
Approximating the Cox Model

Chenyang Zhong, Robert Tibshirani and Terry Therneau

May 2019

The Cox model can be approximated using Poisson regression, a trick that was well known
when Cox models were not yet common in the major software packages [?, ?]. Start by plotting
the cumulative hazard for the data set, and approximate it with a set of connected line segments.
The kidney cancer data set, for instance, is moderately well approximated using cutpoints at 45
and 500 days.

> ksurv <- survfit(Surv(time, status) ~1, data=kidney)

> plot(ksurv, fun="cumhaz", conf.int=FALSE, lwd=2,

xlab="Time since catheter insertion", ylab="Cumulative Hazard")

> lines(c(0, 45, 500, 560), c(0, .55, 2.7, 4), col=2, lwd=2)

0 100 200 300 400 500

0
1

2
3

4

Time since catheter insertion

C
um

ul
at

iv
e

H
az

ar
d

1

Break the time scale into intervals based on these cutpoints, and fit a Poisson regression with
one intercept per interval.

> kdata2 <- survSplit(Surv(time, status) ~., data=kidney, cut=c(45, 500),

episode="interval")

> kfit1 <- coxph(Surv(time, status) ~ age + sex, kidney, ties='breslow')

> kfit2 <- glm(status ~ age + sex + factor(interval) -1 +

offset(log(time-tstart)), family=poisson, data=kdata2)

> cbind(Cox= summary(kfit1)$coefficients[,c(1,3)],

poisson = summary(kfit2)$coefficients[1:2, 1:2])

coef se(coef) Estimate Std. Error

age 0.002181516 0.009224643 0.003156994 0.009259435

sex -0.820995315 0.298719655 -0.751242318 0.294277223

We see that the coefficients and standard errors are very similar.
If each unique death time is made into its own interval the Cox result can be duplicated

exactly. One more correction is needed for perfect agreement, which is to toss away any partial
contributions. If there were unique death times at 100 and 110 days, for instance, and a subject
were censored at time 103, those 3 days are not counted in the in the 100–110 interval. If there
is someone with follow-up after the last event, that is removed as well. After removal, everyone
in the same interval will have the same number of days at risk, which means that an offset
correction is no longer needed.

> utime <- sort(unique(kidney$time[kidney$status==1])) # unique deaths

> kdata3 <- survSplit(Surv(time, status) ~., data=kidney, cut=utime,

episode="interval")

> kdata3 <- subset(kdata3, time == c(utime,0)[interval]) # remove partials

> kfit3 <- glm(status ~ age + sex + factor(interval) -1,

family=poisson, data=kdata3)

> kfit4 <- glm(status ~ age + sex + factor(interval) -1,

family=binomial, data=kdata3)

> rbind(poisson= coef(kfit3)[1:2], binomial = coef(kfit4)[1:2])

age sex

poisson 0.002181516 -0.8209953

binomial 0.002753787 -0.8992513

The Poisson coefficients now exactly match those of the Cox model. Almost all of the intervals
in kdata3 have only a single event, i.e., both the event count and the event rate are low, which
is the case in which the binomial and Poisson distributions closely approximate each other.
Consequently, the last model shows that binomial fits are also effective. This computational
trick can be particularly useful in contexts where there is readily available code for binomial
outcomes but time-to-event models are lacking, e.g., machine learning.

We can make the connection easier to expliot by pre-centering the data. The plot shows
that when this is done, the intercepts are very close to the simple event rate for each interval
of (number of events) / (number of observations). We can add this variable to the model as an
offset.

2

> counts <- c(table(kdata3$interval)) # subjects in each interval

> xmat <- as.matrix(kdata3[,c('age', 'sex')])

> centers <- rowsum(xmat, kdata3$interval) / counts

> xmat2 <- xmat - centers[kdata3$interval,]

> kfit4a <- glm(status ~ xmat2 + factor(interval) -1, poisson, kdata3)

> temp <- coef(kfit4a)[-(1:2)] # intercepts

> phat <- with(kdata3, tapply(status, interval, sum)) /counts

> matplot(1:length(counts), cbind(phat, exp(temp)), log='y',

xlab="Interval", ylab="Simple event rate")

> legend(5, .5, c("Rate", "Poisson intercept"), pch="12", col=1:2)

1

1 1

1

1

1

1

1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1

1

1 1
1 1 1 1

1
1

1
1

1
1

1

1

1

1

0 10 20 30 40 50

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

Interval

S
im

pl
e

ev
en

t r
at

e

2

2 2

2

2

2

2

2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2

2

2 2
2 2 2 2

2
2

2
2

2
2

2

2

2

2

1
2

Rate
Poisson intercept

> kdata3$phat <- phat[kdata3$interval] # add phat to the data set

> logit <- function(x) log(x/(1-x))

> kfit4b <- glm(status ~ xmat2 + offset(log(phat)), poisson, kdata3)

> kfit4c <- glm(status ~ xmat2, poisson, kdata3)

> kfit4d <- glm(status ~ xmat2 + offset(logit(phat)), binomial, kdata3,

subset=(phat<1))

> kfit4e <- glm(status ~ xmat2, binomial, kdata3,

subset=(phat<1))

> rbind(Cox= coef(kfit1), poisson=coef(kfit4a)[1:2],

poisson2 = coef(kfit4b)[2:3], poisson3 = coef(kfit4c)[2:3],

binomial2 = coef(kfit4d)[2:3], binomial3 = coef(kfit4e)[2:3])

3

age sex

Cox 0.002181516 -0.8209953

poisson 0.002181516 -0.8209953

poisson2 0.002171066 -0.8184549

poisson3 0.003810010 -0.7885167

binomial2 0.002781817 -0.8961874

binomial3 0.004027962 -0.8370518

>

The fits show that adding an approximate per-interval intercept via the offset term gives
a very close approximation to the coxph fit with the Poisson and a reasonable one with the
binomial. Using no intercept at all produces some bias, the size of which will be related to the
correlation between phat and the covariate in question. The advantage of the offset models is
a smaller number of coefficients, particularly for large data sets where the number of intercepts
would be excessive.

4

