Package ‘tablelxls’

July 27, 2017

Type Package

Title Exports Reproducible Summary Tables to Multi-Tab Spreadsheet
Files (.xlIs or .xIsx)

Version 0.4.0

Date 2017-07-26

Author Assaf P. Oron [cre, aut]

Maintainer Assaf P. Oron <assaf.oron@seattlechildrens.org>

Description A collection of time-saving wrappers for reproducible export of
summary tables commonly used in scientific articles, to .xIs/.xlsx multi-
tab spreadsheets, while controlling spreadsheet layout. Powered by "XLConnect'/'rJava’ utilities.

License GPL-3

Imports XLConnect

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2017-07-26 22:04:36 UTC

R topics documented:

tablelxls-package 2
niceRound L 3
TangeStringo e e e e e e e e e e e 4
XLaddText o i 6
XLEENEIIC .« v v v v e 7
XLoneWay o e e e 9
XLregresSSummaryo e e e e e 11
XLtablel 13
XLtwoWay e e e 15
XLunivariate oo e e e e e 18
XLwriteOpen i e e e e e e e e e 20
Index 23

2 table I xIs-package

tablelxls-package Publication-Grade Tables Exported to .xls/.xlsx spreadsheets

Description

Generate tabular summaries in formats commonly found in scientific articles, and export them to
Office-compatible spreadsheet document (.x1s/.xlsx format).

Details

Package: tablelxls
Type: Package
Version: 0.4.0
Date: 2017-02-28
License: GPL-3

Any statistician collaborating with scientists, especially in the health sciences, has to produce
publication-grade summary tables. Most commonly these are "Table 1" style basic demographics,
contingency tables, or regression-output summaries. As a minimum, statisticians need to provide
tables, from which the lead author can easily and accurately generate these tables.

Outside of physics and mathematical fields, the vast majority of scientific investigators edit their
manuscripts and tables in office-type software, usually the Microsoft suite. R can easily output
data in . csv format; however, the analyst or someone in the investigative team still has to perform
tedious work formatting the tables using office software, into a template that the lead author can
use. Moreover, the manner in which regression summaries appear in manuscripts, is quite different
from the typical output of summary.glm and similar R functions.

More important than the tedious labor involved, this manual "portage" of analysis output from the
raw R/csv format to tabular format can be prone to data errors, and is not reproducible.

The package tablelxls is meant to close this gap, enabling analysts and their collaborators to
focus on the analysis and the science with peace of mind, while saving precious time. It relies
upon the functionality offered by the XLConnect package. It can be seen as an Office-compatible
baby version of the LaTex (and now also HTML) oriented xtable (or the SAS-inspired tables).
table1xls does offer some conveniences that these other packages cannot match, in particular
the possibility of packaging all your output tables as separate tabs in the same single spreadsheet
document, and the ability to lay out related tables side-by-side or below each other in the same
sheet.

Regarding export to non-Microsoft spreadsheet software: with my LibreOffice (Windows version)
the .xls exports work perfectly fine, while .xlsx is not as reliable. I recommend using the former, of
course.

You can download the latest package source code directly from GitHub, via the command
devtools::install_github(”assaforon/tablelxls").

If you have roxygen?2 installed, then the help pages will show following a GitHub download, thanks
to a hack originating/disseminated by Yihui Xie.

niceRound 3

I will gladly accept requests for new functionalities, as well as comments and corrections on existing
functions.

Thanks, Assaf

PS: XLConnect uses the rJava package. For some systems, additional configuration is needed to
enable Java on R. For Windows machines tested so far it was pretty much plug-and-play; the Linux
CRAN tests all seem to work; not so for some Macs.

When manipulating large spreadsheet objects, the Java Virtual Machine might choke and issue
error messages. If this happens, you will need to start a new session, and before loading XLConnect
(either directly or via loading table1x1ls), write

options(java.parameters = "-XmxYYYY")

Where YYYY is the virtual-memory size in MB. The default is only 128 MB. The string "-Xmx1g"
is interpreted as 1 gigabyte. Keep in mind that you need to have substantially more RAM than the
amount allocated to the JVM.

Author(s)

Assaf P. Oron.

Maintainer: Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

niceRound Rounding to a Predictable Number of Digits

Description

Rounds numbers to always have the specified number of decimal digits, rather than R’s "greedy"
most-compact rounding convention. Includes optional "<0.0..." override adequate for representing
small p-values.

Usage

niceRound(numbers, digits = @, plurb = FALSE)

Arguments
numbers the numbers to be rounded. Can also be a vector or numeric array.
digits the desired number of decimal digits
plurb logical, should the p-value-style "less-than blurb" convention be used? Default

FALSE.

4 rangeString

Details

R’s standard round utility rounds to at most the number of digits specified. When the number hap-

pens to round more "compactly", it rounds to fewer digits. Thus, for example, round(4.03,digits=2)

yields 4 as an answer. This is undesirable when trying to format a table, e.g., for publication.

niceRound solves this problem by wrapping a format call around the round call. The result will
always have digits decimal digits. In addition, since reporting p-values always involves rounding,
if the argument plurb is TRUE, then values below the rounding thresholds will be represented using
the "less than" convention. For example, with digits=3 and plurb=TRUE, the number 0.0004 will
be represented as <@.001.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

round,format

rangeString Utility functions for table summaries

Description

Various auxiliary convenience functions, mostly for XLunivariate. Functions calculating simple
statistics and returning the output in a formatted manner, making it easier for XLunivariate to
embed them in spreadsheet cells.

Usage
rangeString(x, digits = 1, sep = "-", na.rm = FALSE, ...)
igrString(x, digits = 1, sep = "-", quantmeth = 7, na.rm = FALSE, ...)
roundmean(x, digits = 1, na.rm = FALSE, ...)
roundmedian(x, digits = 1, na.rm = FALSE, ...)
roundSD(x, digits = 1, na.rm = FALSE, ...)
emptee(x, ...)
Arguments
X vector (usually numeric, but can be logical) on which statistics are to be calcu-
lated

digits numeric: how many digits to round the output to?

rangeString 5

sep character: separating character for range- type functions.

na.rm logical: should missing values be removed? (default FALSE) Passed onto the
underlying functions

this is ignored by the functions, but enables the "mixing and matching" of extra
parameters between functions called by XLunivariate, without triggering an
error.

quantmeth numeric: for functions calling quantile, the calculation method for the quan-
tiles. Default is 7 to match the R default. Note that it is shrunk towards the
median and hence biased, but typically with lower MSE. A very viable alterna-
tive is 6, the SAS/SPSS (and Stata?) default, which is unbiased. See the help on
quantile for more details.

Details

This is a small collection of useful utilities called by XLunivariate. They return 1-2 summary
statistics, in a format that will not require additional formatting and formula-manipulation in Excel.

For example, roundmedian returns the median rounded to the specified number of digits, while
igrString returns the 1st and 3rd quartiles, separated by at least one dash (default 3 dashes).
XLunivariate can combine these functions’ output to produce the formatted summary "median (Q1---Q3)"
often used in research articles.

In particular, emptee returns an empty string, enabling the use of XLunivariate to produce only a
single summary statistic per cell rather than a pair.
Value

The summary statistic(s), in the format specified via the arguments.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

XLunivariate which is the main function calling these utilities.

Examples

book2<-XLwriteOpen("chick2.x1s")

Plain-vanilla

XLunivariate(book2, "weightByDiet"”,ChickWeight$weight,ChickWeight$Diet,
title="Mean Weights by Diet”,rowTitle="Diet")

Replace mean/SD with median/range, put results beside previous
XLunivariate(book2, "weightByDiet"”,ChickWeight$weight,ChickWeight$Diet,
title="Median Weights by Diet"”,rowTitle="Diet"”,col1=8,
funl=list(fun=roundmedian,name="Median"), fun2=1ist(fun=rangeString,name="range"))

You can also do only one statistic... by "killing” one of the functions
XLunivariate(book2, "weightByAge",ChickWeight$weight,ChickWeight$Time,

6 XLaddText

title="Mean Weights by Age",rowTitle="Age (Days)",seps=rep("",3),
fun2=1list(fun=emptee,name=""))
cat("Look for"”,paste(getwd(),"chick2.x1s",sep="'/"),"to see the results!\n")

XLaddText Write text to a single cell

Description

Write text to a single cell in a specified file and sheet, and save the file.

Usage
XLaddText(wb, sheet, text, rowl = 1, coll = 1)

Arguments
wb a workbook-class object
sheet numeric or character: a worksheet name (character) or position (numeric) within
wb.
text character: the text to be written to file.
rowl, coll integer: the row and column for the output.
Details

Since XLConnect only exports data to spreadsheets as data. frame, this function sends the text as
an on-the-fly data. frame with one column and one row, and without writing the header or the row
name.

Value

The function returns invisibly, after writing the data into sheet and saving the file.

Note

If the specified sheet does not exist, the function will create it, assuming that was the user’s intent
(e.g., add a text-only sheet with explanations to a file.) This is hard-coded, because the inadvertent
creation of single-text sheets due to typos can be easily discovered upon opening the file :)

Examples

t1<-XLwriteOpen("genericl.x1ls")
Just a meaningless matrix; function converts to data.frame and exports.
XLgeneric(t1,"s1"”,matrix(1:4,nrow=2))
Now adding row names, title, etc. Note adding the title shifts the table one row down.
XLgeneric(t1,"s1"”,matrix(1:4,nrow=2),col1=5,addRownames=TRUE,

title="Another Meaningless Table",rowTitle="What?",

rowNames=c("Hey","You!"))

XLgeneric

###... and now adding some text
XLaddText(t1,”s1"”,"You can also add text here..."”,row1=10)
XLaddText(t1,"s1"”,"...or here.",row1=11,col1=8)

XLaddText(t1,"s2",
"Adding text to a new sheet name will create that sheet!”
,row1=2,col1=2)

A more complicated example, showing how a "flattened” 3-way table might be exported:

carnames=paste(rep(c(4,6,8),each=2),"cylinders”,rep(c("automatic”, "manual”),3))
XLgeneric(t1, 'cars',ftable(mtcars$cyl,mtcars$vs,mtcars$am),
addRownames=TRUE , rowNames=carnames, rowTitle="Engine Type",colNames=c("S","V"))

cat("Look for"”,paste(getwd(),"genericl.x1ls",sep="/"),"to see the results!\n")

XLgeneric

Write generic rectangular data to a spreadsheet

Description

Export a generic data frame, matrix or table to a spreadsheet and save the file.

Usage

XLgeneric(wb, sheet, dataset, title = NULL, addRownames = FALSE,

rowNames

rownames(dataset), rowTitle = "Name"”, colNames = NULL,

rowl = 1, coll = 1, purge = FALSE)

Arguments

wb

sheet

dataset

title

addRownames

rowNames

rowTitle

colNames

a workbook-class object

numeric or character: a worksheet name (character) or position (numeric) within
wb.

the rectangular structure to be written. Can be a data frame, table, matrix or
similar.

character: an optional overall title to the table. Default (NULL) is no title.

logical: should a column of row names be added to the left of the structure?
(default FALSE)

character: vector of row names. Default rownames(dataset), but relevant only
if addRownames=TRUE.

character: the title to be placed above the row name column (default "Name")

character: vector of column names to replace the original ones. Default NULL,
meaning that the original names are left intact. Note that the title for the row-
names column (if addRownames=TRUE) is not considered part of colNames, and
is set separately.

8 XLgeneric

rowl, coll numeric: the first row and column occupied by the output.

purge logical: should sheet be created anew, by first removing the previous copy if it
exists? (default FALSE)

Details

This function is a convenience wrapper for getting practically any rectangular data structure into a
spreadsheet, without worrying about conversion or spreadsheet-writing technicalities.

If the structure is not a data frame (or inherited from one), but a table or matrix, the function will
convert it into one using as.data.frame.matrix, because data frames are what the underlying
function writeWorksheet can export.

See the XLtwoWay help page, for behavior regarding new-sheet creation, overwriting, etc.

Value

The function returns invisibly, after writing the data into sheet and saving the file.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

For two-way contingency tables, see XLtwoWay.

Examples

t1<-XLwriteOpen("genericl.x1s")
Just a meaningless matrix; function converts to data.frame and exports.
XLgeneric(t1,"s1",matrix(1:4,nrow=2))
Now adding row names, title, etc. Note adding the title shifts the table one row down.
XLgeneric(t1,"s1"”,matrix(1:4,nrow=2),col1=5,addRownames=TRUE,

title="Another Meaningless Table",rowTitle="What?",

rowNames=c("Hey", "You!"))

###. .. and now adding some text
XLaddText(t1,"”s1"”,"You can also add text here..."”,row1=10)
XLaddText(t1,"s1","”...or here.",rowl=11,co0l1=8)

XLaddText(t1,"s2",
"Adding text to a new sheet name will create that sheet!”
,rowl=2,col1=2)

A more complicated example, showing how a "flattened” 3-way table might be exported:
carnames=paste(rep(c(4,6,8),each=2),"cylinders”,rep(c("automatic”, "manual”),3))
XLgeneric(t1, 'cars',ftable(mtcars$cyl,mtcars$vs,mtcars$am),

addRownames=TRUE , rowNames=carnames,rowTitle="Engine Type”, colNames=c("S","V"))

cat("Look for",paste(getwd(),"genericl.x1ls",sep="/"),"to see the results!\n")

XLoneWay

XLoneWay

One-way Contingency Tables exported to a spreadsheet

Description

Calculates a one-way contingency table in counts and percents, exports a formatted output to a
spreadsheet, and saves the file.

Usage

XLoneWay (wb, sheet, rowvar, tablelmode = FALSE, title = NULL,
rowTitle = "Value”, rowNames = NULL, colNames = NULL, ord = NULL,

rowl = 1, coll =1, digits = ifelse(length(rowvar) >= 500, 1, 0),
combine = TRUE, useNA = "ifany"”, testname = NULL, testBelow = FALSE,
margins = TRUE, ..., purge = FALSE, pround = 3)
Arguments
wb a workbook-class object
sheet numeric or character: a worksheet name (character) or position (numeric) within
wb.
rowvar vector: the categorical variable (logical, numeric, character, factor, etc.) to be
tabulated.
tablelmode logical: is the function called from XLtable1? If TRUE, some modifications will
be made to the output. Default FALSE.
title character: an optional overall title to the table. Default (NULL) is no title.
rowTitle character: the title to be placed above the row name column (default empty
string)
rowNames character: vector of row names. Default behavior (NULL): automatically deter-
mined from data
colNames dummy argument for compatibility with calls from XLtable1(). Otherwise ig-
nored by function.
ord numeric vector specifying row-index order in the produced table. Default (NULL)
is no re-ordering.
rowl, coll numeric: the first row and column occupied by the table (title included if rele-
vant).
digits numeric: how many digits (after the decimal point) to show in the percents?
Defaults to 1 if n>=500, 0 otherwise.
combine logical: should counts and percents be combined to the popular "Count (percent)”
format, or presented side-by-side? (default TRUE)
useNA How to handle missing values. Passed on to table (see help on that function for

options).

10 XLoneWay

testname string, the name of a function to run a significance test on the table. Default
NULL (no test).

testBelow logical, should test p-value be placed right below the table? Default FALSE,
which places it next to the table’s right edge, one row below the column headings

margins logical: should margins with totals be returned? Default TRUE.

additional arguments as needed, to pass on to get(textfun); for example, the
reference frequencies for a Chi-Squared GoF test.

purge logical should sheet be created anew, by first removing the previous copy if it
exists? (default FALSE)

pround number of significant digits in test p-value representation. Default 3.

Details

This function performs a one-way contingency table, also calculating the distribution in percents.

The table is then exported to worksheet sheet in workbook wb, either using the format "Count (percent)"”
(if combine=TRUE), or as two separate columns in the same table.

See the XLtwoWay help page, for behavior regarding new-sheet creation, overwriting, etc.

Value

The function returns invisibly, after writing the data into sheet and saving the file.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

If interested in other descriptive summaries, see XLunivariate. For two-way contingency tables,
see XLtwoWay.

Examples

book1<-XLwriteOpen("chickl.x1s")

XLoneWay(book1,"Diets”,ChickWeight$Diet)

Now in separate columns, and with a title - note it shifts the table down.

Also adding a Chi-Square goodness of fit (GoF) test vs. a 2:1:1:1 allocation

XLoneWay (book1, "Diets”,ChickWeight$Diet,combine=FALSE,row1=10,
rowTitle="Diet"”,title="Counts by Diet:", testname='chisq.test',p=c(2,1,1,1)/5)

cat("Look for"”,paste(getwd(),"chickl.x1ls",sep="'/"),"to see the results!\n")

XLregresSummary 11

XLregresSummary Regression Summary Tables exported to a spreadsheet

Description

Takes regression effect estimates and the corresponding standard errors, transforms to "human
scale" if requested, calculates confidence-intervals and p-values, and exports a standard formatted
summary table to a spreadsheet.

Usage

XLregresSummary(wb, sheet, betas, SE = NULL, varnames = NULL, colid = 1:2,
transfun = identity, title = NULL, effname = "Difference”,
alpha = 0.05, df = NA, roundig = 2, pround = 3, rowl = 1,
coll = 1, purge = FALSE)

Arguments

wb a workbook-class object

sheet numeric or character: a worksheet name (character) or position (numeric) within
wb.

betas numeric: a vector of point estimates, or a matrix containing estimates and stan-
dard errors in columns

SE numeric: a vector of standard-error estimates for the effects. If NULL (default),
user needs to specify them via the betas matrix.

varnames character: a vector of effect names (column 1 of output table). If NULL (default),
user needs to specify them via the betas matrix.

colid integer: vector of indices for the columns containing the point estimates and
SEs, respectively. Used only if betas is a matrix.

transfun transformation function for betas, SE, to produce columns 2-3 of the output.
Defaults to identity. use exp for odds ratio or relative risk.

title character: an optional overall title to the table. Default (NULL) is no title.

effname character: a string explaining what the effect stands for, e.g. "difference” (the
default), "Odds Ratio", etc.

alpha numeric, Type I error for CIs. Default 0.05 for 95% Cls.

df numeric, residual degrees of freedom. If a finite value is provided, t-distribution
p-value and CIs will be calculated; otherwise Normality is assumed. Default NA.
@param title character: an optional overall title to the table. Default (NULL)
is no title.

roundig numeric: how many digits (after the decimal point) to round the effect estimate

to?

12 XLregresSummary

pround numeric: how many digits (after the decimal point) to round the p-value to? P-
values rounded down to zero will show up as "<" the smallest nonzero value,
e.g. with the default pround=3 p-values smaller than 0.0005 will show up as

"<0.001".

rowl, coll numeric: the first row and column occupied by the table (title included if rele-
vant).

purge logical: should sheet be created anew, by first removing the previous copy if it

exists? (default FALSE)

Details

This function produces a standard scientific-article regression summary table, given the raw regres-
sion output. The resulting table has 4 columns: effect name, its (optionally transformed) magnitude,
a probabilistically symmetric confidence interval (likewise transformed), and p-value. The format-
ted table is exported to sheet, and the file is immediately saved.

The input can be provided as separate vectors of point estimates (betas) and standard errors
(SE), or as a single matrix for betas. In the latter case, as a default the effect names will be
rownames (betas), unless a vector with more descriptive names is provided via varnames.

See the XLtwoWay help page, for behavior regarding new-sheet creation, overwriting, etc.

Value

The function returns invisibly, after writing the data into sheet.

Note

The default CI’s are 95% and Normal. P-values are also derived from the Normal. If you run any
regression whose intervals are calculated differently (e.g., linear regression with not-huge sample
size), make sure to change both confac and pfun accordingly, as is shown in the example.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

Examples

book4<-XLwriteOpen("attenu.x1s")

quakenames=c("Magnitude (Richter), per unit"”,"Distance (log km), per x10")

Ground acceleration as a function of magnitude and distance, all log scale.
quakemod1=summary (1lm(logl@(accel)~mag+logl@(dist),data=attenu))

Model-scale summaries; we don't care for the intercept.

First (wrongly) using Normal distribution for inference/CIs

XLregresSummary (book4, "ModelScale”, varnames=quakenames,
betas=quakemod1$coef[-1,1], SE=quakemod1$coef[-1,2],

XLtablel 13

,title="Log-Ground Acceleration Effects, Normal CIs")
Now using t-distribution as befits linear regression

XLregresSummary (book4, "ModelScale”, varnames=quakenames,
betas=quakemod1$coef[-1,1], SE=quakemod1$coef[-1,2],
,title="Log-Ground Acceleration Effects"”,df=quakemod1$df[2],col1=6)

Same thing, but using matrix input; no need to provide SE and names.
It is arguably still nicer to provide your own names - but could be a reproducibility risk.
Also, increasing the p-value resolution by changing 'pround’.

XLregresSummary (book4, "ModelScale”, betas=quakemod1$coef[-1,],
pround=6,title="Log-Ground Acceleration Effects”,
,df=quakemod1$df[2], row1=8)

Effects are arguably more meaningful as percent change.
So... still same model, but different summaries.
Also, note the combination of matrix input with names over-written via 'varnames':

XLregresSummary (book4, "PercentChange”, varnames=quakenames,
betas=quakemod1$coef[-1,],
roundig=1,pround=6,title="Relative Ground Acceleration Effects”,
transfun=function(x) 100*(10*x-1),
effname="Percent Change”,df=quakemod1$df[2])

cat("Look for", paste(getwd(),"attenu.xls”,sep="'/"'),"to see the results!\n")
1m() does not take account of station or event level grouping.

So we use a mixed model, losing 16 data points w/no station data:
Run this on your own... and ask the authors of "lme4" about p-values at your own risk :)

library(lme4)

quakemod2=1mer(logl@(accel)~mag+logl@(dist)+(1|event)+(1|station),data=attenu)

#

XLregresSummary(book4, "MixedModel"” ,varnames=quakenames,betas=fixef (quakemod2)[-1],
SE=sqrt(diag(vcov(quakemod2)))[-1],

roundig=1,pround=6,

title="Relative Ground Acceleration Effects”,

transfun=function(x) 100*(10*x-1),effname="Percent Change"”,df=160)

XLtablel "Table 1" Style List of Tables exported to a spreadsheet

Description

Formats and exports a series of shared-structure tables, and saves the file.

14

Usage

XLtablel(wb, sheet, DF, colvar = NULL, fun

XLtablel

XLoneWay, title = "Table 1",

colTitle = NULL, colNames = NULL, rowl = 1, coll = 1, digits = NULL,

useNA = "ifany"”, ..., purge = FALSE)
Arguments

wb a workbook-class object

sheet numeric or character: a worksheet name (character) or position (numeric) within
wb.

DF a rectangular array with all variables to be tabulated.

colvar vector; specifies the variable to cross-tabulate for fun=XLtwoWay (see ’Details’
for convenience options), or to stratify for XLunivariate. Has to be the entire
variable, rather than just a name.

fun The table1x1s function to apply for each variable. Default XLoneWay. Other
supported functions are XL twoWay, XLunivariate.

title character: an optional overall title to the table. Default "Table 1".

colTitle character: the title to be placed above the first column of the column variable.
Default NULL.

colNames character: when relevant, more descriptive names for columns in case colvar is
used. Default NULL, which will use the unique values of colvar as names.

rowl, coll numeric: the first row and column occupied by the table (title included if rele-
vant).

digits numeric: how many digits (after the decimal point) to show in the percents?
Defaults to 1 if n>=500 or if using XLunivariate, and 0 otherwise.

useNA How to handle missing values. Passed on to table (see help on that function for
options).
additional arguments as needed, to pass on to fun; for example, non-default
summary function choices for XLunivariate.

purge logical should sheet be created anew, by first removing the previous copy if it
exists? (default FALSE)

Details

Auto-generation of a series of tables of the same type for a single dataset. One-way and two-way
contingency tables and numerical summaries are all supported, but all summaries call the same

atomic fun.

The function employs convenience conventions for two-way tabulation: first, if colvar is specified
and fun is left blank, then fun will be set to XLtwoWay. Second, if fun=XLtwoWay and colvar is
left blank, then colvar will be set to the last column of DF.

For numerical summaries, use fun=XLunivariate. If you specify colvar, two-way summaries
stratified by colvar will be returned.

Note that this function does not mix and match. Just make several calls to XLtable1 with different
sub-datasets and different values of fun, and combine the results in your report document.

XLtwoWay 15

In a similar vein, two-way summaries do not return the marginal one-way summaries as a byproduct.
For example, if you use fun=XLtwoWay, then in order to get column totals for the generated two-way
output, you will need to call XLtablel again on the same data, using the default fun=XLoneWay.

See the XLtwoWay help page, for behavior regarding new-sheet creation, overwriting, etc.

Value

The function returns invisibly, after writing the data into sheet and saving the file.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

XLoneWay,XLtwoWay,XLunivariate.

Examples

tablel<-XLwriteOpen("tablel.x1ls")

A default, option-free call generates one-way tables
XLtablel(tablel, 'carsl',mtcars[,c(2,8:11)1)
You can prettify a bit, first by changing variable names

names(mtcars)[c(2,8:11)]=c("Cylinders”,"V/S","Auto/Manual”, "Gears", "Carbureutors")
XLtablel(tablel, 'cars1',mtcars[,c(2,8:11)1],
title=""mtcars': Summary of Categorical Variables”,col1=4)

Now two-way, generated implicitly by specifying 'colvar' (unless fun=XLunivariate)
XLtablel(tablel, 'cars2',mtcars[,8:11],colvar=mtcars$Cylinders,
title="Cylinders vs. categorical variables"”,colTitle="Cylinders")

Finally, two-way numerical summaries for continuous variables

names(mtcars)[c(1,3:7)]=c('MPG', 'Engine Vol.', 'HP',6"Axle Ratio”,"Weight", "Quarter Mile")

XLtablel(tablel, 'carsContinuous',mtcars[,c(1,3:7)],fun=XLunivariate,colvar=mtcars$Cylinders,
title="Cylinders vs. continuous variables"”,colTitle="Cylinders")

cat("Look for"”,paste(getwd(),"tablel.x1s",sep="/"),"to see the results!\n")

XLtwoWay Two-way Contingency Tables exported to a spreadsheet

Description

Produces 2-way contingency tables, optionally with percentages, exports them to a spreadsheet, and
saves the file.

16 XLtwoWay

Usage

XLtwoWay(wb, sheet, rowvar, colvar, tablelmode = FALSE, sumby = 1,
rowTitle = "", rowNames = NULL, colNames = NULL, ord = NULL,
rowl = 1, coll = 1, title = NULL, header = FALSE, purge = FALSE,
digits = ifelse(length(rowvar) >= 500, 1, @), useNA = "ifany"”,

percents = TRUE, combine = percents, testname = "chisq.test”,
pround = 3, testBelow = FALSE, margins = TRUE, ...)
Arguments
wb an workbook-class object
sheet numeric or character: a worksheet name (character) or position (numeric) within
wh.
rowvar vector: categorical variable (logical, numeric, character, factor, etc.) for the
table’s rows
colvar vector: categorical variable (logical, numeric, character factor, etc.) for the ta-
ble’s columns
tablelmode logical: is the function called from XLtable1? If TRUE, some modifications will
be made to the output. Default FALSE.
sumby whether percentages should be calculated across rows (1, default) or columns
).
rowTitle character: the title to be placed above the row name column (default empty
string)

rowNames, colNames
character vector of row and column names. Default behavior (NULL): automati-
cally determined from data

ord numeric vector specifying row-index order in the produced table. Default (NULL)
is no re-ordering.

rowl, coll numeric: the first row and column occupied by the table (title included if rele-
vant).

title character: an optional overall title to the table. Default (NULL) is no title.

header logical: should a header row with the captions "Counts:" and "Percentages:" be
added right above the tables? Relevant only when combine=FALSE, percents=TRUE)

purge logical: should sheet be created anew, by first removing the previous copy if it
exists? (default FALSE)

digits numeric: how many digits (after the decimal point) to show in the percents?
Defaults to 1 if n>=500, O otherwise.

useNA How to handle missing values. Passed on to table (see help on that function for
options).

percents logical: would you like only a count table (FALSE), or also a percents table side-
by-side with the the count table (TRUE, default)?

combine logical: should counts and percents be combined to the popular "Count (percent)”

format, or presented side-by-side in separate tables? (default: same value as
percents)

XLtwoWay 17

testname string, the name of a function to run a significance test on the table. Default
chisq. test. If you want no test, set testname=NULL

pround number of significant digits in test p-value representation. Default 3.

testBelow logical, should test p-value be placed right below the table? Default FALSE,
which places it next to the table’s right edge, one row below the column head-
ings.

margins logical: should margins with totals be returned? Default TRUE.

additional arguments as needed, to pass on to get(textfun)

Details

This function produces two-way cross-tabulated counts of unique values of rowvar, colvar, op-
tionally with percentages, calculated either by row (sumby=1, default) or column (sumby=2). Row
and column margins are also produced. ## Tables are automatically saved to the file associated
with the wb spreadsheet object.

There is an underlying asymmetry between rows and columns, because the tables are converted
to data frame in order for writeWorksheet to export them. The percents can be in parentheses
in the same cells as the counts (combine=TRUE, default), in an identically-sized table on the side
(combine=FALSE, percents=TRUE), or absent (combine=FALSE, percents=FALSE). If you want no
margins, just use the simpler function XLgeneric.

Value

The function returns invisibly, after writing the data into sheet.

Note

The worksheet sheet does not have to pre-exist; the function will create it if it doesn’t already exist.

By default, if sheet exists, it will be written into - rather than completely cleared and rewritten
de novo. Only existing data in individual cells that are part of the exported tables’ target range
will be overwritten. If you do want to clear an existing sheet while exporting the new tables, set
purge=TRUE. This behavior, and the usage of purge, are the same across all tablelxls export
functions.

This function uses the internal function fancytab2 which produces 2-way tables with counts, per-
centages and margins.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

Uses writeWorksheet to access the spreadsheet. See setStyleAction to control the output style.
If interested in one-way tables, see XLoneWay.

18 XLunivariate

Examples

Contrived example looking at, e.g., the distribution of A-K-Q card counts
in two partners' Bridge hands

hand1=rhyper(1000,12,40,13)
hand2=rhyper (1000, 12-hand1,27+hand1,13)
handNames=c("0-1",2:4,"5 or more")

The problem is ridiculously symmetric, so I de-symmetrize the presentation slightly:

book3<-XLwriteOpen("hands.x1s")

XLtwoWay (book3, "PartnersAKQcounts”, cut(hand1,c(0,2:6,14)-0.5),cut(hand2,c(0,2:5,14)-0.5),
rowTitle="AKQ's in Hand 1 (rows) vs. Hand 2",
rowNames=c(handNames[-5],5,"6 or more"”,"Total"),
colNames=c(handNames, "Total"), header=TRUE)

Same table, but percents now condition on columns rather than rows,
counts/pct header row removed - but a title added.
Also, Chi-square p-value now placed below the table rather than the default top-right corner
XLtwoWay (book3, "PartnersAKQcounts”, cut(hand1,c(0,2:6,14)-0.5),cut(hand2,c(0,2:5,14)-0.5),
rowTitle="AKQ's in Hand 1 (rows) vs. Hand 2",
rowNames=c (handNames[-5],5,"6 or more”,"Total"),
colNames=c(handNames, "Total"),header=FALSE, row1=12, sumby=2,
title="Now Percents are Summed by Column:"”, testBelow=TRUE)

cat("Look for",paste(getwd(),"hands.x1ls"”, sep="'/"'),"to see the results!\n")

XLunivariate Univariate Statistics Exported to Excel

Description

Calculates univariate summary statistics (optionally stratified), exports the formatted output to a
spreadsheet, and saves the file.

Usage
XLunivariate(wb, sheet, calcvar, colvar = rep("", length(calcvar)),
tableimode = FALSE, funl = list(fun = roundmean, name = "Mean"),
fun2 = list(fun = roundSD, name = "SD"), seps = c("", " (", ")"),
sideBySide = FALSE, title = NULL, rowTitle = "", rowNames = NULL,

colNames = rowNames, ord = NULL, rowl = 1, coll = 1, purge = FALSE,

>

XLunivariate

Arguments

wb

sheet

calcvar

colvar

tablelmode

funl, fun2

seps

sideBySide

title

rowTitle

rowNames

colNames

ord

rowl, coll

purge

Details

19

a workbook-class object

numeric or character: a worksheet name (character) or position (numeric) within
wh.

vector: variable to calculate the statistics for (usually numeric, can be logical).

vector: categorical variable to stratify calcvar’s summaries over. Will show as
columns in output only if sideBySide=TRUE; otherwise as rows. Default behav-
ior if left unspecified, is to calculate overall summaries for a single row/column
output.

logical: is the function called from XLtable1? If TRUE, some modifications will
be made to the output. Default FALSE.

two lists describing the utility functions that will calculate the statistics. Each
list has a fun component for the function, and a name component for its name as
it would appear in the column header.

character vector of length 3, specifying the formatted separators before the out-
put of funl1$fun, between the two outputs, and after the output of fun2$fun.
Default behavior encloses the second output in parentheses. See ’Examples’.

logical: should output be arranged horizontally rather than vertically? Default
FALSE.

character: an optional overall title to the table. Default (NULL) is no title.

character: the title to be placed above the row name column (default empty
string)

character vector of row names. Default behavior (NULL): automatically deter-
mined from data

column names for stratifying variable, used when sideBySide=TRUE. Default:
equal to rowNames.

numeric vector specifying row-index order (i.e., a re-ordering of rowvar’s lev-
els) in the produced table. Default (NULL) is no re-ordering.

numeric: the first row and column occupied by the table (title included if rele-
vant).

logical: should sheet be created anew, by first removing the previous copy if it
exists? (default FALSE)

parameters passed on to fun1$fun, fun2$fun

This function evaluates up to 2 univariate functions on the input vector calcvar, either as a single
sample, or grouped by strata defined via colvar (which is named this way for compatibility with
XLtable1). It produces a single-column or single-row table (apart from row/column headers), with
each interior cell containing the formatted results from the two functions. The table is exported to a
spreadsheet and the file is saved.

20 XLwriteOpen

The cell can be formatted to show a combined result, e.g. "Mean (SD)" which is the default.
Tne function is quite mutable: both fun1$fun, fun2$fun and the strings separating their for-
matted output can be user-defined. The functions can return either a string (i.e., a formatted out-
put) or a number that will be interpreted as a string in subsequent formatting. The default calls
roundmean, roundSD and prints the summaries in "mean(SD)" format.

See the XLtwoWay help page, for behavior regarding new-sheet creation, overwriting, etc.

Value

The function returns invisibly, after writing the data into sheet and saving the file.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

Uses writeWorksheet to access the spreadsheet, rangeString for some utilities that can be used
as fun1$fun, fun2$fun. For one-way (univariate) contingency tables, XLoneWay.

Examples

book2<-XLwriteOpen("chick2.x1s")

Plain-vanilla

XLunivariate(book2, "weightByDiet"”,ChickWeight$weight,ChickWeight$Diet,
title="Mean Weights by Diet"”,rowTitle="Diet")

Replace mean/SD with median/range, put results beside previous
XLunivariate(book2, "weightByDiet"”,ChickWeight$weight,ChickWeight$Diet,
title="Median Weights by Diet”,rowTitle="Diet",col1=8,
funi=1list(fun=roundmedian,name="Median"), fun2=1ist(fun=rangeString,name="range"))

You can also do only one statistic... by "killing"” one of the functions

XLunivariate(book2, "weightByAge",ChickWeight$weight,ChickWeight$Time,
title="Mean Weights by Age",rowTitle="Age (Days)",seps=rep("",3),
fun2=1list(fun=emptee,name=""))

cat("Look for", paste(getwd(),"chick2.x1ls"”,sep="'/"'),"to see the results!\n")

XLwriteOpen Open a spreadsheet document, while deleting the previous copy.

Description

Open a spreadsheet file (.xls or .xIsx), while deleting the previous copy if it exists.

Usage

XLwriteOpen(path)

XLwriteOpen 21

Arguments
path character: the spreadsheet’s full filename, including the extension. Only . x1s, .x1lsx
extensions are allowed.
Details

The XLConnect function loadWorkbook can open existing spreadsheets or create new ones if they
don’t exist. However, it cannot delete the previous copy when opening the new one — which is the
default expected behavior of software such as R. As a result, analysts might inadvertently mix old
and new versions of data and analyses, in the same spreadsheet.

This short utility mitigates the risk, by calling unlink first to make sure existing copies are deleted
before the new spreadsheet file is opened.
Value

an XLConnect workbook object.

Note

Even though the workbook object is created, and is linked to a specific file name, it will only be
saved to disk after saveWorkbook is called. See example. From tablelxls version 0.3.0 on, all
of the package’s spreadsheet-export functions save the file by default. The example also illustrates
some of the peculiarities of working with XLConnect, many of which are taken care of when using
table1xls functions.

Author(s)

Assaf P. Oron <assaf.oron.at.seattlechildrens.org>

See Also

loadWorkbook, saveWorkbook

Examples

Run this example in successive copy-paste batches

Batch 1: be careful to copy and paste only the first 3 lines
xwithout* the white-space below them.

cat("R will now open a new .xls worksheet for you!\n")
cat("Please enter path and filename, without extension:\n")
filestring<-readLines(n=1)

R is waiting for you... enter the filename ... then proceed to next batch.
Batch 2

newPath<-paste(filestring, 'xls',sep='.")
blankbook<-XLwriteOpen(newPath)

22

XLwriteOpen
If you check to see whether the file exists - it's not there.
The spreadsheet is only in R's memory. The next batch will save it.
Batch 3
XLConnect: : saveWorkbook (blankbook)
cat("Now there should be a blank file called”,newPath, "- Check it out!\n")

Now: writing into the file and resaving
Make sure you close the file in case you opened it in Excel.
We'll just write something silly there now:

Batch 4

Excel showed 1 blank sheet. But for R, there are @ sheets until you create some.
XLConnect: :createSheet (blankbook, "one")

XLConnect: :writeWorksheet(blankbook, "Something Sillee!!!"” sheet='one')
XLConnect: : saveWorkbook (blankbook)

Now it's not blank anymore - Check it out...

You will notice XLConnect has interpreted the string

as a data frame. Data transfer can only occur in the form of

data frames (except some graphics).

After closing the file run the last batch, which finally demonstrates
what XLwriteOpen itself does (open with overwrite).

Don't forget to close the .xls file first!

TR

Batch 5

blankbook2<-XLwriteOpen(newPath)
XLConnect: : saveWorkbook (blankbook?2)

Now the file is blank again - Check it out!
#i### ALl done!

Index

as.data.frame.matrix, 8

emptee (rangeString), 4
exp, 11

format, 4

identity, 1/
igrString, 5
igrString (rangeString), 4

loadWorkbook, 21
niceRound, 3
quantile, 5

rangeString, 4, 20
round, 4

roundmean, 20

roundmean (rangeString), 4
roundmedian, 5

roundmedian (rangeString), 4

roundSD, 20
roundSD (rangeString), 4

saveWorkbook, 21
setStyleAction, 17
summary.glm, 2

table, 9, 14, 16

tablelxls (tablelxls-package), 2

tablelxls-package, 2

tablelxlslL-package (tablelxls-package),

2
unlink, 27
writeWorksheet, 8, 17, 20

XLaddText, 6
XLConnect, 2, 3, 21

XLgeneric, 7, 17
XLoneWay, 9, 14, 15, 17, 20
XLregresSummary, 11
XLtablel, 9,13, 16, 19
XLtablel1(), 9
XLtwoWay, 8, 10, 12, 14, 15, 15, 20
XLunivariate, 4, 5, 10, 14, 15, 18
XLwriteOpen, 20

	table1xls-package
	niceRound
	rangeString
	XLaddText
	XLgeneric
	XLoneWay
	XLregresSummary
	XLtable1
	XLtwoWay
	XLunivariate
	XLwriteOpen
	Index

