
Package ‘svrep’
March 30, 2022

Type Package

Title Tools for Creating, Updating, and Analyzing Survey Replicate
Weights

Version 0.1.0

Author Ben Schneider

Maintainer Ben Schneider <benjamin.julius.schneider@gmail.com>

Description Provides tools for creating and working with survey replicate weights,
extending functionality of the 'survey' package from Lumley (2004) <doi:10.18637/jss.v009.i08>.
Methods are provided for applying nonresponse adjustments to
both full-sample and replicate weights as suggested by
Rust and Rao (1996) <doi:10.1177/096228029600500305> in order to account for
the impact of these adjustments on sampling variances.
Diagnostic functions are included to compare weights and weighted estimates
from different sets of replicate weights.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.1.1

Imports stats, survey (>= 4.1), utils

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2022-03-30 17:50:02 UTC

R topics documented:
redistribute_weights . 2
stack_replicate_designs . 3
summarize_rep_weights . 4
svyby_repwts . 6

Index 10

1

https://doi.org/10.18637/jss.v009.i08
https://doi.org/10.1177/096228029600500305

2 redistribute_weights

redistribute_weights Redistribute weight from one group to another

Description

Redistributes weight from one group to another: for example, from non-respondents to respondents.
Redistribution is conducted for the full-sample weights as well as each set of replicate weights.
This can be done separately for each combination of a set of grouping variables, for example to
implement a nonresponse weighting class adjustment.

Usage

redistribute_weights(design, reduce_if, increase_if, by)

Arguments

design A survey design object, created with either the survey or srvyr packages.

reduce_if An expression indicating which cases should have their weights set to zero.
Must evaluate to a logical vector with only values of TRUE or FALSE.

increase_if An expression indicating which cases should have their weights increased. Must
evaluate to a logical vector with only values of TRUE or FALSE.

by (Optional) A character vector with the names of variables used to group the
redistribution of weights. For example, if the data include variables named
"stratum" and "wt_class", one could specify by = c("stratum","wt_class").

Value

The survey design object, but with updated full-sample weights and updated replicate weights. The
resulting survey design object always has its value of combined.weights set to TRUE.

Examples

Load example data
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

rep_design <- as.svrepdesign(dclus1)

Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),

stack_replicate_designs 3

increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

stack_replicate_designs

Stack replicate designs, combining data and weights into a single ob-
ject

Description

Stack replicate designs: combine rows of data, rows of replicate weights, and the respective full-
sample weights. This can be useful when comparing estimates before and after a set of adjustments
made to the weights. Another more delicate application is when combining sets of replicate weights
from multiple years of data for a survey, although this must be done carefully based on guidance
from a data provider.

Usage

stack_replicate_designs(..., .id = "Design_Name")

Arguments

... Replicate-weights survey design objects to combine. These can be supplied in
one of two ways.

• Option 1 - A series of design objects, for example 'adjusted' = adjusted_design,'orig'
= orig_design.

• Option 2 - A list object containing design objects, for example list('nr'
= nr_adjusted_design,'ue' = ue_adjusted_design).

All objects must have the same specifications for type, rho, mse, scales, and
rscales.

.id A single character value, which becomes the name of a new column of identifiers
created in the output data to link each row to the design from which it was taken.
The labels used for the identifiers are taken from named arguments.

Value

A replicate-weights survey design object, with class svyrep.design and svyrep.stacked. The
resulting survey design object always has its value of combined.weights set to TRUE.

4 summarize_rep_weights

Examples

Load example data, creating a replicate design object
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

orig_rep_design <- as.svrepdesign(dclus1)

Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = orig_rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

Stack the three designs, using any of the following syntax options
stacked_design <- stack_replicate_designs(orig_rep_design, ue_adjusted_design, nr_adjusted_design,

.id = "which_design")
stacked_design <- stack_replicate_designs('original' = orig_rep_design,

'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design,
.id = "which_design")

list_of_designs <- list('original' = orig_rep_design,
'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design)

stacked_design <- stack_replicate_designs(list_of_designs, .id = "which_design")

summarize_rep_weights Summarize the replicate weights

Description

Summarize the replicate weights of a design

Usage

summarize_rep_weights(rep_design, type = "both")

summarize_rep_weights 5

Arguments

rep_design A replicate design object, created with either the survey or srvyr packages.

type Default is "both". Use type = "overall", for an overall summary of the repli-
cate weights. Use type = "specific" for a summary of each column of repli-
cate weights, with each column of replicate weights summarized in a given row
of the summary.

Use type = "both" for a list containing both summaries, with the list containing
the names "overall" and "both".

Value

If type = "both" (the default), the result is a list of data frames with names "overall" and "specific".
If type = "overall", the result is a data frame providing an overall summary of the replicate
weights.

The contents of the "overall" summary are the following:

• "nrows": Number of rows for the weights

• "ncols": Number of columns of replicate weights

• "degf_svy_pkg": The degrees of freedom according to the survey package in R

• "rank": The matrix rank as determined by a QR decomposition

• "avg_wgt_sum": The average column sum

• "sd_wgt_sums": The standard deviation of the column sums

• "min_rep_wgt": The minimum value of any replicate weight

• "max_rep_wgt": The maximum value of any replicate weight

If type = "specific", the result is a data frame providing a summary of each column of replicate
weights, with each column of replicate weights described in a given row of the data frame. The
contents of the "specific" summary are the following:

• "Rep_Column": The name of a given column of replicate weights. If columns are unnamed,
the column number is used instead

• "N": The number of entries

• "N_NONZERO": The number of nonzero entries

• "SUM": The sum of the weights

• "MEAN": The average of the weights

• "CV": The coefficient of variation of the weights (standard deviation divided by mean)

• "MIN": The minimum weight

• "MAX": The maximum weight

6 svyby_repwts

Examples

Load example data
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

rep_design <- as.svrepdesign(dclus1)

Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

Summarize replicate weights

summarize_rep_weights(rep_design, type = "both")

Compare replicate weights

rep_wt_summaries <- lapply(list('original' = rep_design,
'adjusted' = ue_adjusted_design),

summarize_rep_weights,
type = "overall")

print(rep_wt_summaries)

svyby_repwts Compare survey statistics calculated separately from different sets of
replicate weights

Description

A modified version of the svyby() function from the survey package. Whereas svyby() calcu-
lates statistics separately for each subset formed by a specified grouping variable, svyby_repwts()
calculates statistics separately for each replicate design, in addition to any additional user-specified
grouping variables.

Usage

svyby_repwts(
rep_designs,

svyby_repwts 7

formula,
by,
FUN,
...,
deff = FALSE,
keep.var = TRUE,
keep.names = TRUE,
verbose = FALSE,
vartype = c("se", "ci", "ci", "cv", "cvpct", "var"),
drop.empty.groups = TRUE,
return.replicates = FALSE,
na.rm.by = FALSE,
na.rm.all = FALSE,
multicore = getOption("survey.multicore")

)

Arguments

rep_designs The replicate-weights survey designs to be compared. Supplied either as:

• A named list of replicate-weights survey design objects, for example list('nr'
= nr_adjusted_design,'ue' = ue_adjusted_design).

• A ’stacked’ replicate-weights survey design object created by stack_replicate_designs().

The designs must all have the same number of columns of replicate weights, of
the same type (bootstrap, JKn, etc.)

formula A formula specifying the variables to pass to FUN

by A formula specifying factors that define subsets

FUN A function taking a formula and survey design object as its first two arguments.
Usually a function from the survey package, such as svytotal or svymean.

... Other arguments to FUN

deff A value of TRUE or FALSE, indicating whether design effects should be estimated
if possible.

keep.var A value of TRUE or FALSE. If FUN returns a svystat object, indicates whether to
extract standard errors from it.

keep.names Define row names based on the subsets

verbose If TRUE, print a label for each subset as it is processed.

vartype Report variability as one or more of standard error, confidence interval, coeffi-
cient of variation, percent coefficient of variation, or variance

drop.empty.groups

If FALSE, report NA for empty groups, if TRUE drop them from the output
return.replicates

If TRUE, return all the replicates as the "replicates" attribute of the result. This
can be useful if you want to produce custom summaries of the estimates from
each replicate.

na.rm.by If true, omit groups defined by NA values of the by variables

8 svyby_repwts

na.rm.all If true, check for groups with no non-missing observations for variables defined
by formula and treat these groups as empty

multicore Use multicore package to distribute subsets over multiple processors?

Value

An object of class "svyby": a data frame showing the grouping factors and results of FUN for each
combination of the grouping factors. The first grouping factor always consists of indicators for
which replicate design was used for an estimate.

Examples

suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

orig_rep_design <- as.svrepdesign(dclus1)

Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = orig_rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

Compare estimates from the three sets of replicate weights

list_of_designs <- list('original' = orig_rep_design,
'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design)

##_ First compare overall means for two variables
means_by_design <- svyby_repwts(formula = ~ api00 + api99,

FUN = svymean,
rep_design = list_of_designs)

print(means_by_design)

##_ Next compare domain means for two variables

svyby_repwts 9

domain_means_by_design <- svyby_repwts(formula = ~ api00 + api99,
by = ~ stype,
FUN = svymean,
rep_design = list_of_designs)

print(domain_means_by_design)

Calculate confidence interval for difference between estimates

ests_by_design <- svyby_repwts(rep_designs = list('NR-adjusted' = nr_adjusted_design,
'Original' = orig_rep_design),

FUN = svymean, formula = ~ api00 + api99)

differences_in_estimates <- svycontrast(stat = ests_by_design, contrasts = list(
'Mean of api00: NR-adjusted vs. Original' = c(1,-1,0,0),
'Mean of api99: NR-adjusted vs. Original' = c(0,0,1,-1)

))

print(differences_in_estimates)

confint(differences_in_estimates, level = 0.95)

Index

redistribute_weights, 2

stack_replicate_designs, 3
summarize_rep_weights, 4
svyby_repwts, 6

10

	redistribute_weights
	stack_replicate_designs
	summarize_rep_weights
	svyby_repwts
	Index

