Package 'supcluster'

May 18, 2015

Type Package

Title Supervised Cluster Analysis

Version 1.0

Date 2015-05-18

Author David A. Schoenfeld, Jesse Hsu

Maintainer David A. Schoenfeld <dschoenfeld@mgh.harvard.edu>

Description Clusters features under the assumption that each cluster has a random effect and there is an outcome variable that is related to the random effects by a linear regression. In this way the cluster analysis is ``supervised" by the outcome variable. An alternate specification is that features in each cluster have the same compound symmetric normal distribution, and the conditional distribution of the outcome given the features has the same coefficient for each feature in a cluster.

License GPL-2

Imports mvtnorm, gtools

Collate 'supcluster.R' 'concordmap.R' 'generate.cluster.data.R' 'tab1.R'

NeedsCompilation no

Repository CRAN

Date/Publication 2015-05-18 22:45:09

R topics documented:

ipcluster-package	2
eta.by.gene	3
ompare.chains	4
oncordmap	5
enerate.cluster.data	6
ene_names	7
ıpcluster	7
b1	9
auma_data	10

Index

12

supcluster-package Supervised Cluster Anaysis

Description

The function clusters features under the assumption that each cluster has a random effect and there is an outcome variable that is related to the random effects by a linear regression. In this way the cluster analysis is "supervised" by the outcome variable. An alternate specification is that features in each cluster have the same compound symetric normal distribution, and the conditional distribution of the outcome given the features has the same coefficient for each feature in a cluster.

Details

Package:supclusterType:PackageVersion:1.0Date:2015-03-24License:GPL-2

The package consists of a function supcluster which reads a data frame whose columns include features and an outcome. It then peforms a cluster analysis that is supervised by the outcome as described above. The cluster analysis is performed using a Markoff Chain Monte Carlo algorythm, the output is a matrix where each row is a parameter vector consisting of the parameters of the multivariate normal distribution described above as well as the cluster membership of each of the features.

In addition there is function concordmap which produces a array with the posterior probability that each pair of features are in the same cluster and a function compare.chains used to compare these arrays for two chains in order to determine whether different chains have converged to the same set of clusters.

Author(s)

David A. Schoenfeld, Jesse Hsu Maintainer: David A. Schoenfeld <dschoenfeld@mgh.harvard.edu> ~~ The author and/or maintainer of the package ~~

References

~~ Literature or other references for background information ~~

See Also

supcluster, concordmap, compare.chains,beta.by.gene

beta.by.gene

Description

The model associates the coefficients of the random effects with the cluster number. However the cluster numbers are not unique. This utility associates the coefficient with gene that is in the cluster, for each cluster number.

Usage

beta.by.gene(supcluster.list)

Arguments

supcluster.list

The output of supcluster

Value

A matrix is returned with dimensions, the number of MCMC iterations by the number of genes/features +1. The first column is the chain number and the remain columns are the beta value for each of the gene/features

Author(s)

David A. Schoenfeld, Jessie Hsu

References

Added latter

See Also

supcluster,,compare.chains,concordmap

Examples

```
dat=generate.cluster.data(1)
us=supcluster(dat,outcome="outcome",features=1:50,maxclusters=6,nstart=20,n=40)
vs=beta.by.gene(us)
colMeans(vs[,2:7])
```

compare.chains

Description

Suppose say 4 chains are run, then the first two and the last two are combined and a concord map of each is calculated, for each pair of genes in the concord map the proportion of times these genes are in the same cluster are calculated for each set of chains.

Usage

compare.chains(supcluster.list,chains1,chains2)

Arguments

supcluster.list The output of supcluster

	· ·
chains1	The first vector of the chains to be compared
chains2	The second vector of chains to be compared

Value

A N(N-1)/2 by 4 matrix is returned. The first two columns are each pair of genes and the next two are the proportion of times that each where in the same cluster in group of chains indicted by chain1 and chain2

Author(s)

David A. Schoenfeld, Jessie Hsu

See Also

supcluster,compare.chains, beta.by.gene

Examples

concordmap

Calculate the Frequency with which each Pair of Features are in the Same Cluster

Description

Label switching is a problem in interpreting the results of a cluster analysis that uses MCMC. Two clusterings may be the same but the labels of the clusters may change. In order to avoid this problem we create a square matrix with length and width equal to the number of features. The i,jth element is the proportion of times feature i and j are in the same cluster. A sorting algorythm puts the genes that are clustered together next to each other.

Usage

```
concordmap(supcluster.list, chains=1, sort.genes = FALSE,criteria=1)
```

Arguments

supcluster.list

	The output of supcluster
chains	The chains to use in the clustering
sort.genes	If TRUE Genes that associated are put next to each other
criteria	Two genes are in the same cluster when the probability that they are in the same cluster is greater or equal to the criteria.

Value

If sort.genes=TRUE a three element list, the first element is a m x m matrix where m is the number of features and the second element is the ordering created by sorting algorythm that this matrix is in. The final element is the cluster membership for each of the genes. If sort genes=FALSE only the m x m matrix is returned.

Author(s)

David A. Schoenfeld, Jessie Hsu

See Also

supcluster,,compare.chains,beta.by.gene

Examples

```
us=supcluster(dat,outcome="outcome",features=1:25,maxclusters=4,nstart=20,n=40,nchains=2)
ts1=concordmap(us,chains=1)
#plot of the concord map
image(1:25,1:25,ts1$map)
```

generate.cluster.data Function to Generate Data According to the Supcluster Model

Description

Generates cluster data according to the used for supervised clustering

Usage

Arguments

ratio	The ratio τ^2/σ^2 of the variance of the random effects to the error variance of the features
npats	Number of observations in the data set.
clusts	The cluster identity of the features
sig	The error variance of the features.
gamma	The error variance of the outcome.
beta	The value of the regression coefficients

Value

A data frame which is npats times ngens+1 the last column is the outcome.

Author(s)

David A. Schoenfeld

See Also

supcluster

gene_names

Description

The data in gene_names is information on each gene in trauma_data

Usage

gene_names

Format

Gene.number The number of the gene in the trauma.data set Probeset The Affymetrix probeset code Gene.symbol.and.name The annotation of the probeset Gene.sympbol The gene symbol

Source

To be added from Glue grant

References

To be added

supcluster

Clustering of Features Supervised by an Outcome

Description

We assume that each individual has set of features and an outcome, further we assume that the features are organized in clusters with a random effect for each cluster, and that the outcome is related to the random effects by a linear regression. The function supcluster performs an MCMC to determine the parameters of this model including the cluster membership of each feature. The program can also perform the estimation without considering the outcome.

Usage

Arguments

data	A data frame of the input data
outcome	Either the variable number or the variable name of the outcome variable. If fbeta=TRUE, no outcome variable is used.
features	A list of features either as variable names or column numbers this can't be mixed
log.transform	Log transform the feature data. Generally used when the features are gene expressons
maxclusters	The maximum number of clusters used
nstart	The first nstart-1 values of each MCMC chain are not reported, that is used as a "burn in".
n	The number of MCMC iterations for each chain
shape	The shape parameter for the prior on the variance components
scale	The starting scale parmeter for the prior on the variance components
alpha	The value to use for the Dirichelet prior parameter
betaP	The prior precision of the regression parameters.
fixj	If "random", then the starting value for cluster membership is set at random. If "kmeans" it uses kmeans to set the starting value. Otherwise it is matrix of features verses clusters, where a 1 indicates that feature i is in cluser j and the cluster membership is assumed to be known. fixj should be set to "random" when multiple chains are run.
fbeta	If TRUE then the outcome is not used in the clustering algorithm
starting.value	Starting value for the MCMC. It should be left as NULL when multiple chains are run, in which case the starting cluster membership is determined by fixj. Otherwise it is parameter vector similar to the one described under "value" below.
nchains	Number of chains to run

Value

A compound list is returned. At the first level is the chain number. At the second level there are two elements

inp	This has twp values maxclusters giving the maximum number of clusters and ngenes giving the maximum number of features
parms	This is a n by 3+maxclusters+ngenes matrix. Each row is one MCMC itera- tion. The first three columns are the values of the variance components σ^2 , τ^2 , and γ^2 the next maxcluster values are the regression coefficients for each cluster and the final ngenes values are the cluster membership of each feature

Note

When the feature space is large this program runs slowely. In the example only 20 iterations where used for the burn in and only 80 iterations are run. In general this would not be adequate to fully explore the feature space.

tab1

Author(s)

David A. Schoenfeld, Jessie Hsu

References

To be added once the paper is published

See Also

concordmap, compare.chains,beta.by.gene

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets
##--Note you need to change nstart and n in example to get enough iterations
#run supcluster on trauma data. Note: nstart and n must be increased to,say, 2000,3000
#and maxclusters increased to 20
data("trauma_data")
us=supcluster(trauma_data,outcome="outcome",features=1:87,
              maxclusters=5,nstart=5,n=20,fbeta=FALSE)
#creates plot in paper
usm=concordmap(us,chains=1,sort.genes=TRUE)
image(1:87,1:87,usm$map,xlab='Genes',ylab='Genes',
     main="Trauma Data Example",
     col=gray(16:1 / 16))
#Associate genes with clusters
data("gene_names")
betas=colSums(us[[1]]$parms[,3:22])
outpt=data.frame(cluster.number=usm$clusters,beta=betas[usm$clusters],gene_names[usm$order,])
```

tab1

Simulates Supcluster Function

Description

Produces summary statistics from a simulation of supcluster

Usage

trauma_data

Arguments

ratio	The ratio of tau to sigma
reps	The number of runs
n	The number of MCMC iterations
start	The first MCMC iteration used
fbeta	If TRUE the outcome is not used
maxclusters	The maximum number of clusters for the estimation step
chains	The number of chains to run
clusts	A list of the number of genes in each cluster
sig,gamma,beta	The parameters sigma,gamma,beta
npats	The number of experimental units(patients)
plot	Plots the first run

Value

A data frame is returned with the mean parameter value, it's standard error and the mean of it's standard error calculated from the MCMC

Author(s)

David A. Schoenfeld, Jessie Hsu

See Also

supcluster,,compare.chains,concordmap

Examples

#very few iterations done so that this runs in less than 5 seconds. #You need to change reps=100,start=2000,n=3000 to get enough iterations tab1(ratio=2,reps=5,n=10,start=1,maxclusters=5)

trauma_data

Trauma Data for Supervised Clustering

Description

This is a genomic data set, saved as an R save file, that loaded with data("trauma_data") and data("gene_names") The data frame trauma_data has 147 observations on patients with trauma. The first 87 columns are gene expression values and the final column labeled outcome is the multiple organ failure score for the patient. The data in gene_names is information on each gene in trauma_data

10

trauma_data

Usage

data("trauma_data");data("gene_names")

Format

A data frame trauma_data with 147 observations the first 87 columns are gene expression data and the last column labeled outcome is the maximum organ failure score. A data frame gene_names with the affymetrix description of the probesets in trauma_data.

Source

N. Rajicic, Dianne M. Finkelstein, and David A. Schoenfeld.(2007) "Survival analysis of longitudinal microarrays." *Bioinformatics*, 22(21):2643-2649

Index

*Topic cluster concordmap, 5 supcluster,7 tab1, 9 *Topic datasets gene_names, 7 trauma_data, 10 *Topic package supcluster-package, 2 *Topic supervised clustering beta.by.gene, 3 compare.chains,4 beta.by.gene, 2, 3, 4, 5, 9 compare.chains, 2-4, 4, 5, 9, 10 concordmap, 2, 3, 5, 9, 10 gene_names, 7 generate.cluster.data,6supcluster, 2-6, 7, 10 supcluster-package, 2

tab1,9 trauma_data,10