Package 'svmpath'

July 14, 2020

Title The SVM Path Algorithm
Date 2020-07-13
Version 0.970
Author Trevor Hastie
Description Computes the entire regularization path for the two-class svm classifier with essentially the same cost as a single SVM fit.

Maintainer Trevor Hastie hastie@stanford.edu
Depends kernlab
License GPL-2

URL http://www.jmlr.org/papers/volume5/hastie04a/hastie04a.pdf
NeedsCompilation no
Repository CRAN
Date/Publication 2020-07-14 13:10:02 UTC

R topics documented:

balanced.overlap 2
plot.svmpath 2
predict.svmpath 4
print.svmpath 5
radial.kernel 6
summary.svmpath 7
svmpath 8
Index 11

```
balanced.overlap simple examples for svmpath
```


Description

Datasets for illustrating the svmpath function, that can be plotted while its running

Usage

data(svmpath)

Format

In each case a list with a component x (t column matrix) and a component y (vector of $+1 /-1$ values) "Balanced" refers to whether the number of +1 s is the same as the -1 s . "Overlap" indicates whether the classes are linearly separable. mixture.data is a balanced dataset with 100 observations in each class. The others are smaller with between 10-12 obs total.

References

The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.

Examples

```
data(svmpath)
attach(balanced.overlap)
svmpath(x,y,trace=TRUE,plot=TRUE)
detach(2)
```

plot.svmpath plot the svm solution at a step along the path

Description

produces a plot of the svm solution along the path, and optinally indicates support points

Usage

```
## S3 method for class 'svmpath'
plot(x, step, Size = 60, elbow.show = TRUE, support.show = TRUE, ...)
```


Arguments

x
step which step to plot; default is the last step. Use summary to see how many steps
Size If the solution is non-linear, this is the gridsize for countour
elbow. show Should the points on the elbow be indicated
support. show Should the support points be indicated
$\ldots \quad$ additional arguments to plot, allowing one to change, for example, "main", "xlab" etc

Details

A two-dimensional plot is produced of the SVM solution. Makes sense only if X is two-dimensional. If not, the first two dimensions will be used

Value

A list is returned silently, with the ingredients of the plot

Author(s)

Trevor Hastie

References

The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.

See Also

coef.svmpath, svmpath, predict.svmpath, print.svmpath,summary.svmpath

Examples

```
data(svmpath)
attach(balanced.overlap)
fit <- svmpath(x,y,trace=TRUE,plot=FALSE)
plot(fit,step=2)
detach(2)
```

```
predict.svmpath Make predictions from a "svmpath" object
```


Description

Provide a value for lambda, and produce the fitted lagrange alpha values. Provide values for x , and get fitted function values or class labels.

Usage

```
## S3 method for class 'svmpath'
predict(object, newx, lambda, type = c("function", "class",
    "alpha", "margin"),...)
```


Arguments

object	fitted svmpath object values of x at which prediction are wanted. This is a matrix with observations per row
lambda	the value of the regularization parameter. Note that lambda is equivalent to 1/C for the usual parametrization of a SVM type of prediction, with default "function". For type="alpha" or type="margin" the newx argument is not required
type	Generic compatibility
\ldots	

Details

This implementation of the SVM uses a parameterization that is slightly different but equivalent to the usual (Vapnik) SVM. Here $\lambda=1 / C$. The Lagrange multipliers are related via $\alpha_{i}^{*}=\alpha_{i} / \lambda$, where α_{i}^{*} is the usual multiplier, and α_{i} our multiplier. Note that if alpha=0, that observation is right of the elbow; alpha=1, left of the elbow; $0<a l p h a<1$ on the elbow. The latter two cases are all support points.

Value

In each case, the desired prediction.

Author(s)

Trevor Hastie

References

The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.

See Also

coef.svmpath, svmpath

Examples

```
data(svmpath)
attach(balanced.overlap)
fit <- svmpath(x,y,trace=TRUE,plot=TRUE)
predict(fit, lambda=1,type="alpha")
predict(fit, x, lambda=.9)
detach(2)
```

```
print.svmpath
```

Print a summary of the SVM path

Description

print a summary of the fitted svmpath object

Usage

\#\# S3 method for class 'svmpath'
print(x, digits, maxsteps, ...)

Arguments

$x \quad$ object to be printed
digits number of significant digits (default 6)
maxsteps the number of steps to print; default all
... additional arguments to the generic print function

Value

For each step taken by the algorithm, one or more lines are printed. The step is described in terms of the observation number involved, a coded version of what happened, such as "L->E" meaning "from the Left set" to the "Elbow". Initially all the sets are empty. It gives the margin (sum of the xi), the size of the elbow, and the training error.

Author(s)

Trevor Hastie

References

The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.

See Also

coef.svmpath, svmpath, predict.svmpath

Examples

```
data(svmpath)
attach(balanced.overlap)
fit <- svmpath(x,y,trace=TRUE,plot=TRUE)
print(fit)
detach(2)
```

radial.kernel compute the kernel matrix for svmpath

Description

compute the kernel matrix for svmpath

Usage

radial.kernel(x, y=x, param.kernel = 1/p,...)
poly.kernel(x, y=x, param.kernel =1,...)

Arguments

x
an $n \times p$ matrix of features
$y \quad$ an $m x p$ matrix of features (if omitted, it defaults to x)
param.kernel the parameter(s) for the kernel. For this radial kernel, the parameter is known in the fields as "gamma". For the polynomial kernel, it is the "degree"
... unused

Details

For the radial kernel, this computes the function $\exp \left(-\gamma\|x-y\|^{2}\right)$ for each pair of rows x, y from the input matrices. Here g is param.kernel. For the polynomial kernel, it computes $\left(x y^{T}+1\right)^{d}$, where d is param. kernel.

Value

An n x m matrix.

Author(s)

Trevor Hastie

References

The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.

See Also

svmpath

Examples

```
data(svmpath)
attach(balanced.overlap)
fit<-svmpath(x,y,kernel=radial.kernel)
detach(2)
```

summary. svmpath produce a summary of an svmpath object

Description

printing an svmpath object can produce a lot of lines. The summary methods gives a more concise description by picking out a subset of the steps

Usage

\#\# S3 method for class 'svmpath'
summary(object, nsteps = 5, digits = 6, ...)

Arguments

object the svmpath object
nsteps usually omitted, but can be changed to get longer summaries
digits number of significant digits
... additional arguments to the generic summary function

Details

Uses the pretty function to extract the approximately the desired number of steps. Always includes the first and last step.

Value

returns a dataframe with the steps, value of lambda, training error, size of elbow, number of support points, and the sum of the overlaps

Author(s)

Trevor Hastie

References

The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.

See Also

coef.svmpath, svmpath, predict.svmpath, print.svmpath

Examples

```
data(svmpath)
attach(balanced.overlap)
fit <- svmpath(x,y,trace=TRUE,plot=TRUE)
summary(fit)
detach(2)
```


Description

The SVM has a regularization or cost parameter C, which controls the amount by which points overlap their soft margins. Typically either a default large value for C is chosen (allowing minimal overlap), or else a few values are compared using a validation set. This algorithm computes the entire regularization path (i.e. for all possible values of C for which the solution changes), with a cost a small (~ 3) multiple of the cost of fitting a single model.

Usage

svmpath(x, y, K, kernel.function = poly.kernel, param.kernel = 1, trace, plot.it, eps $=1 \mathrm{e}-10$, Nmoves $=3 * \mathrm{n}$, digits $=6$, lambda. $\mathrm{min}=1 \mathrm{e}-04$, ridge=0,..)

Arguments

$\mathrm{x} \quad$ the data matrix (n x p) with n rows (observations) on p variables (columns)
$y \quad$ The $"-1,+1$ " valued response variable.
$K \quad$ a $n x n$ kernel matrix, with default value $K=$ kernel.function (x, x)
kernel.function
This is a user-defined function. Provided are poly.kernel (the default, with parameter set to default to a linear kernel) and radial. kernel
param.kernel parameter(s) of the kernels
trace if TRUE, a progress report is printed as the algorithm runs; default is FALSE
plot.it a flag indicating whether a plot should be produced (default FALSE; only usable with $p=2$
eps a small machine number which is used to identify minimal step sizes

Nmoves the maximum number of moves
digits the number of digits in the printout
lambda.min The smallest value of lambda $=1 / \mathrm{C}$; default is 1 ambda $=10 \mathrm{e}-4$, or $\mathrm{C}=10000$
ridge Sometimes the algorithm encounters singularities; in this case a small value of ridge, around 1e-12, can help. Default is ridge= 0
... additional arguments to some of the functions called by svmpath. One such argument that can be passed is ridge (default is $1 \mathrm{e}-10$). This is used to produce "stable" solutions to linear equations.

Details

The algorithm used in svmpath() is described in detail in "The Entire Regularization Path for the Support Vector Machine" by Hastie, Rosset, Tibshirani and Zhu (2004). It exploits the fact that the "hinge" loss-function is piecewise linear, and the penalty term is quadratic. This means that in the dual space, the lagrange multipliers will be pieceise linear (c.f. lars).

Value

a "svmpath" object is returned, for which there are print, summary, coef and predict methods.

Warning

Currently the algorithm can get into machine errors if epsilon is too small, or if lambda.min is too small. Increasing either from their defaults should make the problems go away, by terminating the algorithm slightly early.

Note

This implementation of the algorithm does not use updating to solve the "elbow" linear equations. This is possible, since the elbow changes by a small number of points at a time. Future version of the software will do this. The author has encountered numerical problems with early attempts at this.

Author(s)

Trevor Hastie

References

The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.

See Also

print, coef, summary, predict, and FilmPath

Examples

```
data(svmpath)
attach(unbalanced.separated)
svmpath(x,y,trace=TRUE,plot=TRUE)
detach(2)
## Not run: svmpath(x,y,kernel=radial.kernel,param.kernel=.8)
```


Index

```
* datasets
    balanced.overlap, 2
* regression
    plot.svmpath, 2
    predict.svmpath,4
    print.svmpath,5
    radial.kernel,6
    summary.svmpath, }
    svmpath, }
balanced.overlap, 2
balanced.separated (balanced.overlap), 2
mixture.data (balanced.overlap),2
plot.svmpath, 2
poly.kernel (radial.kernel),6
predict.svmpath,4
print.svmpath,5
radial.kernel,6
summary.svmpath,7
svmpath, }
unbalanced.separated
        (balanced.overlap),2
```

