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animation Animates the plotting of a DSD and the clustering process

Description

Generates an animation of a data stream or a data steam clustering. Note: You need to install
package animation, and, if necessary, the libraries required for package magick.

Usage

animate_data(dsd, horizon = 100, n = 1000, wait = .1, plot.args = NULL, ...)
animate_cluster(dsc, dsd, measure = NULL, horizon = 100, n = 1000,
type=c("auto", "micro", "macro"), assign="micro",
assignmentMethod=c("auto","model", "nn"),
noise = c("class", "exclude"),
wait=.1, plot.args = NULL, ...)

Arguments

dsd a DSD object

dsc a DSC object

horizon the number of points displayed at once/used for evaluation.

n the number of points to be plotted

measure the evaluation measure that should be graphed below the animation

type evaluate "micro" or "macro"-clusters? "auto" chooses micro if dsc is of class
DSC_micro and no macro is given. Otherwise macro is used.

assign assign new points to the closest "micro" or "macro"-cluster to calculate the
evaluation measure.

assignmentMethod

how to assign data points to micro-clusters. Options are "model" and "nn"
(nearest neighbor). "auto" uses model if available and nn otherwise.



4 animation

noise how to handle noise for calculating the evaluation measure (as a separate class
or excluded).

wait the time interval between each frame

plot.args a list with plotting parameters for the clusters.

... extra arguments are added to plot.args.

Details

Animations are recorded using the library animation and can be replayed (which gives a smoother
experience since the is no more computation done) and saved in various formats (see Examples
section below).

Author(s)

Michael Hahsler

See Also

evaluate_cluster for stream evaluation without animation. See ani.replay for replaying and
saving animations.

Examples

## Not run:
stream <- DSD_Benchmark(1)
animate_data(stream, horizon=100, n=5000, xlim=c(0,1), ylim=c(0,1))

### animations can be replayed with the animation package
library(animation)
animation::ani.options(interval=.1) ## change speed
ani.replay()

### animations can also be saved as HTML, animated gifs, etc.
saveHTML(ani.replay())

### animate the clustering process with evaluation
### Note: we choose to exclude noise points from the evaluation
### measure calculation, even if the algorithm would assign
### them to a cluster.
reset_stream(stream)
dbstream <- DSC_DBSTREAM(r=.04, lambda=.1, gaptime=100, Cm=3,

shared_density=TRUE, alpha=.2)

animate_cluster(dbstream, stream, horizon=100, n=5000,
measure="crand", type="macro", assign="micro", noise = "exclude",
plot.args = list(xlim=c(0,1), ylim=c(0,1), shared = TRUE))

## End(Not run)
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clean_outliers Clean Outliers from the Outlier Detecting Clusterer

Description

Removes all outliers from the outlier detecting clusterer.

Usage

clean_outliers(x, ...)
## S3 method for class 'DSC_Outlier'
clean_outliers(x, ...)

Arguments

x The DSC object.

... Additional parameters to pass to clean_outliers implementations.

Details

Removes all outliers from the outlier detecting clusterer.

Author(s)

Dalibor Krleža

See Also

DSC_Outlier

DefaultEvalCallback-class

Default Class for Evaluation Callbacks

Description

The default callback class for the stream package. Implicitly instantiated for each evaluate call.

Author(s)

Dalibor Krleža
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DSC Data Stream Clusterer Base Classes

Description

Abstract base classes for all DSC (Data Stream Clusterer) and DSC_R classes. Concrete implemen-
tations can be found in the registry DSC_registry (See Examples Section).

Details

The DSC and DSC_R classes cannot be instantiated (calling DSC() or DSC_R() produces errors), but
they serve as a base class from which other DSC classes inherit. Implementations can be found
using the DSC registry DSC_registry (See Examples section).

Class DSC provides several generic functions that can operate on all DSC subclasses: print(),
plot(), nclusters() to get the current number of clusters, get_centers() to get the cluster
centers, and get_weights() to get the cluster weights (if implemented). get_centers() and
get_weights() are typically overwritten by subclasses of DSC. DSC_R provides these functions
for R-based DSC implementations.

Since DSC objects often contain external pointers, regular saving and reading operations will fail.
Use saveDSC() and readDSC() which will serialize the objects first appropriately.

Author(s)

Michael Hahsler

See Also

animate_cluster, cluster, evaluate, get_assignment, get_centers, get_weights, get_copy,
microToMacro, nclusters, plot, prune_clusters, recluster, readDSC, saveDSC

Examples

DSC_registry

# all clusterers
DSC_registry$get_entries()

# available micro clusterers
DSC_registry$get_entries(DSC_Micro = TRUE)

# available macro clusterers for reclustering
DSC_registry$get_entries(DSC_Macro = TRUE)

# find DSC by name
DSC_registry$get_entries("DBSTREAM")
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DSClassify Abstract Class for Data Stream Classifiers

Description

Abstract class for data stream classifiers. Currently, stream does not implement classification algo-
rithms.

Author(s)

Michael Hahsler

See Also

DST

DSC_BICO BICO - Fast computation of k-means coresets in a data stream

Description

BICO maintains a tree which is inspired by the clustering tree of BIRCH, a SIGMOD Test of
Time award-winning clustering algorithm. Each node in the tree represents a subset of these points.
Instead of storing all points as individual objects, only the number of points, the sum and the squared
sum of the subset’s points are stored as key features of each subset. Points are inserted into exactly
one node.

Usage

DSC_BICO(k = 5, space = 10, p = 10, iterations = 10)

Arguments

k number of centres

space coreset size

p number of random projections used for nearest neighbour search in first level

iterations number of repetitions for the kmeans++ procedure in the offline component

Details

In this implementation, the nearest neighbour search on the first level of the tree ist sped up by
projecting all points to random 1-d subspaces. The first estimation of the optimal clustering cost
is computed in a buffer phase at the beginning of the algorithm. This implementation interfaces
the original C++ implementation available here: http://ls2-www.cs.tu-dortmund.de/grav/
de/bico. For micro-clustering, the algorithm computes the coreset of the stream. Reclustering is
performed by using the kmeans++ algorithm on the coreset.

http://ls2-www.cs.tu-dortmund.de/grav/de/bico
http://ls2-www.cs.tu-dortmund.de/grav/de/bico


8 DSC_BIRCH

Author(s)

R-Interface: Matthias Carnein (<Matthias.Carnein@uni-muenster.de>), Dennis Assenmacher.
C-Implementation: Hendrik Fichtenberger, Marc Gille, Melanie Schmidt, Chris Schwiegelshohn,
Christian Sohler.

References

Hendrik Fichtenberger, Marc Gille, Melanie Schmidt, Chris Schwiegelshohn, Christian Sohler:
BICO: BIRCH Meets Coresets for k-Means Clustering. ESA 2013: 481-492.

Examples

stream <- DSD_Gaussians(k = 3, d = 2)
BICO <- DSC_BICO(k = 3, p = 10, space = 100, iterations = 10)
update(BICO, stream, n = 500)
plot(BICO,stream, type = "both")

DSC_BIRCH Balanced Iterative Reducing Clustering using Hierarchies

Description

BIRCH builds a balanced-tree of Clustering Features (CFs) to summarize the stream. A CF is a
tuple (n, LS, SS) which represents a cluster by storing the number of elements (n), their linear sum
(LS) and their squared sum (SS). Each new observation descends the tree by following its closest
CF until a leaf node is reached. It is either merged into its closest leaf-CF or inserted as a new one.
All leaf-CFs form the micro-clusters. Rebuilding the tree is realized by inserting all leaf-CF nodes
into a new tree structure with an increased treshold.

Usage

DSC_BIRCH(treshold, branching, maxLeaf, maxMem = 0, outlierThreshold = 0.25)

Arguments

treshold treshold used to check whether a new datapoint can be absorbed or not

branching branching factor (maximum amount of child nodes for a nonleaf node) of the
CF-Tree.

maxLeaf maximum number of entries within a leaf node
outlierThreshold

threshold for identifying outliers when rebuilding the CF-Tree

maxMem memory limitation for the whole CFTree in bytes. Default is 0, indicating no
memory restriction.

Author(s)

Dennis Assenmacher (<Dennis.Assenmacher@uni-muenster.de>), Matthias Carnein (<Matthias.Carnein@uni-muenster.de>)



DSC_DBSCAN 9

References

Zhang T, Ramakrishnan R and Livny M (1996), "BIRCH: An Efficient Data Clustering Method for
Very Large Databases", In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data. Montreal, Quebec, Canada , pp. 103-114. ACM.

Zhang T, Ramakrishnan R and Livny M (1997), "BIRCH: A new data clustering algorithm and its
applications", Data Mining and Knowledge Discovery. Vol. 1(2), pp. 141-182.

Examples

stream <- DSD_Gaussians(k = 3, d = 2)

BIRCH <- DSC_BIRCH(treshold = .1, branching = 8, maxLeaf = 20)
update(BIRCH, stream, n = 500)

plot(BIRCH,stream)

DSC_DBSCAN DBSCAN Macro-clusterer

Description

Implements the DBSCAN algorithm for reclustering micro-clusterings.

Usage

DSC_DBSCAN(eps, MinPts = 5, weighted = TRUE, description=NULL)

Arguments

eps radius of the eps-neighborhood.

MinPts minimum number of points required in the eps-neighborhood.

weighted logical indicating if a weighted version of DBSCAN should be used.

description optional character string to describe the clustering method.

Details

DBSCAN is a weighted extended version of the implementation in fpc where each micro-cluster
center considered a pseudo point. For weighting we use in the MinPts comparison the sum of
weights of the micro-cluster instead of the number.

DBSCAN first finds core points based on the number of other points in its eps-neighborhood. Then
core points are joined into clusters using reachability (overlapping eps-neighborhoods).

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.
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Value

An object of class DSC_DBSCAN (a subclass of DSC, DSC_R, DSC_Macro).

Author(s)

Michael Hahsler

References

Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Evangelos Simoudis, Jiawei Han,
Usama M. Fayyad. Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96). AAAI Press. pp. 226-231.

See Also

DSC, DSC_Macro

Examples

# 3 clusters with 5% noise
stream <- DSD_Gaussians(k=3, d=2, noise=0.05)

# Use DBSCAN to recluster micro clusters (a sample)
sample <- DSC_Sample(k=100)
update(sample, stream, 500)

dbscan <- DSC_DBSCAN(eps = .05)
recluster(dbscan, sample)
plot(dbscan, stream, type="both")

# For comparison we can cluster some data with DBSCAN directly
# Note: DBSCAN is not suitable for data streams since it passes over the data
# several times.
dbscan <- DSC_DBSCAN(eps = .05)
update(dbscan, stream, 500)
plot(dbscan, stream)

DSC_DBSTREAM DBSTREAM clustering algorithm

Description

Implements a simple density-based stream clustering algorithm that assigns data points to micro-
clusters with a given radius and implements shared-density-based reclustering.
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Usage

DSC_DBSTREAM(r, lambda = 0.001, gaptime = 1000L,
Cm = 3, metric = "Euclidean", shared_density = FALSE,
alpha=0.1, k=0, minweight = 0)

get_shared_density(x, use_alpha = TRUE)
change_alpha(x, alpha)
get_cluster_assignments(x)

Arguments

r The radius of micro-clusters.
lambda The lambda used in the fading function.
gaptime weak micro-clusters (and weak shared density entries) are removed every gaptime

points.
Cm minimum weight for a micro-cluster.
metric metric used to calculate distances.
shared_density Record shared density information. If set to TRUE then shared density is used for

reclustering, otherwise reachability is used (overlapping clusters with less than
r ∗ (1− alpha) distance are clustered together).

k The number of macro clusters to be returned if macro is true.
alpha For shared density: The minimum proportion of shared points between to clus-

ters to warrant combining them (a suitable value for 2D data is .3). For reacha-
bility clustering it is a distance factor.

minweight The proportion of the total weight a macro-cluster needs to have not to be noise
(between 0 and 1).

x A DSC_DBSTREAM object to get the shared density information from.
use_alpha only return shared density if it exceeds alpha.

Details

The DBSTREAM algorithm checks for each new data point in the incoming stream, if it is below
the threshold value of dissimilarity value of any existing micro-clusters, and if so, merges the point
with the micro-cluster. Otherwise, a new micro-cluster is created to accommodate the new data
point.

Although DSC_DBSTREAM is a micro clustering algorithm, macro clusters and weights are avail-
able.

get_cluster_assignments() can be used to extract the MC assignment for each data point clus-
tered during the last update operation (note: update needs to be called with assignments = TRUE
and the block size needs to be large enough). The function returns the MC index (in the current set
of MCs obtained with, e.g., get_centers()) and as an attribute the permanent MC ids.

plot() for DSC_DBSTREAM has two extra logical parameters called assignment and shared_density
which show the assignment area and the shared density graph, respectively.

Value

An object of class DSC_DBSTREAM (subclass of DSC, DSC_R, DSC_Micro).
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Author(s)

Michael Hahsler and Matthew Bolanos

References

Michael Hahsler and Matthew Bolanos. Clustering data streams based on shared density between
micro-clusters. IEEE Transactions on Knowledge and Data Engineering, 28(6):1449–1461, June
2016

See Also

DSC, DSC_Micro

Examples

set.seed(0)
stream <- DSD_Gaussians(k = 3, noise = 0.05)

# create clusterer with r = 0.05
dbstream <- DSC_DBSTREAM(r = .05)
update(dbstream, stream, 1000)
dbstream

# check micro-clusters
nclusters(dbstream)
head(get_centers(dbstream))
plot(dbstream, stream)

# plot macro-clusters
plot(dbstream, stream, type = "both")

# plot micro-clusters with assignment area
plot(dbstream, stream, type = "both", assignment = TRUE)

# DBSTREAM with shared density
dbstream <- DSC_DBSTREAM(r = .05, shared_density = TRUE, Cm=5)
update(dbstream, stream, 1000)
dbstream
plot(dbstream, stream, type = "both")
# plot the shared density graph (several options)
plot(dbstream, stream, type = "both", shared_density = TRUE)
plot(dbstream, stream, type = "micro", shared_density = TRUE)
plot(dbstream, stream, type = "micro", shared_density = TRUE, assignment = TRUE)
plot(dbstream, stream, type = "none", shared_density = TRUE, assignment = TRUE)

# see how micro and macro-clusters relate
# each microcluster has an entry with the macro-cluster id
# Note: unassigned micro-clusters (noise) have an NA
microToMacro(dbstream)

# do some evaluation
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evaluate(dbstream, stream, measure="purity")
evaluate(dbstream, stream, measure="cRand", type="macro")

# use DBSTREAM for conventional clustering (with assignments = TRUE so we can
# later retrieve the cluster assignments for each point)
data("iris")
dbstream <- DSC_DBSTREAM(r = 1)
update(dbstream, iris[,-5], assignments = TRUE)
dbstream

cl <- get_cluster_assignments(dbstream)
cl

# micro-clusters
plot(iris[,-5], col = cl, pch = cl)

# macro-clusters
plot(iris[,-5], col = microToMacro(dbstream, cl))

DSC_DStream D-Stream Data Stream Clustering Algorithm

Description

Implements the D-Stream data stream clustering algorithm.

Usage

DSC_DStream(gridsize, lambda = 1e-3, gaptime=1000L,
Cm=3, Cl=.8, attraction=FALSE, epsilon=.3, Cm2=Cm, k=NULL, N = 0)

get_attraction(x, relative=FALSE, grid_type = "dense", dist=FALSE)

Arguments

gridsize Size of grid cells.

lambda Fading constant used function to calculate the decay factor 2−lambda. (Note:
in the paper the authors use lamba to denote the decay factor and not the fading
constant!)

gaptime sporadic grids are removed every gaptime number of points.

Cm density threshold used to detect dense grids as a proportion of the average ex-
pected density (Cm > 1). The average density is given by the total weight of the
clustering over N , the number of grid cells.

Cl density threshold to detect sporadic grids (0 > Cl > Cm). Transitional grids have
a density between Cl and Cm.

attraction compute and store information about the attraction between adjacent grids. If
TRUE then attraction is used to create macro-clusters, otherwise macro-clusters
are created by merging adjacent dense grids.
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epsilon overlap parameter for attraction as a proportion of gridsize.

Cm2 threshold on attraction to join two dense grid cells (as a proportion on the aver-
age expected attraction). In the original algorithm Cm2 is equal to Cm.

k alternative to Cm2 (not in the original algorithm). Create k clusters based on
attraction. In case of more than k unconnected components, closer groups of
MCs are joined.

N Fix the number of grid cells used for the calculation of the density thresholds
with Cl and Cm. If N is not given (0) then the algorithm tries to determine N
from the data. Note that this means that N potentially increases over time and
outliers might produce an extremely large value which will lead to a sudden
creation of too many dense micro-clusters. The original paper assumed that N
is known a priori.

x DSC_DStream object to get attraction values from.

relative calculates relative attraction (normalized by the cluster weight).

grid_type the attraction between what grid types should be returned?

dist make attraction symmetric and transform into a distance.

Details

D-Stream creates an equally spaced grid and estimates the density in each grid cell using the count
of points falling in the cells. Grid cells are classified based on density into dense, transitional and
sporadic cells. The density is faded after every new point by a factor of 2−lambda. Every gaptime
number of points sporadic grid cells are removed.

For reclustering D-Stream (2007 version) merges adjacent dense grids to form macro-clusters and
then assigns adjacent transitional grids to macro-clusters. This behavior is implemented as attraction=FALSE.

The 2009 version of the algorithm adds the concept of attraction between grids cells. If attraction=TRUE
is used then the algorithm produces macro-clusters based on attraction between dense adjacent grids
(uses Cm2 which in the original algorithm is equal to Cm).

For many functions (e.g., get_centers(), plot()), D-Stream adds a parameter grid_type with
possible values of "dense", "transitional", "sparse", "all" and "used". This only returns the
selected type of grid cells. "used" includes dense and adjacent transitional cells which are used in
D-Stream for reclustering.

For plot D-Stream also provides extra parameters "grid" and "grid_type" to show micro-clusters
as grid cells (density represented by gray values).

Note that DSC_DStream can at this point not be saved to disk using save() or saveRDS(). This
functionality will be added later!

Value

An object of class DSC_DStream (subclass of DSC, DSC_R, DSC_Micro).

Author(s)

Michael Hahsler
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References

Yixin Chen and Li Tu. 2007. Density-based clustering for real-time stream data. In Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’07). ACM, New York, NY, USA, 133-142.

Li Tu and Yixin Chen. 2009. Stream data clustering based on grid density and attraction. ACM
Transactions on Knowledge Discovery from Data, 3(3), Article 12 (July 2009), 27 pages.

See Also

DSC, DSC_Micro

Examples

stream <- DSD_BarsAndGaussians(noise=.05)
plot(stream)

# we set Cm=.8 to pick up the lower density clusters
dstream1 <- DSC_DStream(gridsize=1, Cm=1.5)
update(dstream1, stream, 1000)
dstream1

# micro-clusters (these are "used" grid cells)
nclusters(dstream1)
head(get_centers(dstream1))

# plot (DStream provides additional grid visualization)
plot(dstream1, stream)
plot(dstream1, stream, grid=TRUE)

# look only at dense grids
nclusters(dstream1, grid_type="dense")
plot(dstream1, stream, grid=TRUE, grid_type="dense")

# look at transitional and sparse cells
plot(dstream1, stream, grid=TRUE, grid_type="transitional")
plot(dstream1, stream, grid=TRUE, grid_type="sparse")

### Macro-clusters
# standard D-Stream uses reachability
nclusters(dstream1, type="macro")
get_centers(dstream1, type="macro")
plot(dstream1, stream, type="both", grid=TRUE)
evaluate(dstream1, stream, measure="crand", type="macro")

# use attraction for reclustering
dstream2 <- DSC_DStream(gridsize=1, attraction=TRUE, Cm=1.5)
update(dstream2, stream, 1000)
dstream2

plot(dstream2, stream, type="both", grid=TRUE)
evaluate(dstream2, stream, measure="crand", type="macro")
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DSC_EA Evolutionary Algorithm

Description

Reclustering using an evolutionary algorithm. This approach was designed for evoStream but
can also be used for other micro-clustering algorithms. The evolutionary algorithm uses existing
clustering solutions and creates small variations of them by combining and randomly modfiying
them. The modified solutions can yield better partitions and thus can improve the clustering over
time. The evolutionary algorithm is incremental, which allows to improve existing macro-clusters
instead of recomputing them every time.

Usage

DSC_EA(k, generations = 2000, crossoverRate = 0.8,
mutationRate = 0.001, populationSize = 100)

Arguments

k number of macro-clusters

generations number of EA generations performed during reclustering

crossoverRate cross-over rate for the evolutionary algorithm

mutationRate mutation rate for the evolutionary algorithm

populationSize number of solutions that the evolutionary algorithm maintains

Author(s)

Matthias Carnein <Matthias.Carnein@uni-muenster.de>

References

Carnein M. and Trautmann H. (2018), "evoStream - Evolutionary Stream Clustering Utilizing Idle
Times", Big Data Research.

Examples

stream <- DSD_Memory(DSD_Gaussians(k = 3, d = 2), 1000)

## online algorithm
dbstream <- DSC_DBSTREAM(r=0.1)

## offline algorithm (note: we use a small number of generations
## to make this run faster.)
EA <- DSC_EA(k=3, generations=100)

## create pipeline and insert observations
two <- DSC_TwoStage(dbstream, EA)
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update(two, stream, n=1000)

## plot resut
reset_stream(stream)
plot(two, stream, type="both")

## if we have time, evaluate additional generations. This can be
## called at any time, also between observations.
two$macro_dsc$RObj$recluster(100)

## plot improved result
reset_stream(stream)
plot(two, stream, type="both")

## alternatively: do not create twostage but apply directly
reset_stream(stream)
update(dbstream, stream, n = 1000)
recluster(EA, dbstream)
reset_stream(stream)
plot(EA, stream)

DSC_evoStream evoStream - Evolutionary Stream Clustering

Description

Stream clustering algorithm based on evolutionary optimization. The online component uses a sim-
plified version of DBSTREAM to generate micro-clusters. The micro-clusters are then incrementally
reclustered using an evloutionary algorithm. Evolutionary algorithms create slight variations by
combining and randomly modifying existing solutions. By iteratively selecting better solutions, an
evolutionary pressure is created which improves the clustering over time. Since the evolutionary
algorithm is incremental, it is possible to apply it between observations, e.g. in the idle time of
the stream. Whenever there is idle time, we can call the recluster function of the reference class
to improve the macro-clusters (see example). The evolutionary algorithm can also be applied as a
traditional reclustering step, or a combination of both. In addition, this implementation also allows
to evaluate a fixed number of generations after each observation.

Usage

DSC_evoStream(r, lambda = 0.001, tgap = 100, k = 2,
crossoverRate = 0.8, mutationRate = 0.001, populationSize = 100,
initializeAfter = 2 * k, incrementalGenerations = 1,
reclusterGenerations = 1000)

Arguments

r radius threshold for micro-cluster assignment

lambda decay rate
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tgap time-interval between outlier detection and clean-up

k number of macro-clusters

crossoverRate cross-over rate for the evolutionary algorithm

mutationRate mutation rate for the evolutionary algorithm

populationSize number of solutions that the evolutionary algorithm maintains
initializeAfter

number of micro-cluster required for the initialization of the evolutionary algo-
rithm.

incrementalGenerations

number of EA generations performed after each observation
reclusterGenerations

number of EA generations performed during reclustering

Author(s)

Matthias Carnein <Matthias.Carnein@uni-muenster.de>

References

Carnein M. and Trautmann H. (2018), "evoStream - Evolutionary Stream Clustering Utilizing Idle
Times", Big Data Research.

Examples

stream <- DSD_Memory(DSD_Gaussians(k = 3, d = 2), 500)

## init evoStream
evoStream <- DSC_evoStream(r = 0.05, k = 3,

incrementalGenerations = 1, reclusterGenerations = 500)

## insert observations
update(evoStream, stream, n = 500)

## micro clusters
get_centers(evoStream, type = "micro")

## micro weights
get_weights(evoStream, type = "micro")

## macro clusters
get_centers(evoStream, type = "macro")

## macro weights
get_weights(evoStream, type = "macro")

## plot result
reset_stream(stream)
plot(evoStream, stream, type = "both")

## if we have time, evaluate additional generations.



DSC_Hierarchical 19

## This can be called at any time, also between observations.
## by default, 1 generation is evaluated after each observation and
## 1000 generations during reclustering but we set it here to 500
evoStream$RObj$recluster(500)

## plot improved result
reset_stream(stream)
plot(evoStream, stream, type = "both")

## get assignment of micro to macro clusters
microToMacro(evoStream)

DSC_Hierarchical Hierarchical Micro-Cluster Reclusterer

Description

Implementation of hierarchical clustering to recluster a set of micro-clusters.

Usage

DSC_Hierarchical(k=NULL, h=NULL, method = "complete", min_weight=NULL,
description=NULL)

Arguments

k The number of desired clusters.

h Height where to cut the dendrogram.

method the agglomeration method to be used. This should be (an unambiguous abbrevi-
ation of) one of "ward", "single", "complete", "average", "mcquitty", "median"
or "centroid".

min_weight micro-clusters with a weight less than this will be ignored for reclustering.

description optional character string to describe the clustering method.

Details

Please refer to hclust for more details on the behavior of the algorithm.

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.

Value

A list of class DSC, DSC_R, DSC_Macro, and DSC_Hierarchical. The list contains the following
items:

description The name of the algorithm in the DSC object.

RObj The underlying R object.
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Author(s)

Michael Hahsler

See Also

DSC, DSC_Macro

Examples

# Cassini dataset
stream <- DSD_mlbenchGenerator("cassini")

# Use hierarchical clustering to recluster micro-clusters
dbstream <- DSC_DBSTREAM(r = .05)
update(dbstream, stream, 500)

# reclustering using single-link and specifying k
hc <- DSC_Hierarchical(k = 3, method = "single")
recluster(hc, dbstream)
hc
plot(hc, stream, type = "both")

# reclustering by specifying height
hc <- DSC_Hierarchical(h = .2, method = "single")
recluster(hc, dbstream)
hc
plot(hc, stream, type = "both")

# For comparison we use hierarchical clustering directly on the data
# Note: hierarchical clustering is not a data stream clustering algorithm!
hc <- DSC_Hierarchical(k = 3, method = "single")
update(hc, stream, 500)
plot(hc, stream)

DSC_Kmeans Kmeans Macro-clusterer

Description

Class implements the k-means algorithm for reclustering a set of micro-clusters.

Usage

DSC_Kmeans(k, weighted = TRUE, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
min_weight = NULL, description=NULL)
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Arguments

k either the number of clusters, say k, or a set of initial (distinct) cluster centers.
If a number, a random set of (distinct) rows in x is chosen as the initial centers.

weighted use a weighted k-means (algorithm is ignored).

iter.max the maximum number of iterations allowed.

nstart if centers is a number, how many random sets should be chosen?

algorithm character: may be abbreviated.

min_weight micro-clusters with a weight less than this will be ignored for reclustering.

description optional character string to describe the clustering method.

Details

Please refer to function kmeans in stats for more details on the algorithm.

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.

Value

An object of class DSC_Kmeans (subclass of DSC, DSC_R, DSC_Macro)

Author(s)

Michael Hahsler

See Also

DSC, DSC_Macro

Examples

stream <- DSD_Gaussians(k=3, noise=0)

# create micro-clusters via sampling
sample <- DSC_Sample(k=20)
update(sample, stream, 500)
sample

# recluster micro-clusters
kmeans <- DSC_Kmeans(k=3)
recluster(kmeans, sample)
plot(kmeans, stream, type="both")

# For comparison we use k-means directly to cluster data
# Note: k-means is not a data stream clustering algorithm
kmeans <- DSC_Kmeans(k=3)
update(kmeans, stream, 500)
plot(kmeans, stream)
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DSC_Marco Abstract Class for Macro Clusterers

Description

Abstract class for all DSC Macro Clusterers.

Details

DSC_Macro cannot be instantiated. Calling DSC_Macro() results in an error.

Author(s)

Michael Hahsler

See Also

DSC

Examples

# available macro clusterers for reclustering
DSC_registry$get_entries(DSC_Macro = TRUE)

DSC_Micro Abstract Class for Micro Clusterers

Description

Abstract class for all DSC Micro Clusterers.

Details

DSC_Micro cannot be instantiated. Calling DSC_Micro() results in an error.

Author(s)

Michael Hahsler

See Also

DSC

Examples

# available micro clusterers
DSC_registry$get_entries(DSC_Micro = TRUE)
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DSC_Outlier-class Abstract Class for Outlier Detection Clusterers

Description

The abstract class for all outlier detection clusterers. Cannot be instantiated. Must be inherited. An
implementation is available in package streamMOA.

Methods

clean_outliers(x, ...) A method that requires removal of all outliers from the addressed out-
lier detection clusterer.

get_outlier_positions(x, ...) Returns spatial positions of all current outliers.

recheck_outlier(x, outlier_correlated_id, ...) Re-checks the outlier having outlier_correlated_id.
If this object is still an outlier, the method returns TRUE.

noutliers(x, ...) Returns the current number of outliers.

print(x, ...) Prints out the general info and statistics about the outlier detection clusterer.

get_assignment(x, points, type=c("auto", "micro", "macro"), method=c("auto", "nn", "model"), outlier_threshold=0.05, ...)
Calculates assignments and outlier marks for the points data frame. Points are assigned to
an outlier only if they are inside outlier_threshold distance from its position. This imple-
mentation is heavily dependant on the Euclidean distance measure and should be overwritten
by concrete outlier detection clusterer implementations.

Author(s)

Dalibor Krleža

DSC_Reachability Reachability Micro-Cluster Reclusterer

Description

Implementation of reachability clustering (based on DBSCAN’s concept of reachability) to reclus-
ter a set of micro-clusters. Two micro-clusters are directly reachable if they are within each other’s
epsilon-neighborhood (i.e., the distance between the centers is less then epsilon). Two micro-
clusters are reachable if they are connected by a chain of pairwise directly reachable micro-clusters.
All mutually reachable micro-clusters are put in the same cluster.

Usage

DSC_Reachability(epsilon, min_weight=NULL, description=NULL)



24 DSC_Reachability

Arguments

epsilon radius of the epsilon-neighborhood.

min_weight micro-clusters with a weight less than this will be ignored for reclustering.

description optional character string to describe the clustering method.

Details

Reachability uses internally DSC_Hierarchical with single link.

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.

Value

An object of class DSC_Reachability. The object contains the following items:

description The name of the algorithm in the DSC object.

RObj The underlying R object.

Author(s)

Michael Hahsler

References

Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Evangelos Simoudis, Jiawei Han,
Usama M. Fayyad. Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96). AAAI Press. pp. 226-231.

See Also

DSC, DSC_Macro

Examples

stream <- DSD_mlbenchGenerator("cassini")

# Recluster micro-clusters from DSC_Sample with reachability
sample <- DSC_Sample(k = 200)
update(sample, stream, 1000)

reach <- DSC_Reachability(epsilon=0.3)
recluster(reach, sample)

plot(reach, stream, type="both")

# For comparison we using reachability clustering directly on data points
# Note: reachability is not a data stream clustering algorithm taking O(n^2)
# time and space.
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reach <- DSC_Reachability(epsilon=0.2)
update(reach, stream, 500)
reach
plot(reach, stream)

DSC_Sample Extract a Fixed-size Sample from a Data Stream

Description

Extracts a sample form a data stream using Reservoir Sampling. The sample is stored as a set of
micro-clusters to be compatible with other data DSC stream clustering algorithms.

Usage

DSC_Sample(k = 100, biased = FALSE)

Arguments

k the number of points to be sampled from the stream.

biased if FALSE then a regular (unbiased) reservoir sampling is used. If true then the
sample is biased towards keeping more recent data points (see Details section).

Details

If biased=FALSE then the reservoir sampling algorithm by McLeod and Bellhouse (1983) is used.
This sampling makes sure that each data point has the same chance to be sampled. All sampled
points will have a weight of 1. Note that this might not be ideal for an evolving stream since very
old data points have the same chance to be in the sample as newer points.

If bias=TRUE then sampling prefers newer points using the modified reservoir sampling algorithm
2.1 by Aggarwal (2006). New points are always added. They replace a random point in thre
reservoir with a probability of reservoir size over k. This an exponential bias function of 2−lambda

with lambda = 1/k.

Value

An object of class DSC_Sample (subclass of DSC, DSC_R, DSC_Micro).

Author(s)

Michael Hahsler
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References

Vitter, J. S. (1985): Random sampling with a reservoir. ACM Transactions on Mathematical Soft-
ware, 11(1), 37-57.

McLeod, A.I., Bellhouse, D.R. (1983): A Convenient Algorithm for Drawing a Simple Random
Sample. Applied Statistics, 32(2), 182-184.

Aggarwal C. (2006) On Biased Reservoir Sampling in the Presence of Stream Evolution. Interna-
tional Conference on Very Large Databases (VLDB’06). 607-618.

See Also

DSC, DSC_Micro

Examples

stream <- DSD_Gaussians(k=3, noise=0.05)

sample <- DSC_Sample(k=20)
update(sample, stream, 500)
sample

# plot micro-clusters
plot(sample, stream)

# reclustering
kmeans <- DSC_Kmeans(3)
recluster(kmeans, sample)
plot(kmeans, stream, type="both")

# sample from an evolving stream
stream <- DSD_Benchmark(1)
sample <- DSC_Sample(k=20)
update(sample, stream, 1000)
plot(sample, stream)
# Note: the clusters move from left to right and the sample keeps many
# outdated points

# use a biased sample to keep more recent data points
stream <- DSD_Benchmark(1)
sample <- DSC_Sample(k=20, biased=TRUE)
update(sample, stream, 1000)
plot(sample, stream)

DSC_SinglePass-class Abstract Class for Single-Pass Clusterers

Description

The abstract class for all single-pass clusterers. Cannot be instantiated. Must be inherited. Outlier
detecting clusterers are usually single-pass clusterers, since the outlier detection event must be
reported as soon as possible back to the caller.
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Methods

get_assignments(dsc, points, type=c("auto", "micro", "macro"), method=c("auto", "nn", "model"), ...)
A method that needs to be re-implemented by all single-pass clusterers. In this method, each
data instance retrieved from an input data stream must be processed in two steps:

1. Classification, which contributes to the returning data frame,
2. Model update

Author(s)

Dalibor Krleža

DSC_Static Create as Static Copy of a Clustering

Description

This representation cannot perform clustering anymore, but it also does not need the supporting
data structures. It only stores the cluster centers and weights.

Usage

DSC_Static(x, type=c("auto", "micro", "macro"), k_largest=NULL, min_weight=NULL)

Arguments

x The clustering (a DSD object) to copy.

type which clustering to copy.

k_largest only copy the k largest (highest weight) clusters.

min_weight only copy clusters with a weight larger or equal to min_weight.

Value

An object of class DSC_Static (sub class of DSC, DSC_R). The list also contains either DSC_Micro
or DSC_Macro depending on what type of clustering was copied.

Author(s)

Michael Hahsler

See Also

DSC, DSC_Micro, DSC_Macro
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Examples

stream <- DSD_Gaussians(k=3, noise=0.05)

dstream <- DSC_DStream(gridsize=0.05)
update(dstream, stream, 500)
dstream
plot(dstream, stream)

# create a static copy of the clustering
static <- DSC_Static(dstream)
static
plot(static, stream)

# copy only the 5 largest clusters
static2 <- DSC_Static(dstream, k_largest=5)
static2
plot(static2, stream)

# copy all clusters with a weight of at least .3
static3 <- DSC_Static(dstream, min_weight=.3)
static3
plot(static3, stream)

DSC_TwoStage TwoStage Clustering Process

Description

Combines a micro and a macro clustering algorithm into a single process.

Usage

DSC_TwoStage(micro, macro)

Arguments

micro Clustering algorithm used in the online stage (DSC_micro)

macro Clustering algorithm used for reclustering in the offline stage (DSC_macro)

Details

update() runs the micro-clustering stage and only when macro cluster centers/weights are re-
quested, then the offline stage reclustering is automatically performed.

Value

An object of class DSC_TwoStage (subclass of DSC, DSC_Macro).
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Author(s)

Michael Hahsler

See Also

DSC, DSC_Macro

Examples

stream <- DSD_Gaussians(k=3)

# Create a clustering process that uses a window for the online stage and
# k-means for the offline stage (reclustering)
win_km <- DSC_TwoStage(

micro=DSC_Window(horizon=100),
macro=DSC_Kmeans(k=3)
)

win_km

update(win_km, stream, 200)
win_km
plot(win_km, stream, type="both")
evaluate(win_km, stream, assign="macro")

DSC_Window A sliding window from a Data Stream

Description

Implements a sliding window which keeps a fixed amount (window length) of the most recent data
points of the stream.

Usage

DSC_Window(horizon = 100, lambda=0)

Arguments

horizon the window length.

lambda decay factor damped window model. lambda=0 means no dampening.

Details

If lambda is greater than 0 then the weight uses a damped window model (Zhu and Shasha, 2002).
The weight for points in the window follows 2−lambda∗t where t is the age of the point.

Value

An object of class DSC_Window (subclass of DSC, DSC_R, DSC_Micro).
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Author(s)

Michael Hahsler

References

Zhu, Y. and Shasha, D. (2002). StatStream: Statistical Monitoring of Thousands of Data Streams
in Real Time, International Conference of Very Large Data Bases (VLDB’02).

See Also

DSC, DSC_Micro

Examples

stream <- DSD_Gaussians(k=3, d=2, noise=0.05)

window <- DSC_Window(horizon=100)
window

update(window, stream, 200)
window

# plot micro-clusters
plot(window, stream)

# animation for a window using a damped window model. The weight decays
# with a half-life of 25
## Not run:
window <- DSC_Window(horizon=25, lambda=1/25)
animate_cluster(window, stream, horizon=1, n=100, xlim=c(0,1), ylim=c(0,1))

## End(Not run)

DSD Data Stream Data Generator Base Classes

Description

Abstract base classes for DSD (Data Stream Data Generator).

Details

The DSD class cannot be instantiated, but it serves as a abstract base class from which all DSD
objects inherit.

DSD_R inherits form DSD and is the abstract parent class for DSD implemented in R. To create a new
R-based implementation there are only two function that needs to be implemented for a new DSD
subclass: A creator function (the name should start with DSD_) and a method get_points() for
that class.
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DSD provides common functionality like print(), plot(), etc.

Note that calling DSD() or DSD_R() results in an error since both are abstract classes.

Author(s)

Michael Hahsler

See Also

animate_data, animate_cluster, cluster, evaluate, get_points, plot, recluster, write_stream.DSD

Examples

# create data stream with three clusters in 3-dimensional space
stream <- DSD_Gaussians(k=3, d=3)

# get points from stream
get_points(stream, n=5)

# get points with true cluster assignment
p <- get_points(stream, n=5, cluster=TRUE)
attr(p, "cluster")

# plotting the data (scatter plot matrix, first and third dimension, and first
# two principal components)
plot(stream)
plot(stream, dim=c(1,3))
plot(stream, method="pc")

DSD_BarsAndGaussians Data Stream Generator for Bars and Gaussians

Description

A data stream generator which creates the shape of two bars and two Gaussians clusters with dif-
ferent density.

Usage

DSD_BarsAndGaussians(angle= NULL, noise = 0)

Arguments

angle rotation in degrees. NULL will produce a random rotation.

noise The amount of noise that should be added to the output.

Value

Returns a DSD_BarsAndGaussians object.
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Author(s)

Michael Hahsler

See Also

DSD

Examples

# create data stream with three clusters in 2D
stream <- DSD_BarsAndGaussians(noise=0.1)

# plotting the data
plot(stream)

DSD_Benchmark Data Stream Generator for Benchmark Data

Description

A data stream generator that generates several dynamic streams indented to be benchmarks to com-
pare data stream clustering algorithms.

Usage

DSD_Benchmark(i=1)

Arguments

i number of the benchmark.

Details

Currently available benchmarks are 1 and 2.

Value

Returns a DSD object.

Author(s)

Michael Hahsler

See Also

DSD
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Examples

stream <- DSD_Benchmark(i=1)
## Not run:
animate_data(stream, n=10000, horizon=100, xlim=c(0,1), ylim=c(0,1))

## End(Not run)

DSD_Cubes Static Cubes Data Stream Generator

Description

A data stream generator that produces a data stream with static (hyper) cubes filled uniformly with
data points.

Usage

DSD_Cubes(k=2, d=2, center, size, p, noise = 0, noise_range)

Arguments

k Determines the number of clusters.

d Determines the number of dimensions.

center A matrix of means for each dimension of each cluster.

size A k times d matrix with the cube dimensions.

p A vector of probabilities that determines the likelihood of generated a data point
from a particular cluster.

noise Noise probability between 0 and 1. Noise is uniformly distributed within noise
range (see below).

noise_range A matrix with d rows and 2 columns. The first column contains the minimum
values and the second column contains the maximum values for noise.

Value

Returns a DSD_Cubes object (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

See Also

DSD
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Examples

# create data stream with three clusters in 3D
stream <- DSD_Cubes(k=3, d=3)

# plotting the data
plot(stream)

DSD_Gaussians Mixture of Gaussians Data Stream Generator

Description

A data stream generator that produces a data stream with a mixture of static Gaussians.

Usage

DSD_Gaussians(k=2, d=2, mu, sigma, p, noise = 0, noise_range,
separation_type=c("auto","Euclidean","Mahalanobis"), separation=0.2,

space_limit = c(0.2, 0.8), variance_limit = 0.01,
outliers = 0, outlier_options = NULL, verbose=FALSE)

Arguments

k Determines the number of clusters.

d Determines the number of dimensions.

mu A matrix of means for each dimension of each cluster.

sigma A list of length k of covariance matrices.

p A vector of probabilities that determines the likelihood of generated a data point
from a particular cluster.

noise Noise probability between 0 and 1. Noise is uniformly distributed within noise
range (see below).

noise_range A matrix with d rows and 2 columns. The first column contains the minimum
values and the second column contains the maximum values for noise.

separation_type

The type of the separation distance calculation. It can be either Euclidean norm
or Mahalanobis distance.

separation Depends on the separation_type parameter. It means minimum separation
distance between all generated constructs. When k>0, generated constructs in-
clude clusters. When outliers>0, generated constructs include outliers.

space_limit Defines the space bounds. All constructs are generated inside these bounds. For
clusters this means that their centroids must be within these space bounds.

variance_limit Upper limit for the randomly generated variance when creating cluster covari-
ance matrices.
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outliers Determines the number of data points marked as outliers. Outliers generated by
DSD_Gaussians are statistically separated enough from clusters, so that outlier
detectors can find them in the overall data stream. Cluster and outlier separa-
tion distance is determined by separation and outlier_virtual_variance
parameters. The outlier virtual variance defines an empty space around outliers,
which separates them from their surrounding. Unlike noise, outliers are data
points of interest for end-users, and the goal of outlier detectors is to find them
in data streams. For more details, read the "Introduction to stream" vignette.

outlier_options

Effective only when outliers>0. Comprises the following list of options:

• predefined_outlier_space_positions - (Default=NULL) A predefined
list of outlier spatial positions. Similar to mu.

• predefined_outlier_stream_positions - (Default=NULL) A predefined
list of outlier stream positions. Must have the same number of elements as
predefined_outlier_space_positions.

• outlier_horizon - (Default=500) A horizon in the generated data stream
measured in data points that will contain requested number of outliers.

• outlier_virtual_variance - (Default=1) A variance used to create the
virtual covariance matrices for outliers. Such virtual statistical distribution
helps to define an empty space around outliers that separates them from
other constructs, both clusters and outliers.

verbose Printout of the cluster and outlier generation process.

Details

DSD_Gaussians creates a mixture of k static clusters and outliers outliers in a d-dimensional
space. The cluster centers mu and the covariance matrices sigma can be supplied or will be ran-
domly generated. The probability vector p defines for each cluster the probability that the next
data point will be chosen from it (defaults to equal probability). The outlier spatial positions
predefined_outlier_space_positions and the outlier stream positions predefined_outlier_stream_positions
can be supplied or will be randomly generated.

Separation between generated clusters and outliers can be imposed by using Euclidean or Maha-
lanobis distance, which is controlled by the separation_type parameter. Separation value then is
supplied in the separation parameter.

The generation method is similar to the one suggested by Jain and Dubes (1988).

Value

Returns a DSD_Gaussians object (subclass of DSD_R, DSD) which is a list of the defined params.
The params are either passed in from the function or created internally. They include:

description A brief description of the DSD object.

k The number of clusters.

d The number of dimensions.

mu The matrix of means of the dimensions in each cluster.

sigma The covariance matrix.
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p The probability vector for the clusters.

noise A flag that determines if or if not noise is generated.

outs Outlier spatial positions.

outs_pos Outlier stream positions.

outs_vv Outlier virtual variance.

Author(s)

Michael Hahsler, Dalibor Krleža

References

Jain and Dubes(1988) Algorithms for clustering data, Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

See Also

DSD

Examples

# create data stream with three clusters in 3-dimensional data space
stream1 <- DSD_Gaussians(k=3, d=3)
plot(stream1)

# create data stream with specified cluster positions,
# 20% noise in a given bounding box and
# with different densities (1 to 9 between the two clusters)
stream2 <- DSD_Gaussians(k=2, d=2,

mu=rbind(c(-.5,-.5), c(.5,.5)),
noise=0.2, noise_range=rbind(c(-1,1),c(-1,1)),
p=c(.1,.9))

plot(stream2)

# create 2 clusters and 2 outliers. Clusters and outliers
# are separated by Euclidean distance of 0.5 or more.
stream3 <- DSD_Gaussians(k=2, d=2,

separation_type="Euclidean", separation=0.5,
space_limit=c(0,1),
outliers=2)

plot(stream3)

# create 2 clusters and 2 outliers separated by a Mahalanobis
# distance of 6 or more.
stream4 <- DSD_Gaussians(k=2, d=2,

separation_type="Mahalanobis", separation=6,
space_limit=c(0,25), variance_limit=2,
outliers=2)

plot(stream4)
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# spread outliers over 20000 data instances
stream5 <- DSD_Gaussians(k=2, d=2,

separation_type="Mahalanobis", separation=6,
space_limit=c(0,45), variance_limit=2,
outliers=20, outlier_options=list(
outlier_horizon=20000,
outlier_virtual_variance = 0.3))

plot(stream5, n=20000)

DSD_Memory A Data Stream Interface for Data Stored in Memory

Description

This class provides a data stream interface for data stored in memory as matrix-like objects (includ-
ing data frames). All or a portion of the stored data can be replayed several times.

Usage

DSD_Memory(x, n, k=NA, loop=FALSE, class = NULL, outlier = NULL,
description=NULL)

Arguments

x A matrix-like object containing the data. If x is a DSD object then a data frame
for n data points from this DSD is created.

n Number of points used if x is a DSD object. If x is a matrix-like object then n is
ignored.

k Optional: The known number of clusters in the data

loop Should the stream start over when it reaches the end?

class Vector with the class/cluster label (only used if x is not a DSD object).

outlier A logical vector with outlier marks (only used if x is not a DSD object). FALSE
= the correspnding data instance in the x data frame is not an outlier, TRUE =
the corresponding data instance in the x data frame is an outlier.

description character string with a description.

Details

In addition to regular data.frames other matrix-like objects that provide subsetting with the bracket
operator can be used. This includes ffdf (large data.frames stored on disk) from package ff and
big.matrix from bigmemory.

Value

Returns a DSD_Memory object (subclass of DSD_R, DSD).
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Author(s)

Michael Hahsler, Dalibor Krleža

See Also

DSD, reset_stream

Examples

# store 1000 points from a stream
stream <- DSD_Gaussians(k=3, d=2)
replayer <- DSD_Memory(stream, k=3, n=1000)
replayer
plot(replayer)

# creating 2 clusterers of different algorithms
dsc1 <- DSC_DBSTREAM(r=0.1)
dsc2 <- DSC_DStream(gridsize=0.1, Cm=1.5)

# clustering the same data in 2 DSC objects
reset_stream(replayer) # resetting the replayer to the first position
update(dsc1, replayer, 500)
reset_stream(replayer)
update(dsc2, replayer, 500)

# plot the resulting clusterings
reset_stream(replayer)
plot(dsc1, replayer, main="DBSTREAM")
reset_stream(replayer)
plot(dsc2, replayer, main="D-Stream")

### use a data.frame to create a stream (3rd col. contains the assignment)
df <- data.frame(x=runif(100), y=runif(100),

class=sample(1:3, 100, replace=TRUE))
head(df)
### add some outliers
out <- runif(100) >.95
### re-assign classes for outliers
df[which(out),"class"]<-sample(4:(4+sum(out)-1),sum(out),replace=FALSE)

stream <- DSD_Memory(df[,c("x", "y")], class=df[,"class"], outlier=out)
stream
reset_stream(stream)
plot(stream, n=100)

DSD_MG DSD Moving Generator
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Description

Creates an evolving DSD that consists of several MGCs.

Usage

DSD_MG(dimension = 2, ..., labels=NULL, description=NULL)

add_cluster(x, c, label=NULL)
get_clusters(x)
remove_cluster(x, i)

Arguments

dimension the dimension of the DSD object

... initial set of MGCs

x A DSD_MG object.

c The cluster that should be added to the DSD_MG object.

i The index of the cluster that should be removed from the DSD_MG object.

label, labels integer representing the cluster label. NA represents noise. If labels are not
specified, then each new cluster gets a new label.

description An optional string used by print to describe the data generator.

Details

This DSD is able to generate complex datasets that are able to evolve over a period of time. Its
behavior is determined by the MGCs it is composed of.

Author(s)

Matthew Bolanos

See Also

MGC_Function, MGC_Linear, MGC_Noise, MGC_Random for details on the different MGC objects.

Examples

### create an empty DSD_MG
stream <- DSD_MG(dim = 2)
stream

### add two clusters
c1 <- MGC_Random(density=50, center=c(50,50), parameter=1, randomness = )
add_cluster(stream, c1)
stream

c2 <- MGC_Noise(density=1, range=rbind(c(-20,120), c(-20,120)))
add_cluster(stream, c2)
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stream

get_clusters(stream)
plot(stream, xlim=c(-20,120), ylim=c(-20,120))

## Not run:
animate_data(stream, n=5000, xlim=c(-20,120), ylim=c(-20,120))

## End(Not run)

### remove cluster 1
remove_cluster(stream,1)

get_clusters(stream)
plot(stream, xlim=c(-20,120), ylim=c(-20,120))

### create a more complicated cluster structure (using 2 clusters with the same
### label to form an L shape)
stream <- DSD_MG(dim=2,

MGC_Static(density=10, center=c(.5,.2), par=c(.4,.2), shape=MGC_Shape_Block),
MGC_Static(density=10, center=c(.6,.5), par=c(.2,.4), shape=MGC_Shape_Block),
MGC_Static(density=5, center=c(.39,.53), par=c(.16,.35), shape=MGC_Shape_Block),
MGC_Noise(density=1, range=rbind(c(0,1), c(0,1))),
labels= c(1, 1, 2, NA)
)

plot(stream, xlim=c(0,1), ylim=c(0,1))

### simulate the clustering of a splitting cluster
c1 <- MGC_Linear(dim = 2, keyframelist = list(

keyframe(time = 1, dens = 20, center = c(0,0), param = 10),
keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
keyframe(time = 100,dens = 10, center = c(50,100),param = 10)

))

### Note: Second cluster appearch at time=50
c2 <- MGC_Linear(dim = 2, keyframelist = list(

keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
keyframe(time = 100,dens = 10, center = c(100,50),param = 10)

))

stream <- DSD_MG(dim = 2, c1, c2)
stream

dbstream <- DSC_DBSTREAM(r=10, lambda=0.1)

## Not run:
purity <- animate_cluster(dbstream, stream, n=2500, type="both",

xlim=c(-10,120), ylim=c(-10,120), evaluationMeasure="purity", horizon=100)

## End(Not run)



DSD_mlbenchData 41

DSD_mlbenchData Stream Interface for Data Sets From mlbench

Description

Provides a convenient stream interface for data sets from the mlbench package.

Usage

DSD_mlbenchData(data=NULL, loop = FALSE, random = FALSE, scale = FALSE)

Arguments

data The name of the dataset from mlbench. If missing then a list of all available data
sets is shown and returned.

loop A flag that tells the stream to loop or not to loop over the data frame.

random A flag that determines if the data should be in a random order.

scale A flag that determines if the data should be scaled.

Details

The DSD_mlbenchData class is designed to be a wrapper class for data that is held in memory in
either a data frame or matrix form. It is a subclass of DSD_Memory.

Call DSD_mlbenchData with a missing value for data to get a list of all available data sets.

Value

Returns a DSD_mlbenchData object which is also of class DSD_Memory.

Author(s)

Michael Hahsler and Matthew Bolanos

See Also

DSD, DSD_Memory, reset_stream

Examples

stream <- DSD_mlbenchData("Shuttle")
stream

plot(stream, n=100)
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DSD_mlbenchGenerator mlbench Data Stream Generator

Description

A data stream generator class that interfaces data generators found in mlbench.

Usage

DSD_mlbenchGenerator(method, ...)

Arguments

method The name of the mlbench data generator.

... Parameters for the mlbench data generator.

Details

The DSD_mlbenchGenerator class is designed to be a wrapper class for data created by data gen-
erators in the mlbench library.

Call DSD_mlbenchGenerator with missing method to get a list of available methods.

Value

Returns a DSD_mlbenchGenerator object (subclass of DSD_R, DSD) which is a list of the defined
parameters. The parameters are either passed in from the function or created internally. They
include:

description The name of the class of the DSD object.

method The name of the mlbench data generator.

variables The variables for the mlbench data generator.

Author(s)

John Forrest

See Also

DSD

Examples

stream <- DSD_mlbenchGenerator(method="cassini")

plot(stream, n=500)
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DSD_ReadCSV Read a Data Stream from File

Description

A DSD class that reads a data stream from a file or any R connection.

Usage

DSD_ReadCSV(file, k=NA, o=NA,
take=NULL, class=NULL, outlier=NULL, loop=FALSE,
sep=",", header=FALSE, skip=0, colClasses = NA, ...)

close_stream(dsd)

Arguments

file A file/URL or an open connection.

k Number of true clusters, if known.

o Number of outliers, if known.

take indices of columns to extract from the file.

class column index for the class attribute/cluster label. If take is specified then it
needs to also include the class/label column.

outlier column index for the outlier mark. If take is specified then it needs to also
include the outlier column.

loop If enabled, the object will loop through the stream when the end has been
reached. If disabled, the object will warn the user upon reaching the end.

sep The character string that separates dimensions in data points in the stream.

header Does the first line contain variable names?

skip the number of lines of the data file to skip before beginning to read data.

colClasses A vector of classes to be assumed for the columns passed on to read.table.

... Further arguments are passed on to read.table. This can for example be used
for encoding, quotes, etc.

dsd A object of class DSD_ReadCSV.

Details

DSD_ReadCSV uses read.table() to read in data from an R connection. The connection is respon-
sible for maintaining where the stream is currently being read from. In general, the connections will
consist of files stored on disk but have many other possibilities (see connection).

The implementation tries to gracefully deal with slightly corrupted data by dropping points with
inconsistent reading and producing a warning. However, this might not always be possible resulting
in an error instead.

The position in the file can be reset to the beginning using reset_stream(). The connection can
be closed using close_stream().
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Value

An object of class DSD_ReadCSV (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler, Dalibor Krleža

See Also

DSD, reset_stream, read.table.

Examples

# creating data and writing it to disk
stream <- DSD_Gaussians(k=3, d=5, outliers=1, space_limit=c(0,2),

outlier_options = list(outlier_horizon=10))
write_stream(stream, "data.txt", n=10, header = TRUE, sep=",", class=TRUE, write_outliers=TRUE)

# reading the same data back (as a loop)
stream2 <- DSD_ReadCSV(k=3, o=1, "data.txt", sep=",", header = TRUE, loop=TRUE, class="class",

outlier="outlier")
stream2

# get points (fist a single point and then 20 using loop)
get_points(stream2)
p <- get_points(stream2, n=20, outlier=TRUE)
message(paste("Outliers",sum(attr(p,"outlier"))))

# clean up
close_stream(stream2)
file.remove("data.txt")

# example with a part of the kddcup1999 data (take only cont. variables)
file <- system.file("examples", "kddcup10000.data.gz", package="stream")
stream <- DSD_ReadCSV(gzfile(file),

take=c(1, 5, 6, 8:11, 13:20, 23:42), class=42, k=7)
stream

get_points(stream, 5, class = TRUE)

# plot 100 points (projected on the first two principal components)
plot(stream, n=100, method="pc")

close_stream(stream)



DSD_ReadDB 45

DSD_ReadDB Read a Data Stream from an open DB Query

Description

A DSD class that reads a data stream from an open DB result set from a relational database with
using R’s data base interface (DBI).

Usage

DSD_ReadDB(result, k=NA, o=NA, class=NULL, outlier=NULL, description=NULL)

Arguments

result An open DBI result set.

k Number of true clusters, if known.

o Number of outliers, if known.

class column index for the class/cluster assignment.

outlier column index for the outlier mark.

description a character string describing the data.

Details

This class provides a streaming interface for result sets from a data base with via DBI. You need to
connect to the data base and submit a SQL query using dbGetQuery() to obtain a result set. Make
sure that your query only includes the columns that should be included in the stream (including class
and outlier marking columns). Do not forget to close the result set and the data base connection.

Value

An object of class DSD_ReadDB (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler, Dalibor Krleža

See Also

DSD, dbGetQuery
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Examples

### create a data base with a table with 3 Gaussians
library("RSQLite")
con <- dbConnect(RSQLite::SQLite(), ":memory:")

points <- get_points(DSD_Gaussians(k=3, d=2, outliers=1,
outlier_options=list(outlier_horizon=600)), 600,
class = TRUE, outlier = TRUE)

points <- cbind(points, outlier=attr(points,"outlier"))
head(points)

dbWriteTable(con, "gaussians", points)

### prepare a query result set
res <- dbSendQuery(con, "SELECT X1, X2, class, outlier FROM gaussians")
res

### create a stream interface to the result set
stream <- DSD_ReadDB(res, k=3, o=1, class = 3, outlier = 4)

### get points
get_points(stream, 5, class = TRUE, outlier=TRUE)
plot(stream)

### clean up
dbClearResult(res)
dbDisconnect(con)

DSD_ScaleStream Scale a Stream from a DSD

Description

Make an unscaled data stream into a scaled data stream.

Usage

DSD_ScaleStream(dsd, center=TRUE, scale=TRUE, n=1000, reset=FALSE)

Arguments

dsd A object of class DSD that will be scaled.

center, scale logical or a numeric vector of length equal to the number of columns used for
centering/scaling (see function scale).

n The number of points used to creating the centering/scaling

reset Try to reset the stream to its beginning after taking n points for scaling.
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Details

scale_stream() estimates the values for centering and scaling (see scale in base) using n points
from the stream.

Value

An object of class DSD_ScaleStream (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

See Also

DSD, reset_stream, scale in base,

Examples

stream <- DSD_Gaussians(k=3, d=3)
plot(stream)

# scale stream using 100 points
stream_scaled <- DSD_ScaleStream(stream, n=100)
plot(stream_scaled)

DSD_Target Target Data Stream Generator

Description

A data stream generator that generates a data stream in the shape of a target. It has a single Gaussian
cluster in the center and a ring that surrounds it.

Usage

DSD_Target(center_sd = 0.05, center_weight = 0.5, ring_r = 0.2,
ring_sd = 0.02, noise = 0)

Arguments

center_sd standard deviation of center

center_weight proportion of points in center

ring_r average ring radius

ring_sd standard deviation of ring radius

noise proportion of noise
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Details

DSD_Target is a DSD generator for stream data. It has been implemented entirely in R, so there
is no computational overhead with communicating to the Java Runtime Interface (JRI) or native C
code. This DSD will produce a singular Gaussian cluster in the center with a ring around it.

Value

Returns a DSD_Target object which is a list of the defined params. The params are either passed in
from the function or created internally. They include:

description A brief description of the DSD object.

k The number of clusters.

d The number of dimensions.

Author(s)

Michael Hahsler

See Also

DSD

Examples

# create data stream with three clusters in 2D
stream <- DSD_Target()
# plotting the data
plot(stream)

DSD_UniformNoise Uniform Noise Data Stream Generator

Description

This generator produces uniform noise in a d-dimensional unit (hyper) cube.

Usage

DSD_UniformNoise(d=2, range=NULL)

Arguments

d Determines the number of dimensions.

range A matrix with two columns and d rows giving the minimum and maximum for
each dimension. Defaults to the range of [0, 1].
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Value

Returns a DSD_UniformNoise object.(subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

See Also

DSD

Examples

# create data stream with three clusters in 2D
stream <- DSD_UniformNoise(d=2)
plot(stream, n=100)

# specify a different range for each dimension
stream <- DSD_UniformNoise(d=3, range=rbind(c(0,1), c(0,10), c(0,5)))
plot(stream, n=100)

DSFP Abstract Class for Frequent Pattern Mining Algorithms for Data
Streams

Description

Abstract class for frequent pattern mining algorithms for data streams. Currently, stream does not
implement frequent pattern mining algorithms.

Author(s)

Michael Hahsler

See Also

DST
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DSO Data Stream Operator Base Classes

Description

Abstract base classes for all DSO (Data Stream Operator) classes.

Details

The DSO class cannot be instantiated (calling DSO() produces errors), but it serve as a base class
from which other DSO classes inherit.

Data stream operators use update() to process new data from the stream. The result of the operator
can be optained via get_points() and get_weights().

Author(s)

Michael Hahsler

See Also

update, get_points, get_weights, DSO_Window, DSO_Sample

DSO_Sample Sampling from a Data Stream (Data Stream Operator)

Description

Extracts a sample form a data stream using Reservoir Sampling.

Usage

DSO_Sample(k = 100, biased = FALSE)

Arguments

k the number of points to be sampled from the stream.

biased if FALSE then a regular (unbiased) reservoir sampling is used. If true then the
sample is biased towards keeping more recent data points (see Details section).
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Details

If biased=FALSE then the reservoir sampling algorithm by McLeod and Bellhouse (1983) is used.
This sampling makes sure that each data point has the same chance to be sampled. All sampled
points will have a weight of 1. Note that this might not be ideal for an evolving stream since very
old data points have the same chance to be in the sample as newer points.

If bias=TRUE then sampling prefers newer points using the modified reservoir sampling algorithm
2.1 by Aggarwal (2006). New points are always added. They replace a random point in thre
reservoir with a probability of reservoir size over k. This an exponential bias function of 2−lambda

with lambda = 1/k.

Value

An object of class DSO_Sample (subclass of DSO).

Author(s)

Michael Hahsler

References

Vitter, J. S. (1985): Random sampling with a reservoir. ACM Transactions on Mathematical Soft-
ware, 11(1), 37-57.

McLeod, A.I., Bellhouse, D.R. (1983): A Convenient Algorithm for Drawing a Simple Random
Sample. Applied Statistics, 32(2), 182-184.

Aggarwal C. (2006) On Biased Reservoir Sampling in the Presence of Stream Evolution. Interna-
tional Conference on Very Large Databases (VLDB’06). 607-618.

See Also

DSO

Examples

stream <- DSD_Gaussians(k=3, noise=0.05)

sample <- DSO_Sample(k=20)

update(sample, stream, 500)
sample

# plot points in sample
plot(get_points(sample))
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DSO_Window Sliding Window (Data Stream Operator)

Description

Implements a sliding window data stream operator which keeps a fixed amount (window length) of
the most recent data points of the stream.

Usage

DSO_Window(horizon = 100, lambda=0)

Arguments

horizon the window length.

lambda decay factor damped window model. lambda=0 means no dampening.

Details

If lambda is greater than 0 then the weight uses a damped window model (Zhu and Shasha, 2002).
The weight for points in the window follows 2−lambda∗t where t is the age of the point.

Value

An object of class DSO_Window (subclass of DSO.

Author(s)

Michael Hahsler

References

Zhu, Y. and Shasha, D. (2002). StatStream: Statistical Monitoring of Thousands of Data Streams
in Real Time, Intl. Conference of Very Large Data Bases (VLDB’02).

See Also

DSO

Examples

stream <- DSD_Gaussians(k=3, d=2, noise=0.05)

window <- DSO_Window(horizon=100)
window

update(window, stream, 200)
window
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# plot points in window
plot(get_points(window))

DST Abstract Base Class for All Data Stream Mining Tasks

Description

Abstract base class for all data stream mining tasks. Current tasks are data stream clustering DSC,
classification on data streams DSClassify and frequent pattern mining on data streams DSFP.

Author(s)

Michael Hahsler

See Also

DSC, DSClassify, DSFP

EvalCallback-class Abstract Class for Evaluation Callbacks

Description

The abstract class for all evaluation callbacks. Cannot be instantiated. Must be inherited. Eval-
uation is the process of the clustering quality assessment. This assessment can include clustering
results, as well as the clustering process, e.g., duration, spatial query performance, and similar. The
stream package has some measurements (see evaluate for details) already implemented. All other
measurements can be externally implemented without need to extend the stream package, by using
callbacks.

Fields

all_measures A list of all measures this object contributes to the evaluation. Union of all callback
measures defines measures the end-user can use.

internal_measures A list of internal measures. A subset of all_measures.

external_measures A list of external measures. A subset of all_measures.

outlier_measures A list of outlier measures. A subset of all_measures.
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Methods

evaluate_callback(cb_obj, dsc, measure, points, actual, predict, outliers, predict_outliers, predict_outliers_corrid, centers, noise, ...)
A method that allows callback for external clustering results evaluation.

• cb_obj - The callback object (EvalCallback).
• dsc - The clusterer object (DSC).
• measure - The requested measures.
• points - A data frame contining all data items.
• actual - Actual assignments for the related data instance in points, given by the used data

stream generator.
• predict - Assignments for the related data instance in points, given by the clusterer.
• outliers - Outlier marks for the related data instance in points, marked by the used data

stream generator.
• predict_outliers - Outlier marks for the related data instance in points, marked by the

clusterer.
• predict_outliers_corrid - Outlier identifiers assigned by the clusterer.
• centers - Cluster centers given by the clusterer.
• noise - Noise assignments (NA) for the related data instance in points, for all data in-

stances that cannot be classified neither into clusters or outliers.

Author(s)

Dalibor Krleža

Examples

CustomCallback <- function() {
env <- environment()
all_measures <- c("LowestWeightPercentage")
internal_measures <- c()
external_measures <- all_measures
outlier_measures <- c()
this <- list(description = "Custom evaluation callback",

env = environment())
class(this) <- c("CustomCallback", "EvalCallback")
this

}
evaluate_callback.CustomCallback <- function(cb_obj, dsc, measure, points,

actual, predict, outliers,
predict_outliers,
predict_outliers_corrid,
centers, noise) {

r <- list()
if("LowestWeightPercentage" %in% measure)

r$LowestWeightPercentage=min(get_weights(dsc))/sum(get_weights(dsc))
r

}
stream <- DSD_Gaussians(k = 3, d = 2, p = c(0.2, 0.4, 0.4))
km <- DSC_Kmeans(3)
update(km, stream, n=500)
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evaluate_with_callbacks(km, stream, type="macro", n=500,
measure = c("crand","LowestWeightPercentage"),
callbacks = list(cc=CustomCallback()))

evaluate Evaluate Clusterings

Description

Gets evaluation measures for micro or macro-clusters from a DSC object given the original DSD
object.

Usage

evaluate(dsc, dsd, measure, n = 100, type=c("auto", "micro", "macro"),
assign="micro", assignmentMethod=c("auto", "model", "nn"),
noise = c("class", "exclude"), ...)

evaluate_with_callbacks(dsc, dsd, measure, callbacks=NULL, n = 100,
type=c("auto", "micro", "macro"), assign="micro",
assignmentMethod=c("auto", "model", "nn"), noise = c("class", "exclude"), ...)

evaluate_cluster(dsc, dsd, measure, n = 1000,
type=c("auto", "micro", "macro"),
assign="micro", assignmentMethod=c("auto", "model", "nn"),
horizon=100, verbose=FALSE, noise = c("class", "exclude"), ...)

evaluate_cluster_with_callbacks(dsc, dsd, measure, callbacks=NULL,
n = 1000, type=c("auto", "micro", "macro"),
assign="micro", assignmentMethod=c("auto", "model", "nn"),
horizon=100, verbose=FALSE, noise = c("class", "exclude"), ...)

Arguments

dsc The DSC object that the evaluation measure is being requested from.
dsd The DSD object that holds the initial training data for the DSC.
measure Evaluation measure(s) to use. If missing then all available measures are re-

turned.
n The number of data points being requested.
type Use micro- or macro-clusters for evaluation. Auto used the class of dsc to de-

cide.
assign Assign points to micro or macro-clusters?
assignmentMethod

How are points assigned to clusters for evaluation (see get_assignment)?
horizon Evaluation is done using horizon many previous points (see detail section).
verbose Report progress?
noise How to handle noise points in the data. Options are to treat as a separate class

(default) or to exclude them from evaluation.
callbacks A list of EvalCallback objects, invoked when measurement is calculated.
... Unused arguments are ignored.
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Details

For evaluation each data points are assigned to its nearest cluster using Euclidean distance to the
cluster centers. Then for each cluster the majority class is determined. Based on the majority class
several evaluation measures can be computed.

For evaluate_cluster the most commonly used method of prequential error estimation (see
Gama, Sebastiao and Rodrigues; 2013). The data points in the horizon are first used to calcu-
late the evaluation measire and then they are used for updating the cluster model. Many evaluation
measures are calculated with code from the packages cluster, clue and fpc. Detailed documentation
can be found in these packages (see Section See Also.)

The following information items are available:

• "numMicroClusters" number of micro-clusters

• "numMacroClusters" number of macro-clusters

• "numClasses" number of classes

The following noise-related items are available:

• "noisePredicted" Number data points predicted as noise

• "noiseActual" Number of data points which are actually noise

• "noisePrecision" Precision of the predicting noise (i.e., number of correctly predicted noise
points over the total number of points predicted as noise)

The following internal evaluation measures are available:

• "SSQ" within cluster sum of squares. Assigns each non-noise point to its nearest center from
the clustering and calculates the sum of squares

• "silhouette" average silhouette width (actual noise points which stay unassigned by the
clustering algorithm are removed; regular points that are unassigned by the clustering algo-
rithm will form their own noise cluster) (cluster)

• "average.between" average distance between clusters (fpc)

• "average.within" average distance within clusters (fpc)

• "max.diameter" maximum cluster diameter (fpc)

• "min.separation" minimum cluster separation (fpc)

• "ave.within.cluster.ss" a generalization of the within clusters sum of squares (half the
sum of the within cluster squared dissimilarities divided by the cluster size) (fpc)

• "g2" Goodman and Kruskal’s Gamma coefficient (fpc)

• "pearsongamma" correlation between distances and a 0-1-vector where 0 means same cluster,
1 means different clusters (fpc)

• "dunn" Dunn index (minimum separation / maximum diameter) (fpc)

• "dunn2" minimum average dissimilarity between two cluster / maximum average within clus-
ter dissimilarity (fpc)

• "entropy" entropy of the distribution of cluster memberships (fpc)

• "wb.ratio" average.within/average.between (fpc)

The following external evaluation measures are available:
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• "precision", "recall", "F1" F1. A true positive (TP) decision assigns two points in the
same true cluster also to the same cluster, a true negative (TN) decision assigns two points
from two different true clusters to two different clusters. A false positive (FP) decision assigns
two points from the same true cluster to two different clusters. A false negative (FN) decision
assigns two points from the same true cluster to different clusters.
precision = TP/(TP+FP)
recall = TP/(TP+FN)
The F1 measure is the harmonic mean of precision and recall.

• "purity" Average purity of clusters. The purity of each cluster is the proportion of the points
of the majority true group assigned to it (see Cao et al. (2006))

• "Euclidean" Euclidean dissimilarity of the memberships (see Dimitriadou, Weingessel and
Hornik (2002)) (clue)

• "Manhattan" Manhattan dissimilarity of the memberships (clue)

• "Rand" Rand index (see Rand (1971)) (clue)

• "cRand" Adjusted Rand index (see Hubert and Arabie (1985)) (clue)

• "NMI" Normalized Mutual Information (see Strehl and Ghosh (2002)) (clue)

• "KP" Katz-Powell index (see Katz and Powell (1953)) (clue)

• "angle" maximal cosine of the angle between the agreements (clue)

• "diag" maximal co-classification rate (clue)

• "FM" Fowlkes and Mallows’s index (see Fowlkes and Mallows (1983)) (clue)

• "Jaccard" Jaccard index (clue)

• "PS" Prediction Strength (see Tibshirani and Walter (2005)) (clue)

• "vi" variation of information (VI) index (fpc)

Many measures are the average over all clusters. For example, purity is the average purity over all
clusters.

For DSC_Micro objects, data points are assigned to micro-clusters and then each micro-cluster
is evaluated. For DSC_Macro objects, data points by default (assign="micro") also assigned to
micro-clusters, but these assignments are translated to macro-clusters. The evaluation is here done
for macro-clusters. This is important when macro-clustering is done with algorithms which do
not create spherical clusters (e.g, hierarchical clustering with single-linkage or DBSCAN) and this
assignment to the macro-clusters directly (i.e., their center) does not make sense.

Using type and assign, the user can select how to assign data points and ad what level (micro or
macro) to evaluate.

Many of the above measures are implemented package clue in function cl_agreement().

The following outlier measures are available:

• "OutlierJaccard" - A variant of the Jaccard index used to assess outlier detection accuracy
(see Krleza et al (2020)). Outlier Jaccard index is calculated as TP/(TP+FP+UNDETECTED).

Outlier measures are taken as external measures, and can be applied only for DSD that can mark
outliers (see DSD_Gaussians) and outlier detection clusterers that inherits DSC_Outlier class.

evaluate_cluster() is used to evaluate an evolving data stream using the method described by
Wan et al. (2009). Of the n data points horizon many points are clustered and then the evaluation
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measure is calculated on the same data points. The idea is to find out if the clustering algorithm was
able to adapt to the changing stream.

evaluate_with_callbacks() and evaluate_cluster_with_callbacks() can be used to add
external measure calculations, without need to update stream package. At the end of each evalua-
tion, a set of callbacks is done. Measurements described hereby are placed in the DefaultEvalCallback
class. All other callbacks are done through objects inheriting the EvalCallback class.

Value

evaluate returns an object of class stream_eval which is a numeric vector of the values of the
requested measures and two attributes, "type" and "assign", to see at what level the evaluation
was done.

Author(s)

Michael Hahsler, Matthew Bolanos, John Forrest, and Dalibor Krleža
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D. Krleža, B. Vrdoljak, and M. Brčić (2020). Statistical Hierarchical Clustering Algorithm for
Outlier Detection in Evolving Data Streams, Springer Machine Learning.

See Also

animate_cluster, cl_agreement in clue, cluster.stats in fpc, silhouette in cluster.
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Examples

stream <- DSD_Gaussians(k=3, d=2)

dstream <- DSC_DStream(gridsize=0.05, Cm=1.5)
update(dstream, stream, 500)
plot(dstream, stream)
# Evaluate micro-clusters
# Note: we use here only n=500 points for evaluation to speed up execution
evaluate(dstream, stream, measure=c("numMicro","numMacro","purity","crand", "SSQ"),

n=100)

# DStream also provides macro clusters. Evaluate macro clusters with type="macro"
plot(dstream, stream, type="macro")
evaluate(dstream, stream, type ="macro",

measure=c("numMicro","numMacro","purity","crand", "SSQ"), n=100)

# Points are by default assigned to the closest micro clusters for evalution.
# However, points can also be assigned to the closest macro-cluster using
# assign="macro".
evaluate(dstream, stream, type ="macro", assign="macro",

measure=c("numMicro","numMacro","purity","crand", "SSQ"), n=100)

# Evaluate an evolving data stream
stream <- DSD_Benchmark(1)
dstream <- DSC_DStream(gridsize=0.05, lambda=0.1)
evaluate_cluster(dstream, stream, type="macro", assign="micro",

measure=c("numMicro","numMacro","purity","crand"),
n=600, horizon=100)

## Not run:
# animate the clustering process
reset_stream(stream)
dstream <- DSC_DStream(gridsize=0.05, lambda=0.1)
animate_cluster(dstream, stream, horizon=100, n=5000,

measure=c("crand"), type="macro", assign="micro",
plot.args = list(type="both", xlim=c(0,1), ylim=c(0,1)))

## End(Not run)

# a simple callback example
# this example requires DSC_MCOD in the streamMOA package
CustomCallback <- function() {

env <- environment()
all_measures <- c("LowestWeightPercentage")
internal_measures <- c()
external_measures <- all_measures
outlier_measures <- c()
this <- list(description = "Custom evaluation callback",

env = environment())
class(this) <- c("CustomCallback", "EvalCallback")
this

}
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evaluate_callback.CustomCallback <- function(cb_obj, dsc, measure, points,
actual, predict, outliers,
predict_outliers,
predict_outliers_corrid,
centers, noise) {

r <- list()
if("LowestWeightPercentage" %in% measure)

r$LowestWeightPercentage=min(get_weights(dsc))/sum(get_weights(dsc))
r

}
stream <- DSD_Gaussians(k = 3, d = 2, p = c(0.2, 0.4, 0.4))
km <- DSC_Kmeans(3)
update(km, stream, n=500)
evaluate_with_callbacks(km, stream, type="macro", n=500,

measure = c("crand","LowestWeightPercentage"),
callbacks = list(cc=CustomCallback()))

get_assignment Assignment Data Points to Clusters

Description

Get the assignment of data points to clusters in a DSC using the model’s assignment rules or nearest
neighbor assignemnt. The clustering is not modified.

Usage

get_assignment(dsc, points, type = c("auto", "micro", "macro"),
method = "auto", ...)

Arguments

dsc The DSC object with the clusters for assignment.

points The points to be assigned as a data.frame.

type Use micro- or macro-clusters in DSC for assignment. Auto used the class of dsc
to decide.

method assignment method

• "model" uses the assignment method of the underlying algorithm (unas-
signed points return NA). Not all algorithms implement this option.

• "nn" performs nearest neighbor assignment using Euclidean distance.
• "auto" uses the model assignment method. If this method is not imple-

mented/available then nn assignment is used instead.

... Additional arguments are passed on.



get_centers 61

Details

Each data point is assigned either using the original model’s assignment rule or Euclidean nearest
neighbor assignment. If the user specifies the model’s assignment strategy, but is not available, then
nearest neighbor assignment is used and a warning is produced.

Value

A vector containing the assignment of each point. NA means that a data point was not assigned to a
cluster.

Author(s)

Michael Hahsler

See Also

DSC

Examples

stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)

dbstream <- DSC_DBSTREAM(r = .1)
update(dbstream, stream, n = 100)

# find the assignment for the next 100 points to
# micro-clusters in dsc. This uses the model's assignemnt function
points <- get_points(stream, n = 100)
a <- get_assignment(dbstream, points)
a

# show the MC assignment areas. Assigned points as blue circles and
# the unassigned points as red dots
plot(dbstream, stream, assignment = TRUE, type = "none")
points(points[!is.na(a),], col = "blue")
points(points[is.na(a),], col = "red", pch = 20)

# use nearest neighbor assignment instead
get_assignment(dbstream, points, method = "nn")

get_centers Get Cluster Centers from a DSC

Description

Gets the cluster centers (micro- or macro-clusters) from a DSC object.

Usage

get_centers(x, type=c("auto", "micro", "macro"), ...)
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Arguments

x The DSC object the centers are being requested from.

type get centers for micro- or macro-clusters. Auto used the class of dsc to decide.

... Additional parameters.

Value

A data.frame with the micro- or macro-cluster centers as rows.

Author(s)

Michael Hahsler

See Also

DSC

Examples

stream <- DSD_Gaussians(k=3, d=2)
dstream <- DSC_DStream(gridsize=.1)
update(dstream, stream, 500)
dstream

# getting the micro-cluster centers
get_centers(dstream)

# D-Stream also has macro-clusters
get_centers(dstream, type="macro")

get_copy Create a Deep Copy of a DSC Object

Description

DSC objects contain reference classes or Java data structures (for MOA). Therefore, we provide a
mechanism to create deep copies.

Usage

get_copy(x)

Arguments

x The DSC object being copied.

Value

A deep copy of the original DSC.
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Author(s)

Michael Hahsler

See Also

DSC

get_points Get Points from a Data Stream Generator

Description

Gets points from a DSD object.

Usage

get_points(x, n=1, outofpoints=c("stop", "warn", "ignore"), ...)

Arguments

x The DSD object.
n Request up to n points from the stream.
outofpoints Action taken if less than n data points are available. The default is to stop with

an error. For warn and ignore all avaialable (possibly zero) points are returned.
... Additional parameters to pass to get_points() implementations.

Details

Each DSD object has a unique way for returning data points, but they all are called through the
generic function, get_points(). This is done by using the S3 class system. See the man page for
the specific DSD class on the semantics for each implementation of get_points().

Value

Returns a matrix of x$d columns and n rows.

Author(s)

Michael Hahsler

See Also

DSD

Examples

stream <- DSD_Gaussians()
get_points(stream, 100)
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get_weights Get Cluster Weights

Description

Get the weights of the clusters in the DSC

Usage

get_weights(x, type=c("auto", "micro", "macro"), scale=NULL, ...)

Arguments

x The DSC object the weights are being requested from.

type Return wrights of micro- or macro-clusters in x. Auto uses the class of x to
decide.

scale a range (from, to) to scale the weights. Returns by default the raw weights.

... Additional arguments are passed on.

Details

The cluster weights are typically a function of how many points were assigned to each cluster.

Value

A vector containing the weight of each micro-cluster or macro-cluster. Internally the call is dele-
gated to the appropriate get_microweights() or get_macroweights() method.

Author(s)

Michael Hahsler

See Also

DSC

Examples

stream <- DSD_Gaussians(k=3, d=2)
dstream <- DSC_DStream(gridsize=.1)
update(dstream, stream, 500)
dstream

# getting the micro-cluster weights
get_weights(dstream)

# D-Stream also has macro-clusters
get_weights(dstream, type="macro")
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MGC Moving Generator Cluster

Description

Creates an evolving cluster for a DSD_MG.

Usage

MGC_Static(density, center, parameter, shape = NULL)
MGC_Function(density, center, parameter, shape = NULL)
MGC_Random(density, center, parameter, randomness = 1, shape = NULL)
MGC_Noise(density, range)

MGC_Linear(dimension = 2, keyframelist = NULL, shape = NULL)
keyframe(time, density, center, parameter, reset = FALSE)
add_keyframe(x, time, density, center, parameter, reset = FALSE)
get_keyframes(x)
remove_keyframe(x, time)

Arguments

center A list that defines the center of the cluster. The list should have a length equal
to the dimensionality. For MGC_Function, this list consists of functions that
define the movement of the cluster. For MGC_Random, this attribute defines the
beginning location for the MGC before it begins moving.

density The density of the cluster. For MGC_Function, this attribute is a function and
defines the density of a cluster at a given timestamp.

dimension Dimensionality of the data stream.

keyframelist a list of keyframes to initialize the MGC_Linear object with.

parameter Parameters for the shape. For the default shape MGC_Shape_Gaussian the pa-
rameter is the standard deviation, one per dimension. If a single value is speci-
fied then it is recycled for all dimensions.

randomness The maximum amount the cluster will move during one time step.

range The area in which the noise should appear.

reset Should the cluster reset to the first keyframe (time 0) after this keyframe is fin-
ished?

shape A function creating the shape of the cluster. It gets passed on the parameters
argument from above. Available functions are MGC_Shape_Gaussian (the pa-
rameters are a vector containing standard deviations) and MGC_Shape_Block
(parameters are the dimensions of the uniform block).

time The time stamp the keyframe should be located or which keyframe should be
removed.

x An object of class MGC_Linear.
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Details

An MGC describes a single cluster for use within an DSD_MG. There are currently four different MGCs
that allow a user to express many different behaviors within a single data stream.

An MGC_Linear creates an evolving Gaussian cluster for a DSD_MG who’s behavior is determined by
several keyframes. Keyframes can be added and removed.

An MGC_Function allows for a creation of a DSD_MG that is defined by functions of time.

An MGC_Random allows for a creation of a DSD_MG that moves randomly.

An MGC_Noise allows for a creation of noise within a DSD_MG.

Author(s)

Matthew Bolanos

See Also

DSD_MG for details on how to use an MGC within a DSD

Examples

### Two static clusters
stream <- DSD_MG(dim=2,

MGC_Static(den = 1, center=c(1, 0), par=.1),
MGC_Static(den = 1, center=c(2, 0), par=.4, shape=MGC_Shape_Block)

)

plot(stream)

### Example of several MGC_Randoms
stream <- DSD_MG(dimension=2,

MGC_Random(den = 100, center=c(1, 0), par=.1, rand=.1),
MGC_Random(den = 100, center=c(2, 0), par=.4, shape=MGC_Shape_Block, rand=.1)

)

## Not run:
animate_data(stream, 2500, xlim=c(0,3), ylim=c(-2,2), horizon=100)

## End(Not run)

### Example of several MGC_Functions
stream <- DSD_MG(dim = 2)

### block-shaped cluster moving from bottom-left to top-right increasing size
c1 <- MGC_Function(

density = function(t){100},
parameter = function(t){1*t},
center = function(t) c(t,t),
shape = MGC_Shape_Block
)

add_cluster(stream,c1)
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### cluster moving in a circle (default shape is Gaussian)
c2 <- MGC_Function(

density = function(t){25},
parameter = function(t){5},
center= function(t) c(sin(t/10)*50+50, cos(t/10)*50+50)

)
add_cluster(stream,c2)

## Not run:
animate_data(stream,10000,xlim=c(-20,120),ylim=c(-20,120), horizon=100)

## End(Not run)

### Example of several MGC_Linears: A single cluster splits at time 50 into two.
### Note that c2 starts at time=50!
stream <- DSD_MG(dim = 2)
c1 <- MGC_Linear(dim = 2)
add_keyframe(c1, time=1, dens=50, par=5, center=c(0,0))
add_keyframe(c1, time=50, dens=50, par=5, center=c(50,50))
add_keyframe(c1, time=100,dens=50, par=5, center=c(50,100))
add_cluster(stream,c1)

c2 <- MGC_Linear(dim = 2, shape=MGC_Shape_Block)
add_keyframe(c2, time=50, dens=25, par=c(10,10), center=c(50,50))
add_keyframe(c2, time=100,dens=25, par=c(30,30), center=c(100,50))
add_cluster(stream,c2)

## Not run:
animate_data(stream,5000,xlim=c(0,100),ylim=c(0,100), horiz=100)

## End(Not run)

### two fixed and a moving cluster
stream <- DSD_MG(dim = 2,

MGC_Static(dens=1, par=.1, center=c(0,0)),
MGC_Static(dens=1, par=.1, center=c(1,1)),
MGC_Linear(dim=2,list(
keyframe(time = 0, dens=1, par=.1, center=c(0,0)),
keyframe(time = 1000, dens=1, par=.1, center=c(1,1)),
keyframe(time = 2000, dens=1, par=.1, center=c(0,0), reset=TRUE)

)))

noise <- MGC_Noise(dens=.1, range=rbind(c(-.2,1.2),c(-.2,1.2)))
add_cluster(stream, noise)

## Not run:
animate_data(stream, n=2000*3.1, xlim=c(-.2,1.2), ylim=c(-.2,1.2), horiz=200)

## End(Not run)
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microToMacro Translate Micro-cluster IDs to Macro-cluster IDs

Description

Translates micro-cluster ids into macro-cluster ids for a DSC_Macro object.

Usage

microToMacro(x, micro=NULL)

Arguments

x a DSC_Macro object that also contains information about micro-clusters.

micro A vector with micro-cluster ids. If NULL then the assignments for all micro-
clusters in x are returned.

Value

A vector of the same length as micro with the macro-cluster ids.

Author(s)

Michael Hahsler

See Also

DSC_Macro

Examples

stream <- DSD_Gaussians(k=3, d=2, noise=0.05, p=c(.2,.4,.6))

# recluster a micro-clusters
micro <- DSC_DStream(gridsize=0.05)
update(micro, stream, 500)

macro <- DSC_Kmeans(k=3)
recluster(macro, micro)

# translate all micro-cluster ids
microToMacro(macro)

# plot some data points in gray
plot(stream, col="gray", cex=.5, xlim=c(0,1), ylim=c(0,1))
# add micro-clusters and use the macro-cluster ids as color and weights as size
points(get_centers(macro, type="micro"),

col=microToMacro(macro),
cex=get_weights(macro, type="micro", scale=c(.5,3)))



nclusters 69

# add macro-cluster centers (size is weight)
points(get_centers(macro, type="macro"),

cex = get_weights(macro, type="macro", scale=c(2,5)),
pch=3,lwd=3, col=1:3)

nclusters nclusters

Description

Returns the number of micro-clusters from the DSC object.

Usage

nclusters(x, type=c("auto", "micro", "macro"), ...)

Arguments

x A DSC object.

type Return the number of micro- or macro-clusters in DSC. Auto used the class of
dsc to decide.

... Additional arguments are passed on.

Value

An integer; the number of micro- or macro-clusters in the clustering.

Author(s)

Michael Hahsler

See Also

DSC

Examples

# setting up the objects
stream <- DSD_Gaussians(k=3)
dstream <- DSC_DStream(gridsize=0.1)
update(dstream, stream, 500)

# retrieving the results
get_centers(dstream)
nclusters(dstream)
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plot Plotting Data Stream Data and Clusterings

Description

Methods to plot data stream data and clusterings.

Usage

## S3 method for class 'DSD'
plot(x, n = 500, col= NULL, pch= NULL, ..., method="pairs", dim = NULL,
alpha = 0.6)

## S3 method for class 'DSC'
plot(x, dsd = NULL, n = 500, col_points=NULL,
col_clusters=c("red", "blue", "green"), weights=TRUE, scale=c(1,5), cex=1,
pch=NULL, method="pairs", dim=NULL,
type=c("auto", "micro", "macro", "both", "all", "outliers"), assignment = FALSE, ...)

Arguments

x the DSD or DSC object to be plotted.

dsd a DSD object to plot the data in the background.

n number of plots taken from the dsd to plot.
col, col_points, col_clusters

colors used for plotting.

weights the size of the symbols for micro- and macro-clusters represents its weight.

scale range for the symbol sizes used.

cex size factor for symbols.

pch symbol type.

method method used for plotting: "pairs" (pairs plot), "scatter" (scatter plot) or "pc" (plot
first 2 principal components).

dim an integer vector with the dimensions to plot. If NULL then for methods "pairs"
and "pc" all dimensions are used and for "scatter" the first two dimensions
are plotted.

alpha alpha shading used to plot the points.

type Plot micro clusters (type="micro"), macro clusters (type="macro"), both mi-
cro and macro clusters (type="both"), outliers(type="outliers"), or every-
thing together (type="all"). type="auto" leaves to the class of dsc to decide.

assignment logical; show assignment area of micro-clusters.

... further arguments are passed on to plot or pairs in graphics.

Author(s)

Michael Hahsler
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See Also

DSC, DSD

Examples

stream <- DSD_Gaussians(k=3, d=3)

## plot data
plot(stream, n=500)
plot(stream, method="pc", n=500)
plot(stream, method="scatter", dim=c(1,3), n=500)

## create and plot micro-clusters
dstream <- DSC_DStream(gridsize=0.1)
update(dstream, stream, 500)
plot(dstream)

## plot with data, projected on the first two principal components
## and dimensions 2 and 3
plot(dstream, stream)
plot(dstream, stream, method="pc")
plot(dstream, stream, dim=c(2,3))

## plot micro and macro-clusters
plot(dstream, stream, type="both")

prune_clusters Prune Clusters from a Clustering

Description

Creates a (static) copy of a clustering where a fraction of the weight or the number of clusters with
the lowest weights were pruned.

Usage

prune_clusters(dsc, threshold= 0.05, weight = TRUE)

Arguments

dsc The DSC object to be pruned.

threshold The numeric vector of probabilities for the quantile.

weight should a fraction of the total weight in the clustering be pruned? Otherwise a
fraction of clusters is pruned.

Value

Returns an object of class DSC_Static.
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Author(s)

Michael Hahsler

See Also

DSC_Static

Examples

# 3 clusters with 10% noise
stream <- DSD_Gaussians(k=3, noise=0.1)

dbstream <- DSC_DBSTREAM(r=0.1)
update(dbstream, stream, 500)
dbstream
plot(dbstream, stream)

# prune lightest micro-clusters for 20% of the weight of the clustering
static <- prune_clusters(dbstream, threshold=0.2)
static
plot(static, stream)

recluster Re-clustering micro-clusters

Description

Use a macro clustering algorithm to recluster micro-clusters into a final clustering.

Usage

recluster(macro, micro, type="auto", ...)

Arguments

macro a macro clustering algorithm (class "DSC_Macro")

micro a DSC object containing micro-clusters.

type controls which clustering is used from dsc (typically micro-clusters).

... additional arguments passed on.

Details

Takes centers and weights of the micro-clusters and applies the macro clustering algorithm.

Value

The object macro is altered and contains the clustering.
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Author(s)

Michael Hahsler

Examples

set.seed(0)
### create a data stream and a micro-clustering
stream <- DSD_Gaussians(k=3, d=3)

sample <- DSC_Sample(k=50)
update(sample, stream, 500)
sample

### recluster using k-means
kmeans <- DSC_Kmeans(k=3)
recluster(kmeans, sample)

### plot clustering
plot(kmeans, stream, main="Macro-clusters (Sampling + k-means)")

reset_stream Reset a Data Stream to its Beginning

Description

Resets the counter in a DSD object to the beginning or any other position in the stream.

Usage

reset_stream(dsd, pos = 1)

Arguments

dsd An object of class a subclass of DSD which implements a reset function.

pos Position in the stream (the beginning of the stream is position 1).

Details

Resets the counter of the stream object. For example, forDSD_Memory, the counter stored in the
environment variable is moved back to 1. For DSD_ReadCSV objects, this is done by calling seek()
on the underlying connection.

Author(s)

Michael Hahsler

See Also

DSD_ReadCSV, DSD_MG, DSD_ScaleStream, DSD_Memory
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Examples

# initializing the objects
stream <- DSD_Gaussians(k=3, d=2)
replayer <- DSD_Memory(stream, 100)
replayer

p <- get_points(replayer, 50)
replayer

# reset replayer to the begining of the stream
reset_stream(replayer)
replayer

# set replayer to position 21
reset_stream(replayer, pos=21)
replayer

save Save and Read DSC Objects

Description

Save and Read DSC objects savely (serializes the underlying data structure). This also works for
streamMOA DSC objects.

Usage

saveDSC(object, file, ...)
readDSC(file)

Arguments

object a DSC object.

file filename.

... further arguments.

Author(s)

Michael Hahsler

See Also

saveRDS and readRDS.
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Examples

stream <- DSD_Gaussians(k = 3, noise = 0.05)

# create clusterer with r = 0.05
dbstream1 <- DSC_DBSTREAM(r = .05)
update(dbstream1, stream, 1000)
dbstream1

saveDSC(dbstream1, file="dbstream.Rds")

dbstream2 <- readDSC("dbstream.Rds")
dbstream2

## cleanup
unlink("dbstream.Rds")

update Update a Data Stream Clustering Model

Description

Update a clustering model by clustering a number of input points from a data stream into a clustering
object.

Usage

## S3 method for class 'DSC_R'
update(object, dsd, n = 1, verbose = FALSE, block=10000L, ...)
## S3 method for class 'DSC_TwoStage'
update(object, dsd, n = 1, verbose = FALSE,
block=10000L, ...)

## S3 method for class 'DSO_Sample'
update(object, dsd, n = 1, verbose = FALSE, ...)
## S3 method for class 'DSO_Window'
update(object, dsd, n = 1, verbose = FALSE, ...)

Arguments

object an object of a subclass of DST (data stream mining task).

dsd a DSD object (data stream).

n number of points to cluster.

verbose report progress.

block maximal number of data points passed on at once to the algorithm. This only is
used since R loops are very slow.

... extra arguments for clusterer.
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Details

update takes n times a single data points out of the DSD updates the model in object. Note that
update directly modifies the object (which is a reference class) and thus the result does not need to
be reassigned to the object name.

Value

The updated model is returned invisibly for reassignment (however, this is not necessary).

To obtain the updated model for a DSC (data stream clustering model), call get_centers() on the
DSC object.

Author(s)

Michael Hahsler

See Also

DSC, DSD, and animation for producing an animation of the clustering process.

Examples

stream <- DSD_Gaussians(k=3)
dstream <- DSC_DStream(gridsize=.05)

update(dstream, stream, 500)
plot(dstream, stream)

write_stream Write a Data Stream to a File

Description

Writes points from a data stream DSD object to a file or a connection.

Usage

write_stream(dsd, file, n=100, block=100000L,
class=FALSE, append = FALSE, sep=",", header=FALSE, row.names=FALSE, ...)
## S3 method for class 'DSD'
write_stream(dsd, file, n=100, block=100000L,
class=FALSE, append = FALSE, sep=",", header=FALSE, row.names=FALSE,
write_outliers=FALSE, ...)
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Arguments

dsd The DSD object that will generate the data points for output.

file A file name or a R connection to be written to.

n The number of data points to be written.

block Write stream in blocks to improve file I/O speed.

class Save the class/cluster labels of the points as the last column.

sep The character that will separate attributes in a data point.

append Append the data to an existing file.

header A flag that determines if column names will be output (equivalent to col.names
in write.table()).

row.names A flag that determines if row names will be output.

write_outliers A flag that determines if outliers will be output.

... Additional parameters that are passed to write.table().

Value

There is no value returned from this operation.

Author(s)

Michael Hahsler, Dalibor Krleža

See Also

write.table, DSD

Examples

# creating data and writing it to disk
stream <- DSD_Gaussians(k=3, d=5, outliers=1,

outlier_options=list(outlier_horizon=10))
write_stream(stream, file="data.txt", n=10, class=TRUE, write_outliers=TRUE)

#file.show("data.txt")

# clean up
file.remove("data.txt")
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