri1$elevations_diff_1 + mean(y)

par(mfrow = c(2, 1))

plot(c(@, cumsum(ri$distances)), c(y, y[length(y)1), ylim = c(80, 130))
lines(c(@, cumsum(ri$distances)), c(y, y[length(y)1))

points(d, diff_above_mean)

abline(h = mean(y))

rg <- r1$rolling_gradient

rglis.na(rg)] <- 0@

plot(c(o, d), c(@, rg), ylim = c(0, 0.2))

points(c(@, d), c(@, ri1$rolling_gradient3), col = "blue")
points(c(@, d), c(@, ri1$rolling_gradient4), col = "grey")

par(mfrow = c(1, 1))

route_sequential_dist Calculate the sequential distances between sequential coordinate
pairs

Description

Calculate the sequential distances between sequential coordinate pairs

Usage

route_sequential_dist(m, lonlat = TRUE)

route_slope_matrix 91

Arguments
m Matrix containing coordinates and elevations
lonlat Are the coordinates in lon/lat order? TRUE by default
See Also

Other route_funs: route_average_gradient(), route_rolling_average(), route_rolling_diff(),
route_rolling_gradient(), route_slope_matrix(), route_slope_vector()

Examples

x <- c(0, 2, 3, 4, 5, 9)
y <- c(0, 0, 0, 0, o, 1)
m <- cbind(x, y)

route_sequential_dist(m)

route_slope_matrix Calculate the gradient of line segments from a matrix of coordinates

Description

Calculate the gradient of line segments from a matrix of coordinates

Usage

route_slope_matrix(m, e = m[, 3], lonlat = TRUE)

Arguments
m Matrix containing coordinates and elevations
e Elevations in same units as x (assumed to be metres)
lonlat Are the coordinates in lon/lat order? TRUE by default
See Also

Other route_funs: route_average_gradient(), route_rolling_average(), route_rolling_diff(),
route_rolling_gradient(), route_sequential_dist(), route_slope_vector()

Examples
x <- c(0, 2, 3, 4, 5, 9)
y <- c(0, 0, 9, 0, 0, 9
z <-c(1, 2, 2, 4, 3, 1) / 10
m <- cbind(x, y, z)

plot(x, z, ylim = c(-0.5, 0.5), type = "1")
(gx <- route_slope_vector(x, z))

(gxy <- route_slope_matrix(m, lonlat = FALSE))
abline(h = 0, 1ty = 2)

92 route_split

points(x[-length(x)], gx, col = "red")
points(x[-length(x)], gxy, col = "blue")
title("Distance (in x coordinates) elevation profile”,

sub = "Points show calculated gradients of subsequent lines”
)
route_slope_vector Calculate the gradient of line segments from distance and elevation
vectors
Description

Calculate the gradient of line segments from distance and elevation vectors

Usage

route_slope_vector(x, e)

Arguments

X Vector of locations

e Elevations in same units as x (assumed to be metres)
See Also

Other route_funs: route_average_gradient(), route_rolling_average(), route_rolling_diff(),
route_rolling_gradient(), route_sequential_dist(), route_slope_matrix()

Examples

x <- c(0, 2, 3, 4, 5, 9)
e<-c(1, 2,2, 4,3, 1)/ 10
route_slope_vector(x, e)

route_split Split route in two at point on or near network

Description

Split route in two at point on or near network

Usage

route_split(r, p)

route_split_id 93

Arguments
r An sf object with one feature containing a linestring geometry to be split
p A point represented by an sf object the will split the route

Value

An sf object with 2 feature

Examples

sample_routes <- routes_fast_sf[2:6, NULL]

r <- sample_routes[2,]

p <- sf::st_sfc(sf::st_point(c(-1.540, 53.826)), crs = sf::st_crs(r))
plot(r$geometry, lwd = 9, col = "grey")

plot(p, add = TRUE)

r_split <- route_split(r, p)

plot(r_split, col = c("red”, "blue"), add = TRUE)

route_split_id Split route based on the id or coordinates of one of its vertices

Description

Split route based on the id or coordinates of one of its vertices

Usage

route_split_id(r, id = NULL, p = NULL)

Arguments
r An sf object with one feature containing a linestring geometry to be split
id The index of the point on the number to be split
p A point represented by an sf object the will split the route

Examples

sample_routes <- routes_fast_sf[2:6, 3]

r <- sample_routes[2,]

id <- round(n_vertices(r) / 2)

r_split <- route_split_id(r, id = id)
plot(r$geometry, lwd = 9, col = "grey")
plot(r_split, col = c("red”, "blue"), add = TRUE)

94 route_transportapi_public

route_transportapi_public
Plan a single route with TransportAPI.com

Description

Provides an R interface to the TransportAPI.com public transport API. The function returns a Spa-
tialLinesDataFrame object representing the public route. Currently only works for the United King-
dom. See https://developer.transportapi.com/documentationfor more information.

Usage
route_transportapi_public(
from,
to,
silent = FALSE,
region = "southeast”,
modes = NA,
not_modes = NA
)
Arguments
from Text string or coordinates (a numeric vector of length = 2 representing latitude
and longitude) representing a point on Earth.
to Text string or coordinates (a numeric vector of length = 2 representing latitude
and longitude) representing a point on Earth. This represents the destination of
the trip.
silent Logical (default is FALSE). TRUE hides request sent.
region String for the active region to use for journey plans. Possible values are ’south-
east’ (default) or ’tfl’.
modes Vector of character strings containing modes to use. Default is to use all modes.
not_modes Vector of character strings containing modes not to use. Not used if modes is
set.
Details

This function uses the online routing service TransportAPI.com to find public routes between ori-
gins and destinations. It does not require any key to access the API.

Note that if from and to are supplied as character strings (instead of lon/lat pairs), Google’s geo-
coding services are used via geo_code.

Note: there is now a dedicated transportAPI package: https://github.com/ITSLeeds/transportAPI

https://developer.transportapi.com/documentation

sfNetwork-class 95

See Also

line2route

Other routes: 1ine2routeRetry(), line2route(), route_dodgr(), route_local(), route_osrm(),

route()
Examples
Not run:
Plan the 'public' route from Hereford to Leeds
rgh <- route_transportapi_public(from = "Hereford”, to = "Leeds")

plot(rq_hfd)
End(Not run)

Aim plan public transport routes with transportAPI

sfNetwork-class An S84 class representing a (typically) transport network

Description

This class uses a combination of a sf layer and an igraph object to represent transport networks that
can be used for routing and other network analyses.

Slots

sl A sfline layer with the geometry and other attributes for each link the in network.
g The graph network corresponding to s1.
nb A list containing vectors of the nodes connected to each node in the network.

weightfield A character vector containing the variable (column) name from the SpatialLines-
DataFrame to be used for weighting the network.

sln2points Generate spatial points representing nodes on a SpatialLinesNetwork
or sfNetwork.

Description

Generate spatial points representing nodes on a SpatialLinesNetwork or sfNetwork.

Usage
sln2points(sln)

96 sln_add_node

Arguments

sln The SpatialLinesNetwork or sfNetwork to use.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), lineLabels(),
overline_spatial(),overline(), plot,SpatialLinesNetwork, ANY-method, plot, sfNetwork,ANY-method,
rnet_breakup_vertices(), rnet_group(), sum_network_links(), sum_network_routes()

Examples

data(routes_fast)

rnet <- overline(routes_fast, attrib = "length")
sln <- SpatiallLinesNetwork(rnet)

(sln_nodes <- sln2points(sln))

plot(sln)

plot(sln_nodes, add = TRUE)

sln_add_node Add node to spatial lines object

Description

Add node to spatial lines object

Usage
sln_add_node(sln, p)

Arguments
sln A spatial lines (sfNetwork) object created by SpatiallLinesNetwork
p A point represented by an sf object the will split the route
Examples

sample_routes <- routes_fast_sf[2:6, NULL]

sample_routes$value <- rep(1:3, length.out = 5)

rnet <- overline2(sample_routes, attrib = "value")

sln <- SpatiallLinesNetwork(rnet)

p <- sf::st_sfc(sf::st_point(c(-1.540, 53.826)), crs = sf::st_crs(rnet))
sln_nodes <- sln2points(sln)

sln_new <- sln_add_node(sln, p)

route <- route_local(sln_new, p, sln_nodes[9, 1)

plot(sln)

plot(sln_nodes, pch = as.character(1:nrow(sln_nodes)), add = TRUE)
plot(route$geometry, lwd = 9, add = TRUE)

sln_clean_graph 97

sln_clean_graph Clean spatial network - return an sin with a single connected graph

Description

See https://github.com/ropensci/stplanr/issues/344

Usage

sln_clean_graph(sln)

Arguments

sln A spatial lines (sfNetwork) object created by SpatiallLinesNetwork

Value

An sfNetwork object

SpatialLinesNetwork Create object of class SpatialLinesNetwork or sfNetwork

Description

Creates a new SpatialLinesNetwork (for SpatialLines) or sfNetwork (for sf) object that can be used
for routing analysis within R.

Usage

SpatiallLinesNetwork(sl, uselonglat = FALSE, tolerance = 0)

Arguments
sl A SpatialLines or SpatialLinesDataFrame containing the lines to use to create
the network.
uselonglat A boolean value indicating if the data should be assumed to be using WGS84
latitude/longitude coordinates. If FALSE or not set, uses the coordinate system
specified by the SpatialLines object.
tolerance A numeric value indicating the tolerance (in the units of the coordinate system)

to use as a tolerance with which to match nodes.

98 SpatialLinesNetwork-class

Details

This function is used to create a new SpatialLinesNetwork from an existing SpatialLines or Spa-
tialLinesDataFrame object. A typical use case is to represent a transport network for routing and
other network analysis functions. This function and the corresponding SpatialLinesNetwork class
is an implementation of the SpatialLinesNetwork developed by Edzer Pebesma and presented on
RPubs. The original implementation has been rewritten to better support large (i.e., detailed city-
size) networks and to provide additional methods useful for conducting transport research following
on from the initial examples provided by Janoska(2013).

References

Pebesma, E. (2013). Spatial Networks, URL:https://rpubs.com/edzer/6767.
Janoska, Z. (2013). Find shortest path in spatial network, URL:https://rpubs.com/janoskaz/10396.

See Also

Other rnet: calc_catchment_sum(), calc_catchment(), calc_moving_catchment(), calc_network_catchment(),
find_network_nodes(), gsection(), islines(), lineLabels(), overline_spatial(),overline(),
plot,SpatiallLinesNetwork,ANY-method, plot, sfNetwork,ANY-method, rnet_breakup_vertices(),
rnet_group(), sln2points(), sum_network_links(), sum_network_routes()

Examples

dont test due to issues with s2 dependency

sln_sf <- SpatiallLinesNetwork(route_network_sf)

plot(sln_sf)

shortpath <- sum_network_routes(sln_sf, 1, 50, sumvars = "length”)
plot(shortpath$geometry, col = "red”, lwd = 4, add = TRUE)

SpatiallLinesNetwork-class
An S4 class representing a (typically) transport network

Description

This class uses a combination of a SpatialLinesDataFrame and an igraph object to represent trans-
port networks that can be used for routing and other network analyses.

Slots

sl A SpatialLinesDataFrame with the geometry and other attributes for each link the in network.
g The graph network corresponding to s1.
nb A list containing vectors of the nodes connected to each node in the network.

weightfield A character vector containing the variable (column) name from the SpatialLines-
DataFrame to be used for weighting the network.

https://rpubs.com/edzer/6767
https://rpubs.com/janoskaz/10396

stplanr-deprecated 99

stplanr-deprecated Deprecated functions in stplanr

Description

These functions are depreciated and will be removed:

summary, sfNetwork-method
Print a summary of a sfNetwork

Description

Print a summary of a sfNetwork

Usage
S4 method for signature 'sfNetwork'
summary (object, ...)

Arguments

object The sfNetwork

Arguments to pass to relevant summary function.

Examples

data(routes_fast)

rnet <- overline(routes_fast, attrib = "length")
sln <- SpatiallLinesNetwork(rnet)
summary(sln)

summary,SpatiallLinesNetwork-method
Print a summary of a SpatialLinesNetwork

Description

Print a summary of a SpatialL.inesNetwork

Usage

S4 method for signature 'SpatiallinesNetwork'
summary (object, ...)

100 sum_network_links

Arguments
object The SpatialLinesNetwork
Arguments to pass to relevant summary function.
Examples

data(routes_fast)

rnet <- overline(routes_fast, attrib = "length")
sln <- SpatiallLinesNetwork(rnet)
summary(sln)
sum_network_links Summarise links from shortest paths data
Description

Summarise links from shortest paths data

Usage

sum_network_links(sln, routedata)

Arguments
sln The SpatialLinesNetwork or sfNetwork to use.
routedata A dataframe where the first column contains the Node ID(s) of the start of the
routes, the second column indicates the Node ID(s) of the end of the routes,
and any additional columns are summarised by link. If there are no additional
colums, then overlapping routes are counted.
Details

Find the shortest path on the network between specified nodes and returns a SpatialLinesDataFrame
or sf containing the path(s) and summary statistics of each one.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), linelLabels(),
overline_spatial(),overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork, ANY-method,
rnet_breakup_vertices(), rnet_group(), sln2points(), sum_network_routes()

sum_network_routes 101

Examples

sln_sf <- SpatiallinesNetwork(route_network_sf)
plot(sln_sf)
nodes_df <- data.frame(

start = rep(c(1, 2, 3, 4, 5), each = 4),

end = rep(c(50, 51, 52, 33), times = 5)
)
weightfield(sln_sf) # field used to determine shortest path
library(sf)

shortpath_sf <- sum_network_links(sln_sf, nodes_df)
plot(shortpath_sf[”count”], 1lwd = shortpath_sf$count, add = TRUE)

sum_network_routes Summarise shortest path between nodes on network

Description

Summarise shortest path between nodes on network

Usage

sum_network_routes(
sln,
start,
end,
sumvars = weightfield(sln),
combinations = FALSE

)
Arguments
sln The SpatialLinesNetwork or sfNetwork to use.
start Integer of node indices where route starts.
end Integer of node indices where route ends.
sumvars Character vector of variables for which to calculate summary statistics. The

default value is weightfield(sln).

combinations Boolean value indicating if all combinations of start and ends should be calcu-
lated. If TRUE then every start Node ID will be routed to every end Node ID.
This is faster than passing every combination to start and end. Default is FALSE.

Details

Find the shortest path on the network between specified nodes and returns a SpatiallLinesDataFrame
(or an sf object with LINESTRING geometry) containing the path(s) and summary statistics of each
one.

102 toptailgs

The start and end arguments must be integers representing the node index. To find which node is
closest to a geographic point, use find_nearest_node().

If the start and end node are identical, the function will return a degenerate line with just two
(identical) points. See #444.

See Also

Other rnet: SpatiallLinesNetwork, calc_catchment_sum(), calc_catchment(), calc_moving_catchment(),
calc_network_catchment (), find_network_nodes(), gsection(), islines(), lineLabels(),
overline_spatial(),overline(), plot,SpatialLinesNetwork,ANY-method, plot, sfNetwork, ANY-method,
rnet_breakup_vertices(), rnet_group(), sln2points(), sum_network_links()

Examples

sln <- SpatiallLinesNetwork(route_network)

weightfield(sln) # field used to determine shortest path

shortpath <- sum_network_routes(sln, start = 1, end = 50, sumvars = "length")
plot(shortpath, col = "red”, lwd = 4)

plot(sln, add = TRUE)

with sf objects

sln <- SpatiallLinesNetwork(route_network_sf)

weightfield(sln) # field used to determine shortest path

shortpath <- sum_network_routes(sln, start = 1, end = 50, sumvars = "length")
plot(sf::st_geometry(shortpath), col = "red”, lwd = 4)

plot(sln, add = TRUE)

find shortest path between two coordinates

sf::st_bbox(sln@sl)

start_coords <- c(-1.546, 53.826)

end_coords <- c(-1.519, 53.816)

plot(sln)

plot(sf::st_point(start_coords), cex = 3, add = TRUE, col = "red")
plot(sf::st_point(end_coords), cex = 3, add = TRUE, col = "blue")
nodes <- find_network_nodes(sln, rbind(start_coords, end_coords))
shortpath <- sum_network_routes(sln, nodes[1], nodes[2])
plot(sf::st_geometry(shortpath), col = "darkred”, lwd = 3, add = TRUE)

degenerate path
sum_network_routes(sln, start =1, end = 1)

toptailgs Clip the first and last n metres of SpatialLines

Description

Takes lines and removes the start and end point, to a distance determined by the user. Uses the
geosphere::distHaversine function and requires coordinates in WGS84 (Ing/lat).

https://github.com/ropensci/stplanr/issues/444

toptail_buff 103

Usage

toptailgs(l, toptail_dist, tail_dist = NULL)

Arguments

1 A SpatialLines object

toptail_dist The distance (in metres) to top the line by. Can be either a single value or a
vector of the same length as the SpatialLines object. If tail_dist is missing, is
used as the tail distance.

tail_dist The distance (in metres) to tail the line by. Can be either a single value or a
vector of the same length as the SpatialLines object.

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment (), line_via(), mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), points2line(), toptail_buff (), update_line_geometry()

Examples

data("routes_fast")

rf <- routes_fast[2:3,]

r_toptail <- toptailgs(rf, toptail_dist = 300)
plot(rf, lwd = 3)

plot(r_toptail, col = "red"”, add = TRUE)
plot(cents, add = TRUE)

toptail_buff Clip the beginning and ends SpatialLines to the edge of SpatialPolygon
borders

Description
Takes lines and removes the start and end point, to a distance determined by the nearest polygon
border.

Usage
toptail_buff(l, buff, ...)

Arguments
1 An sf LINESTRING object
buff An sf POLYGON object to act as the buffer

Arguments passed to rgeos::gBuffer()

104 update_line_geometry

See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment(), line_via(), mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), points2line(), toptailgs(), update_line_geometry()

Examples

1 <- routes_fast_sf

buff <- zones_sf

r_toptail <- toptail_buff(l, buff)

nrow(l)

nrow(r_toptail)

plot(zones_sf$geometry)

plot(1$geometry, add = TRUE)
plot(r_toptail$geometry, lwd = 5, add = TRUE)

update_line_geometry Update line geometry

Description
Take two SpatialLines objects and update the geometry of the former with that of the latter, retaining
the data of the former.

Usage

update_line_geometry(l, nl)

Arguments

1 A SpatialLines object, whose geometry is to be modified

nl A SpatialLines object of the same length as 1 to provide the new geometry
See Also

Other lines: angle_diff (), geo_toptail(), is_linepoint(), line2df (), line2points(), line_bearing(),
line_breakup(), line_midpoint(), line_sample(), line_segment(), line_via(),mats2line(),
n_sample_length(), n_vertices(), onewaygeo(), points2line(), toptail_buff (), toptailgs()

Examples

data(flowlines)

1 <- flowlines[2:5,]

nl <- routes_fast

nrow(l)

nrow(nl)

1 <- 1[!is_linepoint(1l), 1
names (1)

weightfield 105

names(routes_fast)

1_newgeom <- update_line_geometry(l, nl)
plot(l, lwd = 1$All / mean(1$All))
plot(1l_newgeom, lwd = 1$A1l / mean(l$All))
names (1_newgeom)

weightfield Get or set weight field in SpatialLinesNetwork

Description

Get or set value of weight field in SpatialLinesNetwork

Usage
weightfield(x)

weightfield(x, varname) <- value
weightfield(x, varname) <- value

S4 method for signature 'SpatiallinesNetwork'
weightfield(x)

S4 method for signature 'sfNetwork'
weightfield(x)

S4 replacement method for signature 'SpatiallinesNetwork,ANY'
weightfield(x) <- value

S4 replacement method for signature 'sfNetwork,ANY'
weightfield(x) <- value

S4 replacement method for signature 'SpatiallinesNetwork,character'
weightfield(x, varname) <- value

S4 replacement method for signature 'sfNetwork,character'
weightfield(x, varname) <- value

Arguments
X SpatialLinesNetwork to use
varname The name of the variable to set/use.
value Either the name of the variable to use as the weight field or a dataframe or vector

containing the weights to use if varname is passed to the replacement function.
If the dataframe contains multiple columns, the column with the same name as
varname is used, otherwise the first column is used.

106 writeGeoJSON

Details

These functions manipulate the value of weightfield in a SpatialLinesNetwork. When changing the
value of weightfield, the weights of the graph network are updated with the values of the corre-
sponding variables.

Examples

with sp objects

data(routes_fast)

rnet <- overline(routes_fast, attrib = "length")

sln <- SpatiallLinesNetwork(rnet)

weightfield(sln) <- "length”

weightfield(sln, "randomnum”) <- sample(1:10, size = nrow(sln@sl), replace = TRUE)
data(routes_fast_sf)

rnet <- overline(routes_fast_sf, attrib = "length")

sln <- SpatiallLinesNetwork(rnet)

weightfield(sln) <- "length”

sln@sl$randomnum <- sample(1:10, size = nrow(sln@sl), replace = TRUE)
weightfield(sln) <- "randomnum”

todo: show the difference that it makes

writeGeoJSON Write to geojson easily

Description

Provides a user-friendly wrapper for sf::st_write(). Note, geojson_write from the geojsonio
package provides the same functionality https://github.com/ropensci/geojsonio.

Usage

writeGeoJSON(shp, filename)

Arguments

shp Spatial data object

filename File name of the output geojson

https://github.com/ropensci/geojsonio

zones 107

zones Spatial polygons of home locations for flow analysis.

Description

Note: we recommend using the zones_sf data.

Details

These correspond to the cents_sf data.

* geo_code. the official code of the zone

Examples

library(sf)
zones_sf
plot(zones_sf)

Index

+ datasets
ca_local, 15
cents, 16
destination_zones, 16
flow, 20
flow_dests, 22
flowlines, 21
1_poly, 41
od_data_lines, 52
od_data_routes, 53
od_data_sample, 53
osm_net_example, 59
rnet_cycleway_intersection, 73
rnet_overpass, 76
rnet_roundabout, 76
route_network, 86
routes_fast, 78
routes_slow, 79
zones, 107

+ data
read_table_builder, 68

* example data
destination_zones, 16
flow, 20
flow_dests, 22
flowlines, 21
route_network, 86
routes_fast, 78
routes_slow, 79

* geo
bbox_scale, 7
geo_bb, 23

geo_bb_matrix, 24
qguadrant, 67
reproject, 69

x lines
angle_diff, 5
geo_toptail, 28
is_linepoint, 31

108

line2df, 31
line2points, 32
line_bearing, 36
line_breakup, 37
line_midpoint, 38
line_sample, 39
line_segment, 39
line_via, 40
mats2line, 42
n_sample_length, 44
n_vertices, 45
onewaygeo, 58
points2line, 66
toptail_buff, 103
toptailgs, 102
update_line_geometry, 104
* nodes
geo_code, 25
nearest_google, 43
* od
dist_google, 17
od2line, 46
od2odf, 47
od_aggregate_from, 49
od_aggregate_to, 50
od_coords, 51
od_coords2line, 51
od_dist, 53
od_id, 54
od_oneway, 56
od_to_odmatrix, 57
odmatrix_to_od, 48
points2flow, 65
points2odf, 67
+ package
stplanr-package, 5
* rnet
calc_catchment, 7
calc_catchment_sum, 10

INDEX

calc_moving_catchment, 12
calc_network_catchment, 13
find_network_nodes, 19
gsection, 29
islines, 30
linelLabels, 35
overline, 60
overline_spatial, 63
plot,sfNetwork,ANY-method, 64
plot,SpatialLinesNetwork,ANY-method,
65

rnet_breakup_vertices, 71
rnet_group, 74
sln2points, 95
SpatiallLinesNetwork, 97
sum_network_links, 100
sum_network_routes, 101

* route_funs
route_average_gradient, 79
route_rolling_average, 88
route_rolling_diff, 88
route_rolling_gradient, 89
route_sequential_dist, 90
route_slope_matrix, 91
route_slope_vector, 92

* routes
line2route, 33
line2routeRetry, 34
route, 77
route_dodgr, 83
route_local, 84
route_osrm, 87
route_transportapi_public, 94

angle_diff, 5, 28, 31-33, 3640, 42, 44, 45,
59, 66, 103, 104

as_sf_fun, 6

as_sp_fun (as_sf_fun), 6

bb2poly (geo_bb), 23
bbox_scale, 7, 23, 24, 68, 69
bearing(), 6, 36

ca_local, 15

calc_catchment, 7, 11, 13, 15, 20, 29, 30, 36,
62, 64, 65,72,75, 96,98, 100, 102

calc_catchment(), 5

calc_catchment_sum, 9, 10, 13, 15, 20, 29,
30, 36, 62, 64, 65, 72,75, 96, 98,
100, 102

109

calc_moving_catchment, 9, 11, 12, 15, 20,
29, 30, 36, 62, 64, 65, 72, 75, 96, 98,
100, 102

calc_network_catchment, 9, 11, 13, 13, 20,
29, 30, 36, 62, 64, 65, 72, 75, 96, 98,
100, 102

cents, 16

cents(), 20, 46, 47, 49, 50, 54, 78, 79

cents_sf (cents), 16

destination_zones, 16, 21, 22, 79, 86
destinations (destination_zones), 16
destinations_sf (destination_zones), 16
dist_google, 17,47-52, 54, 55, 57, 58, 66, 67

find_network_nodes, 9, 11, 13, 15, 19, 29,
30, 36, 62, 64, 65, 72, 75, 96, 98,
100, 102

flow, 17,20, 22,79, 86

flow(), 21, 46, 47,49, 50, 54, 78, 79

flow_dests, 17,21, 22,22,79, 86

flowlines, 17, 21,21, 22,79, 86

flowlines(), 56, 58, 86

flowlines_sf (flowlines), 21

geo_bb, 7,23, 24, 68, 69

geo_bb_matrix, 7, 23, 24, 68, 69

geo_buffer, 24

geo_code, 25, 44

geo_length, 26

geo_projected, 26

geo_select_aeq, 27

geo_select_aeq(), 27, 69

geo_toptail, 6, 28, 31-33, 3640, 42, 44, 45,
59, 66, 103, 104

gprojected (geo_projected), 26

gsection, 9, 11, 13, 15, 20, 29, 30, 36, 62, 64,
65,72,75,96,98, 100, 102

igraph::as.undirected(), 75

igraph::clusters(), 75

is_linepoint, 6, 28, 31, 32, 33, 3640, 42,
44, 45, 59, 66, 103, 104

islines, 9,11, 13, 15, 20, 29, 30, 36, 62, 64
65,72,75,96,98, 100, 102

1_poly, 41
line2df, 6, 28, 31, 31, 33, 36-40, 42, 44, 45,
59, 66, 103, 104

110

line2points, 6, 28, 31, 32, 32, 3640, 42, 44,
45,59, 66, 103, 104
line2pointsn (line2points), 32
line2route, 33, 35, 77, 83, 85, 87, 95
line2route(), 35
line2routeRetry, 34, 34, 77, 83, 85, 87, 95
line2vertices (line2points), 32
line_bearing, 6, 28, 31-33, 36, 3740, 42,
44, 45, 59, 66, 103, 104
line_breakup, 6, 28, 31-33, 36, 37, 38-40,
42,44, 45, 59, 66, 103, 104
line_length, 38
line_midpoint, 6, 28, 31-33, 36, 37, 38, 39,
40, 42, 44, 45, 59, 66, 103, 104
line_sample, 6, 28, 31-33, 3638, 39, 40, 42,
44, 45, 59, 66, 103, 104
line_segment, 6, 28, 31-33, 36-39, 39, 40,
42,44, 45, 59, 66, 103, 104
line_via, 6, 28, 31-33, 3640, 40, 42, 44, 45,
59, 66, 103, 104
linelLabels, 9, 11, 13, 15, 20, 29, 30, 35, 62,
64, 65, 72,75, 96, 98, 100, 102

mats2line, 6, 28, 31-33, 3640, 42, 44, 45,
59,66, 103, 104

n_sample_length, 6, 28, 31-33, 3640, 42,
44,45, 59, 66, 103, 104
n_vertices, 6, 28, 31-33, 3640, 42, 44, 45,
59, 66, 103, 104
nearest_cyclestreets, 42
nearest_google, 25, 43

od2line, 18, 46, 48-52, 54, 55, 57, 58, 66, 67

od2line(), 21, 33, 53, 77-79

od2line2 (od2line), 46

od2odf, 18, 47,47, 48-52, 54, 55, 57, 58, 66,
67

od_aggregate_from, 18, 47, 48, 49, 50-52,
54, 55,57, 58, 66, 67

od_aggregate_to, 18, 4749, 50, 51, 52, 54,
55,57, 58, 66, 67

od_coords, 18, 47-50, 51, 52, 54, 55, 57, 58,
66, 67

od_coords2line, I8,47-51, 51, 54, 55, 57,
58, 66, 67

od_data_lines, 52

od_data_routes, 53

od_data_sample, 53

INDEX

od_dist, 18, 47-52, 53, 55, 57, 58, 66, 67

od_id, 18, 47-52, 54, 54, 57, 58, 66, 67

od_id_character (od_id), 54

od_id_max_min (od_id), 54

od_id_max_min(), 56

od_id_order, 55

od_id_szudzik (od_id), 54

od_id_szudzik(), 56

od_oneway, 18, 47-52, 54, 55, 56, 58, 66, 67

od_to_odmatrix, I8, 47-52, 54, 55,57, 57,
66, 67

odmatrix_to_od, 18,47, 48, 48, 49-52, 54,
55,57, 58, 66, 67

onewaygeo, 0, 28, 31-33, 3640, 42, 44, 45,
58, 66, 103, 104

osm_net_example, 59

osrm: :osrmRoute(), 87

overline, 9,11, 13,15, 20, 29, 30, 36, 60, 64,
65,72,75,96,98, 100, 102

overline(), 5, 30

overline2 (overline), 60

overline_intersection, 62

overline_spatial, 9,11, 13, 15, 20, 29, 30,
36, 62, 63, 64, 65,72, 75, 96, 98,
100, 102

plot,sfNetwork,ANY-method, 64
plot,SpatialLinesNetwork,ANY-method,
65
points2flow, I8, 47-52, 54, 55, 57, 58, 65, 67
points2line, 6, 28, 31-33, 3640, 42, 44, 45,
59, 66, 103, 104
points2odf, I8, 47-52, 54, 55, 57, 58, 66, 67

quadrant, 7, 23, 24, 67, 69

read_table_builder, 68
reproject, 7, 23, 24, 68, 69
rnet_add_node, 70
rnet_boundary_df
(rnet_boundary_points), 70
rnet_boundary_points, 70
rnet_boundary_points_lwgeom
(rnet_boundary_points), 70
rnet_boundary_unique
(rnet_boundary_points), 70
rnet_breakup_vertices, 9, 11, 13, 15, 20,
29, 30, 36, 62, 64, 65,71, 75, 96, 98,
100, 102

INDEX

rnet_cycleway_intersection, 73
rnet_duplicated_vertices
(rnet_boundary_points), 70
rnet_get_nodes, 74
rnet_group, 9, 11, 13, 15, 20, 29, 30, 36, 62,
64, 65, 72,74, 96, 98, 100, 102
rnet_overpass, 76
rnet_roundabout, 76
route, 34, 35,77, 83, 85, 87, 95
route(), 87
route_average_gradient, 79, 88-92
route_bikecitizens, 80
route_cyclestreets, 81
route_cyclestreets(), 5, 34, 35,77, 84
route_dodgr, 34, 35, 77, 83, 85, 87, 95
route_google, 84
route_local, 34, 35,77, 83, 84, 87, 95
route_nearest_point, 85
route_network, 17,21, 22,79, 86
route_network_sf (route_network), 86
route_osrm, 34, 35, 77, 83, 85, 87, 95
route_rolling_average, 79, 88, 8§9-92
route_rolling_diff, 79, 88, 88, 90-92
route_rolling_gradient, 79, 88, 89, 89, 91,
92
route_sequential_dist, 79, 88-90, 90, 91,
92
route_slope_matrix, 79, 88-91, 91, 92
route_slope_vector, 79, 88-91, 92
route_split, 92
route_split_id, 93
route_transportapi_public, 34, 35, 77, 83,
85, 87,94
routes_fast, 17,21, 22,78, 79, 86
routes_fast(), 86
routes_fast_sf (routes_fast), 78
routes_slow, 17,21, 22, 79,79, 86
routes_slow_sf (routes_slow), 79

sfNetwork-class, 95
sln2points, 9, 11, 13, 15, 20, 29, 30, 36, 62,
64, 65,72,75,95, 98, 100, 102
sln_add_node, 96
sln_clean_graph, 97
SpatiallLinesMidPoints(), 38
SpatiallLinesNetwork, 9, 11, 13,15, 20, 29,
30, 36, 62, 64, 65, 72,75, 96,97,
100, 102
SpatiallLinesNetwork(), 72

111

SpatiallLinesNetwork-class, 98

spLines(), 66

stplanr (stplanr-package), 5

stplanr-deprecated, 99

stplanr-package, 5

sum_network_links, 9, 11, 13, 15, 20, 29, 30,
36,62, 64, 65,72,75, 96, 98, 100,
102

sum_network_routes, 9, 11, 13, 15, 20, 29,
30, 36, 62, 64, 65,72, 75, 96, 98,
100, 101

summary, sfNetwork-method, 99

summary, Spatiall inesNetwork-method, 99

toptail (geo_toptail), 28
toptail_buff, 6, 28, 31-33, 3640, 42, 44,
45, 59, 66, 103, 103, 104
toptailgs, 6, 28, 31-33, 3640, 42, 44, 45,

59, 66, 102, 104
toptailgs(), 28

update_line_geometry, 6, 28, 31-33, 3640,
42,44, 45, 59, 66, 103, 104, 104

weightfield, 105

weightfield, sfNetwork-method
(weightfield), 105

weightfield, SpatiallLinesNetwork-method
(weightfield), 105

weightfield<- (weightfield), 105

weightfield<-,sfNetwork, ANY-method
(weightfield), 105

weightfield<-,sfNetwork,character-method

(weightfield), 105

weightfield<-,SpatiallLinesNetwork,ANY-method

(weightfield), 105

weightfield<-,SpatiallLinesNetwork,character-method

(weightfield), 105
writeGeoJSON, 106

zones, 107
zones_sf (zones), 107

	stplanr-package
	angle_diff
	as_sf_fun
	bbox_scale
	calc_catchment
	calc_catchment_sum
	calc_moving_catchment
	calc_network_catchment
	ca_local
	cents
	destination_zones
	dist_google
	find_network_nodes
	flow
	flowlines
	flow_dests
	geo_bb
	geo_bb_matrix
	geo_buffer
	geo_code
	geo_length
	geo_projected
	geo_select_aeq
	geo_toptail
	gsection
	islines
	is_linepoint
	line2df
	line2points
	line2route
	line2routeRetry
	lineLabels
	line_bearing
	line_breakup
	line_length
	line_midpoint
	line_sample
	line_segment
	line_via
	l_poly
	mats2line
	nearest_cyclestreets
	nearest_google
	n_sample_length
	n_vertices
	od2line
	od2odf
	odmatrix_to_od
	od_aggregate_from
	od_aggregate_to
	od_coords
	od_coords2line
	od_data_lines
	od_data_routes
	od_data_sample
	od_dist
	od_id
	od_id_order
	od_oneway
	od_to_odmatrix
	onewaygeo
	osm_net_example
	overline
	overline_intersection
	overline_spatial
	plot,sfNetwork,ANY-method
	plot,SpatialLinesNetwork,ANY-method
	points2flow
	points2line
	points2odf
	quadrant
	read_table_builder
	reproject
	rnet_add_node
	rnet_boundary_points
	rnet_breakup_vertices
	rnet_cycleway_intersection
	rnet_get_nodes
	rnet_group
	rnet_overpass
	rnet_roundabout
	route
	routes_fast
	routes_slow
	route_average_gradient
	route_bikecitizens
	route_cyclestreets
	route_dodgr
	route_google
	route_local
	route_nearest_point
	route_network
	route_osrm
	route_rolling_average
	route_rolling_diff
	route_rolling_gradient
	route_sequential_dist
	route_slope_matrix
	route_slope_vector
	route_split
	route_split_id
	route_transportapi_public
	sfNetwork-class
	sln2points
	sln_add_node
	sln_clean_graph
	SpatialLinesNetwork
	SpatialLinesNetwork-class
	stplanr-deprecated
	summary,sfNetwork-method
	summary,SpatialLinesNetwork-method
	sum_network_links
	sum_network_routes
	toptailgs
	toptail_buff
	update_line_geometry
	weightfield
	writeGeoJSON
	zones
	Index

