Package ‘tensorflow’

February 9, 2022

Type Package
Title R Interface to 'TensorFlow'
Version 2.8.0

Description Interface to "TensorFlow' <https://www.tensorflow.org/>,
an open source software library for numerical computation using data
flow graphs. Nodes in the graph represent mathematical operations,
while the graph edges represent the multidimensional data arrays
(tensors) communicated between them. The flexible architecture allows
you to deploy computation to one or more 'CPUs' or 'GPUs' in a desktop,
server, or mobile device with a single 'API'. "TensorFlow' was originally
developed by researchers and engineers working on the Google Brain Team
within Google's Machine Intelligence research organization for the
purposes of conducting machine learning and deep neural networks research,
but the system is general enough to be applicable in a wide variety
of other domains as well.

License Apache License 2.0
URL https://github.com/rstudio/tensorflow

BugReports https://github.com/rstudio/tensorflow/issues
SystemRequirements TensorFlow (https://www.tensorflow.org/)
Encoding UTF-8

Depends R (>=3.1)

Imports config, processx, reticulate (>= 1.24), tfruns (>= 1.0),
utils, yaml, tfautograph (>= 0.3.1), rstudioapi (>= 0.7)

Suggests testthat (>= 2.1.0), keras, callr
RoxygenNote 7.1.2
NeedsCompilation no

Author Daniel Falbel [ctb, cph],
JJ Allaire [aut, cph],
RStudio [cph, fnd],
Yuan Tang [aut, cph] (<https://orcid.org/0000-0001-5243-233X>),
Dirk Eddelbuettel [ctb, cph],

https://www.tensorflow.org/
https://github.com/rstudio/tensorflow
https://github.com/rstudio/tensorflow/issues
https://orcid.org/0000-0001-5243-233X

2 all _dims
Nick Golding [ctb, cph],
Tomasz Kalinowski [ctb, cph, cre],
Google Inc. [ctb, cph] (Examples and Tutorials)
Maintainer Tomasz Kalinowski <tomasz.kalinowski@rstudio.com>
Repository CRAN
Date/Publication 2022-02-09 21:00:02 UTC
R topics documented:
all_dims s 2
AS_LENSOT . . v v v e e e e e e e e e e e e 3
evaluate e e e 4
export_savedmodel 4
install_tensorflow e 5
install_tensorflow_extras e 7
Parse_argUments e e e e e e e e 8
parse_flags L e 8
set_random_seed L e e e 9
shape . . . L 10
tensorboard L L e e 12
tensorflow L e e 13
15 14
tfe_enable_eager_execution.o 14
tf eXtract_opts e 15
tf function. e e 17
tf_probability e 18
raill o e e e e 18
train_and_evaluate e 19
USE_COMPAL « . v v v vt v et et e e e e e e e e e e e e e e 19
use_session_with_seed e 20
view_savedmodel e e e 21
[.tensorflow.tensor e 21
Index 24
all_dims All dims
Description

This function returns an object that can be used when subsetting tensors with [. If you are familiar
with python,, this is equivalent to the python Ellipsis . . ., (not to be confused with . .. in R).

Usage

all_dims()

as_tensor 3

Examples

Not run:

in python, if x is a numpy array or tensorflow tensor

x[..., i]

the ellipsis means "expand to match number of dimension of x".
to translate the above python expression to R, write:
x[all_dims(), il

End(Not run)

as_tensor as_tensor

Description

Coerce objects to tensorflow tensors (potentially of a specific dtype). The provided default methods
will call tf.convert_to_tensor and tf.cast as appropriate.

Usage
as_tensor(x, dtype = NULL, ..., name = NULL)

Default S3 method:
as_tensor(x, dtype = NULL, ..., shape = NULL, name = NULL)

S3 method for class 'double'

as_tensor(x, dtype = NULL, ..., name = NULL)
Arguments

X object to convert

dtype NULL, a tensorflow dtype (tf$int32), or something coercible to one (e.g. a
string "int32")

. ignored

name NULL or a string. Useful for debugging in graph mode, ignored while in eager
mode.

shape an integer vector, tensor, or tf.TensorShape. Can contain up to 1 unspecified

dimension, encoded as a -1 or NA. This will reshape x using row-major (C-style)
semantics. It will prefer reshaping using non-graph operations if possible, but
will otherwise invoke tf$reshape(). If x is a scalar and the requested shape
is fully defined or a tensor, the value of x will be recycled to fill a tensor of the
requested shape (it will dispatch to tf$fill()).

Value

a tensorflow tensor

https://www.tensorflow.org/api_docs/python/tf/convert_to_tensor
https://www.tensorflow.org/api_docs/python/tf/cast

4 export_savedmodel

Examples

Not run:
as_tensor (42, "int32")
as_tensor(as_tensor(42))

End(Not run)

evaluate Evaluate a Model

Description

Evaluate a model object. See implementations in the keras and tfestimators packages.

Usage
evaluate(object, ...)
Arguments
object An evaluatable R object.
Optional arguments passed on to implementing methods.
Implementations
* keras

e tfestimators

export_savedmodel Export a Saved Model

Description

Serialize a model to disk. See implementations in the keras and tfestimators packages.

Usage

export_savedmodel (object, export_dir_base, ...)
Arguments

object An R object.

export_dir_base
A string containing a directory in which to export the SavedModel.

Optional arguments passed on to implementing methods.

install_tensorflow 5

Value

The path to the exported directory, as a string.

Implementations

¢ keras

« tfestimators

install_tensorflow Install TensorFlow and its dependencies

Description

install_tensorflow() installs just the tensorflow python package and it’s direct dependencies.
For a more complete installation that includes additional optional dependencies, use keras: :install_keras().

Usage
install_tensorflow(
method = c("auto”, "virtualenv”, "conda"),
conda = "auto",
version = "default”,

envname = NULL,

extra_packages = NULL,
restart_session = TRUE,
conda_python_version = NULL,
pip_ignore_installed = TRUE,
python_version = conda_python_version

)
Arguments

method Installation method. By default, "auto" automatically finds a method that will
work in the local environment. Change the default to force a specific installation
method. Note that the "virtualenv" method is not available on Windows.

conda The path to a conda executable. Use "auto” to allow reticulate to automati-
cally find an appropriate conda binary. See Finding Conda and conda_binary ()
for more details.

version TensorFlow version to install. Valid values include:

e "default” installs 2.8

* "release” installs the latest release version of tensorflow (which may be
incompatible with the current version of the R package)

* A version specification like "2.4" or "2.4.0". Note that if the patch ver-
sion is not supplied, the latest patch release is installed (e.g., "2.4" today
installs version "2.4.2")

6 install_tensorflow

* nightly for the latest available nightly build.

* To any specification, you can append "-cpu" to install the cpu version only
of the package (e.g., "2.4-cpu”)

 The full URL or path to a installer binary or python *.whl file.

envname The name, or full path, of the environment in which Python packages are to
be installed. When NULL (the default), the active environment as set by the
RETICULATE_PYTHON_ENV variable will be used; if that is unset, then the r-reticulate
environment will be used.

extra_packages Additional Python packages to install along with TensorFlow.
restart_session
Restart R session after installing (note this will only occur within RStudio).

other arguments passed to reticulate: :conda_install() orreticulate::virtualenv_install(),

depending on the method used.
pip_ignore_installed

Whether pip should ignore installed python packages and reinstall all already

installed python packages. This defaults to TRUE, to ensure that TensorFlow

dependencies like NumPy are compatible with the prebuilt TensorFlow binaries.
python_version, conda_python_version

Pass a string like "3.8" to request that conda install a specific Python version.

This is ignored when attempting to install in a Python virtual environment. Note

that the Python version must be compatible with the requested Tensorflow ver-

sion, documented here: https://www. tensorflow.org/install/pip#system-requirements

Details

You may be prompted you if you want it to download and install miniconda if reticulate did not
find a non-system installation of python. Miniconda is the recommended installation method for
most users, as it ensures that the R python installation is isolated from other python installations.
All python packages will by default be installed into a self-contained conda or venv environment
named "r-reticulate". Note that "conda" is the only supported method on Windows.

If you initially declined the miniconda installation prompt, you can later manually install miniconda
by running reticulate::install_miniconda().

Custom Installation

install_tensorflow() or keras::install_keras() isn’t required to use tensorflow with the
package. If you manually configure a python environment with the required dependencies, you can
tell R to use it by pointing reticulate at it, commonly by setting an environment variable:

Sys.setenv("RETICULATE_PYTHON" = "~/path/to/python-env/bin/python™)

Apple Silicon

Tensorflow on Apple Silicon is not officially supported by the Tensorflow maintainers. However
Apple has published a custom version of Tensorflow compatible with Arm Macs. install_tensorflow()
will install the special packages tensorflow-macos and tensorflow-metal on Arm Macs. See
https://developer.apple.com/metal/tensorflow-plugin/ for instructions on how to do the

https://www.tensorflow.org/install/pip#system-requirements
https://developer.apple.com/metal/tensorflow-plugin/

install_tensorflow_extras 7

equivalent manually. Please note that this is an experimental build of both Python and Tensorflow,
with known issues. In particular, certain operations will cause errors, but can often be remedied by
pinning them to the CPU. For example:

X <- array(runif(64%x64), c(1, 64, 64))

keras::layer_random_rotation(x, .5) # Error:

No registered 'RngReadAndSkip' OpKernel for 'GPU' devices

Pin the operation to the CPU to avoid the error
with(tf$device("CPU"), keras::layer_random_rotation(x, .5)) # No Error

Additional Packages

If you wish to add additional PyPI packages to your Keras / TensorFlow environment you can either
specify the packages in the extra_packages argument of install_tensorflow() or install_keras(),
or alternatively install them into an existing environment using the reticulate: :py_install()
function. Note that install_keras() includes a set of additional python packages by default, see
?keras::install_keras for details.

See Also

keras::install_keras()

install_tensorflow_extras
(Defunct) Install additional Python packages alongside TensorFlow

Description

This function is deprecated. Use the extra_packages argument to install_tensorflow() or
reticulate::py_install() to install additional packages.

Usage
install_tensorflow_extras(packages, conda = "auto")
Arguments
packages Python packages to install
conda Path to conda executable (or "auto" to find conda using the PATH and other

conventional install locations). Only used when TensorFlow is installed within
a conda environment.

8 parse_flags

parse_arguments Parse Command Line Arguments

Description
Parse command line arguments of the form --key=value and --key value. The values are assumed
to be valid yaml and will be converted using yaml.load().

Usage

parse_arguments(arguments = NULL)

Arguments
arguments A vector of command line arguments. When NULL (the default), the command
line arguments received by the current R process are used.
parse_flags Parse Configuration Flags for a TensorFlow Application
Description

Parse configuration flags for a TensorFlow application. Use this to parse and unify the configura-
tion(s) specified through a flags.yml configuration file, alongside other arguments set through the
command line.

Usage

parse_flags(
config = Sys.getenv("R_CONFIG_ACTIVE", unset = "default"),
file = "flags.yml",
arguments = commandArgs (TRUE)

)
Arguments
config The configuration to use. Defaults to the active configuration for the current
environment (as specified by the R_CONFIG_ACTIVE environment variable), or
default when unset.
file The configuration file to read.
arguments The command line arguments (as a character vector) to be parsed.
Value

A named R list, mapping configuration keys to values.

set_random_seed

Examples

Not run:

examine an example configuration file provided by tensorflow

file <- system.file("examples/config/flags.yml"”, package = "tensorflow")
cat(readlLines(file), sep = "\n")

read the default configuration
FLAGS <- tensorflow::parse_flags("default”, file = file)
str(FLAGS)

read the alternate configuration: note that

the default configuration is inherited, but

we override the 'string' configuration here

FLAGS <- tensorflow::parse_flags("alternate”, file = file)
str(FLAGS)

override configuration values using command
line arguments (normally, these would be
passed in through the command line invocation
used to start the process)
FLAGS <- tensorflow: :parse_flags(
"alternate”,
file = file,
arguments = c("--foo=1")
)
str(FLAGS)

End(Not run)

set_random_seed Set random seed for TensorFlow

Description

Sets all random seeds needed to make TensorFlow code reproducible.

Usage

set_random_seed(seed, disable_gpu = TRUE)

Arguments

seed A single value, interpreted as an integer

disable_gpu TRUE to disable GPU execution (see Parallelism below).

10 shape

Details

This function should be used instead of use_session_with_seed() if you are using TensorFlow
>= 2.0, as the concept of session doesn’t really make sense anymore.

This functions sets:

e The R random seed with set.seed().
e The python and Numpy seeds via (reticulate: :py_set_seed()).
¢ The TensorFlow seed with (tf$random$set_seed())

It also optionally disables the GPU execution as this is a potential source of non-reproducibility.

shape Create a tf.TensorShape object

Description

Create a tf . TensorShape object

Usage
shape(..., dims = list(...))
Arguments
Tensor dimensions as integers or NULL for an unknown dimensions. NA and -1
are synonyms for NULL.
dims Tensor dimensions as a vector.
See Also

https://www.tensorflow.org/api_docs/python/tf/TensorShape

Examples
Not run:
--- construct ---
shape() # tf.TensorShape() # scalar

shape(NULL) # tf.TensorShape([None]) # 1-D array of unknown length
shape (NA) # tf.TensorShape([Nonel) # 1-D array of unknown length, NA is a synonym for NULL

shape(dims = NULL) # TensorShape(None) # Unknown rank, unknown size
shape(3, 4) # TensorShape([3, 4]1) # 2-D array (matrix) with 3 rows, 4 columns
shape(NA, 4) # TensorShape([None, 4]) # 2-D array (matrix) with unknown rows, 4 columns

shape(dims = c(NA, 4)) # TensorShape([None, 4]) # same as above; bypass ... and pass dims directly

--- inspect ---
length(shape(dims = NULL)) # NA_integer_

https://www.tensorflow.org/api_docs/python/tf/TensorShape

shape 11

length(shape(1,2,3,NA)) # 4L

---convert ---

x <- shape(dims = list(3L, 5L))
as.list(x) # list(3L, 5L)

as.integer(x) # c(3L, 5L)

as.numeric(x) # c(3, 5)

as.double(x) # c(3, 5) # alias for as.numeric
as_tensor(x) # tf.Tensor([3 5], shape=(2,), dtype=int32)

convert partially undefined shapes

x <- shape(NA, 3)

as.list(x) # list(NULL, 3L)

as.integer(x) # c(NA, 3L)

as_tensor(x) # tf.Tensor([-1 3], shape=(2,), dtype=int32) # unspecified dims default is -1

as_tensor() converts undefined dimensions to -1, which is useful for
tf functions that only accept tensors for shapes, e.g,
tf$reshape(tf$zeros(shape(8)),

as_tensor(shape(NA, 4)))
tf.Tensor([[0. 0. 0. 0.]
[0. 0. 9. 0.]1, shape=(2, 4), dtype=float32)

converting fully unknown shapes raises an error

try(as.list(shape(dims = NULL))) # ValueError: as_list() is not defined on an unknown TensorShape.
test for rank first if this a concern:

as.list_or_null <- function(x) if(is.na(length(x))) NULL else as.list(x)
as.list_or_null(shape(dims = NULL))

--- compare ---

Fully known shapes return TRUE if and only if each element is equal
shape(3, 4) == shape(3, 4) # TRUE

shape(3, 4) == shape(4, 4) # FALSE

Partially-known shapes always return FALSE
shape(NA, 4) == shape(NA, 4) # FALSE
shape(NA, 4) == shape(3, 4) # FALSE

Two unknown shapes, return TRUE
shape(dims = NULL) == shape(dims = NULL) # TRUE

Comparing an unknown shape to a partially or fully defined shape returns FALSE

shape(dims = NULL) == shape(NULL) # FALSE
shape(dims = NULL) == shape(4) # FALSE
!= is mostly the inverse of ==, with one difference:

it raises an error when comparing a fully unknown shapes
try(shape(dims = NULL) != shape(dims = NULL))

ValueError: The inequality of unknown TensorShapes is undefined.
try(shape(dims = NULL) != shape())

ValueError: The inequality of unknown TensorShapes is undefined.

12 tensorboard

--- extract or replace ---
regular R-list semantics for “[*, ‘[[%, ‘[<-%, ‘[[<-*
x <- shape(1, 2, 3)

x[1] # TensorShape([1])

x[[1]] # 1L

x[2:3] # TensorShape([2, 31)

x[-1] # TensorShape([2, 31)

x[1] <= 11 ; X # TensorShape([11, 2, 31)

x[1] <- shape(11) ; x # TensorShape([11, 2, 31)
x[1] <= 1list(11) ; x # TensorShape([11, 2, 31)

x[[1]1] <- 22 ; X # TensorShape([22, 2, 31)
x[1:2] <= c(NA, 99) ; x # TensorShape([None, 99, 31)
x[1:2] <- shape(33, 44) ; x # TensorShape([33, 44, 3])

--- concatenate ---
c(shape(1), shape(2, 3), shape(4, NA)) # TensorShape([1, 2, 3, 4, Nonel)

--- merge ---
merge (shape(NA, 2),
shape(1 , 2)) # TensorShape([1, 21)

try(merge(shape(2, 2),
shape(1, 2))) # ValueError: Shapes (2, 2) and (1, 2) are not compatible

rm(x) # cleanup

End(Not run)

tensorboard TensorBoard Visualization Tool

Description

TensorBoard is a tool inspecting and understanding your TensorFlow runs and graphs.

Usage

tensorboard(
log_dir,
action = c("start", "stop"),
host = "127.0.0.1",
port = "auto”,
launch_browser = getOption("tensorflow.tensorboard.browser”, interactive()),
reload_interval = 5,
purge_orphaned_data = TRUE

tensorflow 13

Arguments
log_dir Directories to scan for training logs. If this is a named character vector then the
specified names will be used as aliases within TensorBoard.
action Specify whether to start or stop TensorBoard (TensorBoard will be stopped au-
tomatically when the R session from which it is launched is terminated).
host Host for serving TensorBoard
port Port for serving TensorBoard. If "auto" is specified (the default) then an unused

port will be chosen automatically.

launch_browser Open a web browser for TensorBoard after launching. Defaults to TRUE in inter-
active sessions. When running under RStudio uses an RStudio window by de-
fault (pass a function e.g. utils: :browseURL () to open in an external browser).
Use the tensorflow.tensorboard.browser option to establish a global de-
fault behavior.

reload_interval
How often the backend should load more data.

purge_orphaned_data
Whether to purge data that may have been orphaned due to TensorBoard restarts.
Disabling purge_orphaned_data can be used to debug data disappearance.

Details

When TensorBoard is passed a logdir at startup, it recursively walks the directory tree rooted at
logdir looking for subdirectories that contain tfevents data. Every time it encounters such a subdi-
rectory, it loads it as a new run, and the frontend will organize the data accordingly.

The TensorBoard process will be automatically destroyed when the R session in which it is launched
exits. You can pass action = "stop” to manually terminate TensorBoard.

Value

URL for browsing TensorBoard (invisibly).

tensorflow TensorFlow for R

Description

TensorFlow is an open source software library for numerical computation using data flow graphs.
Nodes in the graph represent mathematical operations, while the graph edges represent the multidi-
mensional data arrays (tensors) communicated between them. The flexible architecture allows you
to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a
single APL

https://www.tensorflow.org

14 tfe_enable_eager_execution

Details

The TensorFlow API is composed of a set of Python modules that enable constructing and executing
TensorFlow graphs. The tensorflow package provides access to the complete TensorFlow API from
within R.

For additional documentation on the tensorflow package see https://tensorflow.rstudio.com

tf Main TensorFlow module

Description
Interface to main TensorFlow module. Provides access to top level classes and functions as well as
sub-modules (e.g. tfnn, tfcontrib$learn, etc.).

Usage
tf

Format

TensorFlow module

Examples

Not run:
library(tensorflow)

hello <- tf$constant('Hello, TensorFlow!")
zeros <- tf$Variable(tf$zeros(shape(1L)))

tf$print(hello)
tf$print(zeros)

End(Not run)

tfe_enable_eager_execution
(Deprecated) Enables, for the rest of the lifetime of this program, eager
execution.

Description

This function is no longer needed since Tensorflow 2.0, when eager execution became the default.

https://www.tensorflow.org/api_docs/python/tf/all_symbols
https://tensorflow.rstudio.com

tf_extract_opts 15

Usage

tfe_enable_eager_execution(
config = NULL,

device_policy = c("explicit”, "warn”, "silent")
)
Arguments
config (Optional) A tf$ConfigProto() protocol buffer with configuration options for

the Context. Note that a lot of these options may be currently unimplemented or
irrelevant when eager execution is enabled.

device_policy (Optional) What policy to use when trying to run an operation on a device with
inputs which are not on that device. Valid values: "explicit": raises an error if the
placement is not correct. "warn": copies the tensors which are not on the right
device but raises a warning. "silent": silently copies the tensors. This might hide
performance problems.

Details

If not called immediately on startup risks creating breakage and bugs.

After eager execution is enabled, operations are executed as they are defined and tensors hold
concrete values, and can be accessed as R matrices or arrays with as.matrix(), as.array(),
as.double(), etc.

Examples

Not run:
load tensorflow and enable eager execution
library(tensorflow)

tfe_enable_eager_execution()

create a random 10x10 matrix
x <- tf$random$normal (shape(10, 10))

use it in R via as.matrix()
heatmap(as.matrix(x))

End(Not run)

tf_extract_opts Tensor extract options

Description

Tensor extract options

16 tf_extract_opts

Usage

tf_extract_opts(
style = getOption("tensorflow.extract.style"),
one_based = getOption("tensorflow.extract.one_based”, TRUE),
inclusive_stop = getOption("tensorflow.extract.inclusive_stop”, TRUE),
disallow_out_of_bounds = getOption("tensorflow.extract.dissallow_out_of_bounds”,

TRUE),
warn_tensors_passed_asis = getOption("tensorflow.extract.warn_tensors_passed_asis”,
TRUE),
warn_negatives_pythonic = getOption("tensorflow.extract.warn_negatives_pythonic”,
TRUE)
)
Arguments
style one of NULL (the default) "R" or "python”. If supplied, this overrides all other
options. "python"” is equivalent to all the other arguments being FALSE. "R"
is equivalent to warn_tensors_passed_asis and warn_negatives_pythonic
set to FALSE
ignored
one_based TRUE or FALSE, if one-based indexing should be used

inclusive_stop TRUE or FALSE, if slices like start:stop should be inclusive of stop
disallow_out_of_bounds
TRUE or FALSE, whether checks are performed on the slicing index to ensure
it is within bounds.
warn_tensors_passed_asis
TRUE or FALSE, whether to emit a warning the first time a tensor is supplied
to [that tensors are passed as-is, with no R to python translation
warn_negatives_pythonic
TRUE or FALSE, whether to emit a warning the first time a negative number is
supplied to [about the non-standard (python-style) interpretation

Value

an object with class "tf_extract_opts", suitable for passing to [.tensorflow.tensor()

Examples

Not run:
x <- tf$constant(1:10)

opts <- tf_extract_opts("R")
x[1, options = opts]

or for more fine-grained control
opts <- tf_extract_opts(
one_based = FALSE,

tf function 17

warn_tensors_passed_asis = FALSE,
warn_negatives_pythonic = FALSE

)
x[0:2, options = opts]

End(Not run)

tf_function Creates a callable TensorFlow graph from an R function.

Description

tf_function constructs a callable that executes a TensorFlow graph created by tracing the Ten-
sorFlow operations in f. This allows the TensorFlow runtime to apply optimizations and exploit
parallelism in the computation defined by f.

Usage

tf_function(f, input_signature = NULL, autograph = TRUE, ...)
Arguments

f the function to be compiled

input_signature
A possibly nested sequence of tf$TensorSpec objects specifying the shapes
and dtypes of the tensors that will be supplied to this function. If NULL, a separate
function is instantiated for each inferred input signature. If input_signature
is specified, every input to f must be a tensor.

autograph TRUE or FALSE. If TRUE (the default), you can use tensors in R control flow
expressions if, while, for and break and they will be traced into the tensorflow
graph. A guide to getting started and additional details can be found: here

additional arguments passed on to tf. function (vary based on Tensorflow ver-
sion). See here for details.

Details

A guide to getting started with tf. function can be found here.

https://t-kalinowski.github.io/tfautograph/
https://www.tensorflow.org/api_docs/python/tf/function#args_1
https://www.tensorflow.org/api_docs/python/tf/function
https://www.tensorflow.org/guide/function

18

train

tf_probability TensorFlow Probability Module

Description

TensorFlow Probability Module

Usage
tf_probability()

Value

Reference to TensorFlow Probability functions and classes

Examples

Not run:

library(tensorflow)

tfp <- tf_probability()
tfp$distributions$Normal (loc=0, scale=1)

End(Not run)

train Train a Model

Description

Train a model object. See implementation in the tfestimators package.

Usage
train(object, ...)
Arguments
object A trainable R object.
Optional arguments passed on to implementing methods.
Implementations

« tfestimators

https://www.tensorflow.org/probability

train_and_evaluate 19

train_and_evaluate Simultaneously Train and Evaluate a Model

Description

Train and evaluate a model object. See implementation in the tfestimators package.

Usage
train_and_evaluate(object, ...)
Arguments
object An R object.
Optional arguments passed on to implementing methods.
Implementations

« tfestimators

use_compat Use Compatibility

Description
Enables TensorFlow to run under a different API version for compatibility with previous versions.
For instance, this is useful to run TensorFlow 1.x code when using TensorFlow 2.x.

Usage

use_compat(version = c("v1", "v2"))

Arguments

version The version to activate. Must be "v1"” or "v2"

Examples

Not run:
library(tensorflow)
use_compat("v1")

End(Not run)

20 use_session_with_seed

use_session_with_seed Use a session with a random seed

Description

Set various random seeds required to ensure reproducible results. The provided seed value will
establish a new random seed for R, Python, NumPy, and TensorFlow. GPU computations and CPU
parallelism will also be disabled by default.

Usage

use_session_with_seed(
seed,
disable_gpu = TRUE,
disable_parallel_cpu = TRUE,
quiet = FALSE

Arguments

seed A single value, interpreted as an integer
disable_gpu TRUE to disable GPU execution (see Parallelism below).
disable_parallel_cpu

TRUE to disable CPU parallelism (see Parallelism below).

quiet TRUE to suppress printing of messages.

Details

This function must be called at the very top of your script (i.e. immediately after Library(tensorflow),
library(keras), etc.). Any existing TensorFlow session is torn down via tf$reset_default_graph().

This function takes all measures known to promote reproducible results from TensorFlow sessions,
however it’s possible that various individual TensorFlow features or dependent libraries escape its
effects. If you encounter non-reproducible results please investigate the possible sources of the
problem, contributions via pull request are very welcome!

Packages which need to be notified before and after the seed is set can register for the "tensor-
flow.on_before_use_session" and "tensorflow.on_use_session" hooks (see setHook()) for addi-
tional details on hooks).

Value

TensorFlow session object, invisibly

Parallelism

By default the use_session_with_seed() function disables GPU and CPU parallelism, since both
can result in non-deterministic execution patterns (see https://stackoverflow.com/questions/
42022950/). You can optionally enable GPU or CPU parallelism by setting the disable_gpu and/or
disable_parallel_cpu parameters to FALSE.

https://stackoverflow.com/questions/42022950/
https://stackoverflow.com/questions/42022950/

view_savedmodel

Examples

Not run:
library(tensorflow)
use_session_with_seed(42)

End(Not run)

view_savedmodel View a Saved Model

Description

View a serialized model from disk.

Usage

view_savedmodel (model_dir)

Arguments

model_dir The path to the exported model, as a string.

Value

URL for browsing TensorBoard (invisibly).

[.tensorflow. tensor Subset tensors with [

Description

Subset tensors with [

Usage
S3 method for class 'tensorflow.tensor'
x[
drop = TRUE,
style = getOption("tensorflow.extract.style"),
options = tf_extract_opts(style)

22 [.tensorflow.tensor

Arguments

X Tensorflow tensor

slicing specs. See examples and details.

drop whether to drop scalar dimensions

style One of "python” or "R".

options An object returned by tf_extract_opts()
Examples

Not run:

x <- as_tensor(array(1:15, dim = c(3, 5)))

X
by default, numerics supplied to [...] are interpreted R style
x[,1] # first column

x[1:2,]1 # first two rows
x[,1, drop = FALSE] # 1 column matrix

strided steps can be specified in R syntax or python syntax

x[, seq(1, 5, by = 2)]

x[, 1:5:2]

if you are unfamiliar with python-style strided steps, see:

https://numpy.org/doc/stable/reference/arrays.indexing.html#basic-slicing-and-indexing

missing arguments for python syntax are valid, but they must by backticked
or supplied as NULL

x[, Y::2%]
x[, NULL:NULL:2]
x[, “2:']

all_dims() expands to the shape of the tensor
(equivalent to a python ellipsis *...%)
(not to be confused with R dots ‘...%)
y <- as_tensor(array(1:(3*5), dim = c(3,3,3,3,3)))
all.equal(y[all_dims(), 1],
yb, , , , 1D

tf$newaxis are valid (equivalent to a NULL)
x[,, tf$newaxis]
x[,, NULL]

negative numbers are always interpreted python style

The first time a negative number is supplied to ‘[‘, a warning is issued
about the non-standard behavior.

x[-1,1 # last row, with a warning

x[-1,1 # the warning is only issued once

specifying ‘style = 'python'' changes the following:

[.tensorflow.tensor

+ zero-based indexing is used

+ slice sequences in the form of ‘start:stop' do not include ‘stop®
in the returned value

+ out-of-bounds indices in a slice are valid

The style argument can be supplied to individual calls of ‘[or set
as a global option

example of zero based indexing
x[@, , style = 'python'] # first row
x[1, , style = 'python'] # second row

example of slices with exclusive stop
options(tensorflow.extract.style = 'python')
x[, 0:1] # just the first column

x[, 0:2] # first and second column

example of out-of-bounds index
x[, 0:10]
options(tensorflow.extract.style = NULL)

slicing with tensors is valid too, but note, tensors are never

translated and are always interpreted python-style.

A warning is issued the first time a tensor is passed to ‘[*

x[, tf$constant(0L):tf$constant(2L)]

just as in python, only scalar tensors are valid

https://www.tensorflow.org/api_docs/python/tf/Tensor#__getitem__

To silence the warnings about tensors being passed as-is and negative numbers
being interpreted python-style, set

options(tensorflow.extract.style = 'R')

clean up from examples
options(tensorflow.extract.style = NULL)

End(Not run)

23

Index

x datasets
tf, 14
[.tensorflow. tensor, 21

all_dims, 2
as.array(), 15
as.double(), 15
as.matrix(), 15
as_tensor, 3

conda_binary(), 5

evaluate, 4
export_savedmodel, 4

install_tensorflow, 5
install_tensorflow_extras, 7

keras, 4, 5
keras::install_keras(), 5,7

parse_arguments, 8
parse_flags, 8

reticulate::conda_install(), 6
reticulate::install_miniconda(), 6
reticulate::py_install(),”7
reticulate: :py_set_seed(), 10
reticulate::virtualenv_install(), 6

set.seed(), 10
set_random_seed, 9
setHook (), 20
shape, 10

tensorboard, 12
tensorflow, 13

tf, 14
tf_extract_opts, 15
tf_function, 17
tf_probability, 18

24

tfe_enable_eager_execution, 14
tfestimators, 4, 5, 18, 19
train, 18
train_and_evaluate, 19

use_compat, 19
use_session_with_seed, 20
use_session_with_seed(), 10
utils::browseURL(), I3

view_savedmodel, 21

yaml.load(), 8

	all_dims
	as_tensor
	evaluate
	export_savedmodel
	install_tensorflow
	install_tensorflow_extras
	parse_arguments
	parse_flags
	set_random_seed
	shape
	tensorboard
	tensorflow
	tf
	tfe_enable_eager_execution
	tf_extract_opts
	tf_function
	tf_probability
	train
	train_and_evaluate
	use_compat
	use_session_with_seed
	view_savedmodel
	[.tensorflow.tensor
	Index

