
Package ‘testthat’
March 29, 2022

Title Unit Testing for R

Version 3.1.3

Description Software testing is important, but, in part because it is
frustrating and boring, many of us avoid it. 'testthat' is a testing
framework for R that is easy to learn and use, and integrates with
your existing 'workflow'.

License MIT + file LICENSE

URL https://testthat.r-lib.org, https://github.com/r-lib/testthat

BugReports https://github.com/r-lib/testthat/issues

Depends R (>= 3.1)

Imports brio, callr (>= 3.5.1), cli (>= 3.1.1), crayon (>= 1.3.4),
desc, digest, ellipsis (>= 0.2.0), evaluate, jsonlite,
lifecycle, magrittr, methods, pkgload, praise, processx, ps (>=
1.3.4), R6 (>= 2.2.0), rlang (>= 1.0.1), utils, waldo (>=
0.3.1), withr (>= 2.4.3)

Suggests covr, curl (>= 0.9.5), diffviewer (>= 0.1.0), knitr, mockery,
rmarkdown, rstudioapi, shiny, usethis, vctrs (>= 0.1.0), xml2

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/start-first watcher, parallel*

Config/Needs/website tidyverse/tidytemplate

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation yes

Author Hadley Wickham [aut, cre],
RStudio [cph, fnd],
R Core team [ctb] (Implementation of utils::recover())

Maintainer Hadley Wickham <hadley@rstudio.com>

Repository CRAN

Date/Publication 2022-03-29 15:10:02 UTC

1

https://testthat.r-lib.org
https://github.com/r-lib/testthat
https://github.com/r-lib/testthat/issues

2 R topics documented:

R topics documented:
auto_test . 3
auto_test_package . 4
CheckReporter . 4
comparison-expectations . 5
DebugReporter . 6
describe . 6
equality-expectations . 7
expect . 9
expect_error . 10
expect_invisible . 13
expect_length . 14
expect_named . 15
expect_output . 16
expect_setequal . 17
expect_silent . 18
expect_snapshot . 19
expect_snapshot_file . 21
expect_vector . 23
fail . 24
FailReporter . 25
inheritance-expectations . 25
is_testing . 26
JunitReporter . 27
ListReporter . 27
local_test_context . 28
LocationReporter . 30
logical-expectations . 30
MinimalReporter . 31
MultiReporter . 32
ProgressReporter . 32
RStudioReporter . 32
SilentReporter . 33
skip . 33
snapshot_accept . 35
StopReporter . 35
SummaryReporter . 36
TapReporter . 36
TeamcityReporter . 37
teardown_env . 37
test_file . 37
test_package . 38
test_path . 40
test_that . 40
use_catch . 41

Index 44

auto_test 3

auto_test Watches code and tests for changes, rerunning tests as appropriate.

Description

The idea behind auto_test() is that you just leave it running while you develop your code. Ev-
erytime you save a file it will be automatically tested and you can easily see if your changes have
caused any test failures.

Usage

auto_test(
code_path,
test_path,
reporter = default_reporter(),
env = test_env(),
hash = TRUE

)

Arguments

code_path path to directory containing code

test_path path to directory containing tests

reporter test reporter to use

env environment in which to execute test suite.

hash Passed on to watch(). When FALSE, uses less accurate modification time
stamps, but those are faster for large files.

Details

The current strategy for rerunning tests is as follows:

• if any code has changed, then those files are reloaded and all tests rerun

• otherwise, each new or modified test is run

In the future, auto_test() might implement one of the following more intelligent alternatives:

• Use codetools to build up dependency tree and then rerun tests only when a dependency
changes.

• Mimic ruby’s autotest and rerun only failing tests until they pass, and then rerun all tests.

See Also

auto_test_package()

4 CheckReporter

auto_test_package Watches a package for changes, rerunning tests as appropriate.

Description

Watches a package for changes, rerunning tests as appropriate.

Usage

auto_test_package(pkg = ".", reporter = default_reporter(), hash = TRUE)

Arguments

pkg path to package

reporter test reporter to use

hash Passed on to watch(). When FALSE, uses less accurate modification time
stamps, but those are faster for large files.

See Also

auto_test() for details on how method works

CheckReporter Check reporter: 13 line summary of problems

Description
R CMD check displays only the last 13 lines of the result, so this report is designed to ensure that
you see something useful there.

See Also

Other reporters: DebugReporter, FailReporter, JunitReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

comparison-expectations 5

comparison-expectations

Does code return a number greater/less than the expected value?

Description

Does code return a number greater/less than the expected value?

Usage

expect_lt(object, expected, label = NULL, expected.label = NULL)

expect_lte(object, expected, label = NULL, expected.label = NULL)

expect_gt(object, expected, label = NULL, expected.label = NULL)

expect_gte(object, expected, label = NULL, expected.label = NULL)

Arguments

object Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

expected Single numeric value to compare.

label Used to customise failure messages. For expert use only.

expected.label Used to customise failure messages. For expert use only.

See Also

Other expectations: equality-expectations, expect_error(), expect_length(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

a <- 9
expect_lt(a, 10)

Not run:
expect_lt(11, 10)

End(Not run)

a <- 11
expect_gt(a, 10)
Not run:
expect_gt(9, 10)

6 describe

End(Not run)

DebugReporter Test reporter: start recovery.

Description

This reporter will call a modified version of recover() on all broken expectations.

See Also

Other reporters: CheckReporter, FailReporter, JunitReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

describe describe: a BDD testing language

Description

A simple BDD DSL for writing tests. The language is similiar to RSpec for Ruby or Mocha for
JavaScript. BDD tests read like sentences and it should thus be easier to understand what the
specification of a function/component is.

Usage

describe(description, code)

Arguments

description description of the feature

code test code containing the specs

Details

Tests using the describe syntax not only verify the tested code, but also document its intended
behaviour. Each describe block specifies a larger component or function and contains a set of
specifications. A specification is defined by an it block. Each it block functions as a test and is
evaluated in its own environment. You can also have nested describe blocks.

This test syntax helps to test the intended behaviour of your code. For example: you want to write a
new function for your package. Try to describe the specification first using describe, before your
write any code. After that, you start to implement the tests for each specification (i.e. the it block).

Use describe to verify that you implement the right things and use test_that() to ensure you do
the things right.

equality-expectations 7

Examples

describe("matrix()", {
it("can be multiplied by a scalar", {
m1 <- matrix(1:4, 2, 2)
m2 <- m1 * 2
expect_equal(matrix(1:4 * 2, 2, 2), m2)

})
it("can have not yet tested specs")

})

Nested specs:
code
addition <- function(a, b) a + b
division <- function(a, b) a / b

specs
describe("math library", {

describe("addition()", {
it("can add two numbers", {

expect_equal(1 + 1, addition(1, 1))
})

})
describe("division()", {

it("can divide two numbers", {
expect_equal(10 / 2, division(10, 2))

})
it("can handle division by 0") #not yet implemented

})
})

equality-expectations Does code return the expected value?

Description

These functions provide two levels of strictness when comparing a computation to a reference value.
expect_identical() is the baseline; expect_equal() relaxes the test to ignore small numeric
differences.

In the 2nd edition, expect_identical() uses identical() and expect_equal uses all.equal().
In the 3rd edition, both functions use waldo. They differ only in that expect_equal() sets tolerance
= testthat_tolerance() so that small floating point differences are ignored; this also implies that
(e.g.) 1 and 1L are treated as equal.

Usage

expect_equal(
object,
expected,

https://github.com/r-lib/waldo

8 equality-expectations

...,
tolerance = if (edition_get() >= 3) testthat_tolerance(),
info = NULL,
label = NULL,
expected.label = NULL

)

expect_identical(
object,
expected,
info = NULL,
label = NULL,
expected.label = NULL,
...

)

Arguments

object, expected

Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

... 3e: passed on to waldo::compare(). See its docs to see other ways to control
comparison.
2e: passed on to compare()/identical().

tolerance 3e: passed on to waldo::compare(). If non-NULL, will ignore small floating
point differences. It uses same algorithm as all.equal() so the tolerance is
usually relative (i.e. mean(abs(x - y) / mean(abs(y)) < tolerance), except when
the differences are very small, when it becomes absolute (i.e. mean(abs(x -
y) < tolerance). See waldo documentation for more details.
2e: passed on to compare(), if set. It’s hard to reason about exactly what tol-
erance means because depending on the precise code path it could be either an
absolute or relative tolerance.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label, expected.label

Used to customise failure messages. For expert use only.

See Also

• expect_setequal()/expect_mapequal() to test for set equality.

• expect_reference() to test if two names point to same memory address.

Other expectations: comparison-expectations, expect_error(), expect_length(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

expect 9

Examples

a <- 10
expect_equal(a, 10)

Use expect_equal() when testing for numeric equality
Not run:
expect_identical(sqrt(2) ^ 2, 2)

End(Not run)
expect_equal(sqrt(2) ^ 2, 2)

expect The building block of all expect_ functions

Description

Call expect() when writing your own expectations. See vignette("custom-expectation") for
details.

Usage

expect(
ok,
failure_message,
info = NULL,
srcref = NULL,
trace = NULL,
trace_env = caller_env()

)

Arguments

ok TRUE or FALSE indicating if the expectation was successful.
failure_message

Message to show if the expectation failed.

info Character vector continuing additional information. Included for backward com-
patibility only and new expectations should not use it.

srcref Location of the failure. Should only needed to be explicitly supplied when you
need to forward a srcref captured elsewhere.

trace An optional backtrace created by rlang::trace_back(). When supplied, the
expectation is displayed with the backtrace.

trace_env If is.null(trace), this is used to automatically generate a traceback running
from test_code()/test_file() to trace_env. You’ll generally only need to
set this if you’re wrapping an expectation inside another function.

10 expect_error

Details

While expect() creates and signals an expectation in one go, exp_signal() separately signals an
expectation that you have manually created with new_expectation(). Expectations are signalled
with the following protocol:

• If the expectation is a failure or an error, it is signalled with base::stop(). Otherwise, it is
signalled with base::signalCondition().

• The continue_test restart is registered. When invoked, failing expectations are ignored and
normal control flow is resumed to run the other tests.

Value

An expectation object. Signals the expectation condition with a continue_test restart.

See Also

exp_signal()

expect_error Does code throw an error, warning, message, or other condition?

Description

expect_error(), expect_warning(), expect_message(), and expect_condition() check that
code throws an error, warning, message, or condition with a message that matches regexp, or a
class that inherits from class. See below for more details.

In the 3rd edition, these functions match (at most) a single condition. All additional and non-
matching (if regexp or class are used) conditions will bubble up outside the expectation. If these
additional conditions are important you’ll need to catch them with additional expect_message()/expect_warning()
calls; if they’re unimportant you can ignore with suppressMessages()/suppressWarnings().

It can be tricky to test for a combination of different conditions, such as a message followed by an
error. expect_snapshot() is often an easier alternative for these more complex cases.

Usage

expect_error(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
info = NULL,
label = NULL

)

expect_warning(

expect_error 11

object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
all = FALSE,
info = NULL,
label = NULL

)

expect_message(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
all = FALSE,
info = NULL,
label = NULL

)

expect_condition(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the error
message.

• If NULL, the default, asserts that there should be an error, but doesn’t test for
a specific value.

• If NA, asserts that there should be no errors.

class Instead of supplying a regular expression, you can also supply a class name.
This is useful for "classed" conditions.

... Arguments passed on to expect_match

perl logical. Should Perl-compatible regexps be used?

12 expect_error

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all
conflicting arguments.

inherit Whether to match regexp and class across the ancestry of chained errors.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

all DEPRECATED If you need to test multiple warnings/messages you now need
to use multiple calls to expect_message()/ expect_warning()

Value

If regexp = NA, the value of the first argument; otherwise the captured condition.

Testing message vs class

When checking that code generates an error, it’s important to check that the error is the one you
expect. There are two ways to do this. The first way is the simplest: you just provide a regexp that
match some fragment of the error message. This is easy, but fragile, because the test will fail if the
error message changes (even if its the same error).

A more robust way is to test for the class of the error, if it has one. You can learn more about custom
conditions at https://adv-r.hadley.nz/conditions.html#custom-conditions, but in short,
errors are S3 classes and you can generate a custom class and check for it using class instead of
regexp.

If you are using expect_error() to check that an error message is formatted in such a way that it
makes sense to a human, we recommend using expect_snapshot() instead.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), inheritance-expectations, logical-expectations

Examples

Errors --
f <- function() stop("My error!")
expect_error(f())
expect_error(f(), "My error!")

You can use the arguments of grepl to control the matching
expect_error(f(), "my error!", ignore.case = TRUE)

Note that `expect_error()` returns the error object so you can test
its components if needed
err <- expect_error(rlang::abort("a", n = 10))
expect_equal(err$n, 10)

Warnings --
f <- function(x) {

https://adv-r.hadley.nz/conditions.html#custom-conditions

expect_invisible 13

if (x < 0) {
warning("*x* is already negative")
return(x)

}
-x

}
expect_warning(f(-1))
expect_warning(f(-1), "already negative")
expect_warning(f(1), NA)

To test message and output, store results to a variable
expect_warning(out <- f(-1), "already negative")
expect_equal(out, -1)

Messages --
f <- function(x) {

if (x < 0) {
message("*x* is already negative")
return(x)

}

-x
}
expect_message(f(-1))
expect_message(f(-1), "already negative")
expect_message(f(1), NA)

expect_invisible Does code return a visible or invisible object?

Description

Use this to test whether a function returns a visible or invisible output. Typically you’ll use this to
check that functions called primarily for their side-effects return their data argument invisibly.

Usage

expect_invisible(call, label = NULL)

expect_visible(call, label = NULL)

Arguments

call A function call.

label Used to customise failure messages. For expert use only.

Value

The evaluated call, invisibly.

14 expect_length

Examples

expect_invisible(x <- 10)
expect_visible(x)

Typically you'll assign the result of the expectation so you can
also check that the value is as you expect.
greet <- function(name) {

message("Hi ", name)
invisible(name)

}
out <- expect_invisible(greet("Hadley"))
expect_equal(out, "Hadley")

expect_length Does code return a vector with the specified length?

Description

Does code return a vector with the specified length?

Usage

expect_length(object, n)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

n Expected length.

See Also

expect_vector() to make assertions about the "size" of a vector

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

expect_length(1, 1)
expect_length(1:10, 10)

Not run:
expect_length(1:10, 1)

End(Not run)

expect_named 15

expect_named Does code return a vector with (given) names?

Description

You can either check for the presence of names (leaving expected blank), specific names (by
supplying a vector of names), or absence of names (with NULL).

Usage

expect_named(
object,
expected,
ignore.order = FALSE,
ignore.case = FALSE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

expected Character vector of expected names. Leave missing to match any names. Use
NULL to check for absence of names.

ignore.order If TRUE, sorts names before comparing to ignore the effect of order.

ignore.case If TRUE, lowercases all names to ignore the effect of case.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

x <- c(a = 1, b = 2, c = 3)
expect_named(x)
expect_named(x, c("a", "b", "c"))

Use options to control sensitivity
expect_named(x, c("B", "C", "A"), ignore.order = TRUE, ignore.case = TRUE)

16 expect_output

Can also check for the absence of names with NULL
z <- 1:4
expect_named(z, NULL)

expect_output Does code print output to the console?

Description

Test for output produced by print() or cat(). This is best used for very simple output; for more
complex cases use verify_output().

Usage

expect_output(
object,
regexp = NULL,
...,
info = NULL,
label = NULL,
width = 80

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the output.
• If NULL, the default, asserts that there should output, but doesn’t check for

a specific value.
• If NA, asserts that there should be no output.

... Arguments passed on to expect_match

all Should all elements of actual value match regexp (TRUE), or does only
one need to match (FALSE).

perl logical. Should Perl-compatible regexps be used?
fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all

conflicting arguments.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

width Number of characters per line of output. This does not inherit from getOption("width")
so that tests always use the same output width, minimising spurious differences.

expect_setequal 17

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

str(mtcars)
expect_output(str(mtcars), "32 obs")
expect_output(str(mtcars), "11 variables")

You can use the arguments of grepl to control the matching
expect_output(str(mtcars), "11 VARIABLES", ignore.case = TRUE)
expect_output(str(mtcars), "$ mpg", fixed = TRUE)

expect_setequal Does code return a vector containing the expected values?

Description

• expect_setequal(x,y) tests that every element of x occurs in y, and that every element of y
occurs in x.

• expect_mapequal(x,y) tests that x and y have the same names, and that x[names(y)] equals
y.

Usage

expect_setequal(object, expected)

expect_mapequal(object, expected)

Arguments

object Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

expected Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

Details

Note that expect_setequal() ignores names, and you will be warned if both object and expected
have them.

18 expect_silent

Examples

expect_setequal(letters, rev(letters))
show_failure(expect_setequal(letters[-1], rev(letters)))

x <- list(b = 2, a = 1)
expect_mapequal(x, list(a = 1, b = 2))
show_failure(expect_mapequal(x, list(a = 1)))
show_failure(expect_mapequal(x, list(a = 1, b = "x")))
show_failure(expect_mapequal(x, list(a = 1, b = 2, c = 3)))

expect_silent Does code execute silently?

Description

Checks that the code produces no output, messages, or warnings.

Usage

expect_silent(object)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
inheritance-expectations, logical-expectations

Examples

expect_silent("123")

f <- function() {
message("Hi!")
warning("Hey!!")
print("OY!!!")

}
Not run:
expect_silent(f())

End(Not run)

expect_snapshot 19

expect_snapshot Snapshot testing

Description

Snapshot tests (aka golden tests) are similar to unit tests except that the expected result is stored in
a separate file that is managed by testthat. Snapshot tests are useful for when the expected value is
large, or when the intent of the code is something that can only be verified by a human (e.g. this is
a useful error message). Learn more in vignette("snapshotting").

• expect_snapshot() captures all messages, warnings, errors, and output from code.

• expect_snapshot_output() captures just output printed to the console.

• expect_snapshot_error() captures an error message and optionally checks its class.

• expect_snapshot_warning() captures a warning message and optionally checks its class.

• expect_snapshot_value() captures the return value.

(These functions supersede verify_output(), expect_known_output(), expect_known_value(),
and expect_known_hash().)

Usage

expect_snapshot(
x,
cran = FALSE,
error = FALSE,
transform = NULL,
variant = NULL,
cnd_class = FALSE

)

expect_snapshot_output(x, cran = FALSE, variant = NULL)

expect_snapshot_error(x, class = "error", cran = FALSE, variant = NULL)

expect_snapshot_warning(x, class = "warning", cran = FALSE, variant = NULL)

expect_snapshot_value(
x,
style = c("json", "json2", "deparse", "serialize"),
cran = FALSE,
tolerance = testthat_tolerance(),
...,
variant = NULL

)

20 expect_snapshot

Arguments

x Code to evaluate.

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

error Do you expect the code to throw an error? The expectation will fail (even on
CRAN) if an unexpected error is thrown or the expected error is not thrown.

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector
as output.

variant [Experimental]
If not-NULL, results will be saved in _snaps/{variant}/{test.md}, so variant
must be a single string of alphanumeric characters suitable for use as a directory
name.

You can variants to deal with cases where the snapshot output varies and you
want to capture and test the variations. Common use cases include variations
for operating system, R version, or version of key dependency. Variants are an
advanced feature. When you use them, you’ll need to carefully think about your
testing strategy to ensure that all important variants are covered by automated
tests, and ensure that you have a way to get snapshot changes out of your CI
system and back into the repo.

cnd_class Whether to include the class of messages, warnings, and errors in the snapshot.
Only the most specific class is included, i.e. the first element of class(cnd).

class Class of expected error or warning. The expectation will always fail (even on
CRAN) if an error of this class isn’t seen when executing x.

style Serialization style to use:

• json uses jsonlite::fromJSON() and jsonlite::toJSON(). This pro-
duces the simplest output but only works for relatively simple objects.

• json2 uses jsonlite::serializeJSON() and jsonlite::unserializeJSON()
which are more verbose but work for a wider range of type.

• deparse uses deparse(), which generates a depiction of the object using
R code.

• serialize() produces a binary serialization of the object using serialize().
This is all but guaranteed to work for any R object, but produces a com-
pletely opaque serialization.

tolerance Numerical tolerance: any differences (in the sense of base::all.equal())
smaller than this value will be ignored.

The default tolerance is sqrt(.Machine$double.eps), unless long doubles are
not available, in which case the test is skipped.

... For expect_snapshot_value() only, passed on to waldo::compare() so you
can control the details of the comparison.

expect_snapshot_file 21

Workflow

The first time that you run a snapshot expectation it will run x, capture the results, and record in
tests/testthat/snap/{test}.json. Each test file gets its own snapshot file, e.g. test-foo.R will get
snap/foo.json.

It’s important to review the JSON files and commit them to git. They are designed to be human
readable, and you should always review new additions to ensure that the salient information has
been captured. They should also be carefully reviewed in pull requests, to make sure that snapshots
have updated in the expected way.

On subsequent runs, the result of x will be compared to the value stored on disk. If it’s different,
the expectation will fail, and a new file snap/{test}.new.json will be created. If the change was
deliberate, you can approve the change with snapshot_accept() and then the tests will pass the
next time you run them.

Note that snapshotting can only work when executing a complete test file (with test_file(),
test_dir(), or friends) because there’s otherwise no way to figure out the snapshot path. If you
run snapshot tests interactively, they’ll just display the current value.

expect_snapshot_file Snapshot testing for whole files

Description

Whole file snapshot testing is designed for testing objects that don’t have a convenient textual
representation, with initial support for images (.png, .jpg, .svg), data frames (.csv), and text files
(.R, .txt, .json, ...).

The first time expect_snapshot_file() is run, it will create _snaps/{test}/{name}.{ext} contain-
ing reference output. Future runs will be compared to this reference: if different, the test will
fail and the new results will be saved in _snaps/{test}/{name}.new.{ext}. To review failures, call
snapshot_review().

We generally expect this function to be used via a wrapper that takes care of ensuring that output is
as reproducible as possible, e.g. automatically skipping tests where it’s known that images can’t be
reproduced exactly.

Usage

expect_snapshot_file(
path,
name = basename(path),
binary = lifecycle::deprecated(),
cran = FALSE,
compare = NULL,
transform = NULL,
variant = NULL

)

announce_snapshot_file(path, name = basename(path))

22 expect_snapshot_file

compare_file_binary(old, new)

compare_file_text(old, new)

Arguments

path Path to file to snapshot. Optional for announce_snapshot_file() if name is
supplied.

name Snapshot name, taken from path by default.

binary [Deprecated] Please use the compare argument instead.

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

compare A function used to compare the snapshot files. It should take two inputs, the
paths to the old and new snapshot, and return either TRUE or FALSE. This defaults
to compare_file_text if name has extension .r, .R, .Rmd, .md, or .txt, and
otherwise uses compare_file_binary.
compare_file_binary() compares byte-by-byte and compare_file_text()
compares lines-by-line, ignoring the difference between Windows and Mac/Linux
line endings.

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector
as output.

variant If not-NULL, results will be saved in _snaps/{variant}/{test}/{name}.{ext}. This
allows you to create different snapshots for different scenarios, like different
operating systems or different R versions.

old, new Paths to old and new snapshot files.

Announcing snapshots

testthat automatically detects dangling snapshots that have been written to the _snaps directory
but which no longer have corresponding R code to generate them. These dangling files are au-
tomatically deleted so they don’t clutter the snapshot directory. However we want to preserve
snapshot files when the R code wasn’t executed because of an unexpected error or because of
a skip(). Let testthat know about these files by calling announce_snapshot_file() before
expect_snapshot_file().

Examples

To use expect_snapshot_file() you'll typically need to start by writing
a helper function that creates a file from your code, returning a path
save_png <- function(code, width = 400, height = 400) {

path <- tempfile(fileext = ".png")
png(path, width = width, height = height)
on.exit(dev.off())
code

expect_vector 23

path
}
path <- save_png(plot(1:5))
path

Not run:
expect_snapshot_file(save_png(hist(mtcars$mpg)), "plot.png")

End(Not run)

You'd then also provide a helper that skips tests where you can't
be sure of producing exactly the same output
expect_snapshot_plot <- function(name, code) {

Other packages might affect results
skip_if_not_installed("ggplot2", "2.0.0")
Or maybe the output is different on some operation systems
skip_on_os("windows")
You'll need to carefully think about and experiment with these skips

name <- paste0(name, ".png")

Announce the file before touching `code`. This way, if `code`
unexpectedly fails or skips, testthat will not auto-delete the
corresponding snapshot file.
announce_snapshot_file(name = name)

path <- save_png(code)
expect_snapshot_file(path, name)

}

expect_vector Does code return a vector with the expected size and/or prototype?

Description

expect_vector() is a thin wrapper around vctrs::vec_assert(), converting the results of that
function in to the expectations used by testthat. This means that it used the vctrs of ptype (proto-
type) and size. See details in https://vctrs.r-lib.org/articles/type-size.html

Usage

expect_vector(object, ptype = NULL, size = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

https://vctrs.r-lib.org/articles/type-size.html

24 fail

ptype (Optional) Vector prototype to test against. Should be a size-0 (empty) gener-
alised vector.

size (Optional) Size to check for.

Examples

if (requireNamespace("vctrs") && packageVersion("vctrs") > "0.1.0.9002") {
expect_vector(1:10, ptype = integer(), size = 10)
show_failure(expect_vector(1:10, ptype = integer(), size = 5))
show_failure(expect_vector(1:10, ptype = character(), size = 5))
}

fail Default expectations that always succeed or fail.

Description

These allow you to manually trigger success or failure. Failure is particularly useful to a pre-
condition or mark a test as not yet implemented.

Usage

fail(
message = "Failure has been forced",
info = NULL,
trace_env = caller_env()

)

succeed(message = "Success has been forced", info = NULL)

Arguments

message a string to display.

info Character vector continuing additional information. Included for backward com-
patibility only and new expectations should not use it.

trace_env If is.null(trace), this is used to automatically generate a traceback running
from test_code()/test_file() to trace_env. You’ll generally only need to
set this if you’re wrapping an expectation inside another function.

Examples

Not run:
test_that("this test fails", fail())
test_that("this test succeeds", succeed())

End(Not run)

FailReporter 25

FailReporter Test reporter: fail at end.

Description

This reporter will simply throw an error if any of the tests failed. It is best combined with another
reporter, such as the SummaryReporter.

See Also

Other reporters: CheckReporter, DebugReporter, JunitReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

inheritance-expectations

Does code return an object inheriting from the expected base type, S3
class, or S4 class?

Description

See https://adv-r.hadley.nz/oo.html for an overview of R’s OO systems, and the vocabulary
used here.

• expect_type(x,type) checks that typeof(x) is type.

• expect_s3_class(x,class) checks that x is an S3 object that inherits() from class

• expect_s3_class(x,NA) checks that x isn’t an S3 object.

• expect_s4_class(x,class) checks that x is an S4 object that is() class.

• expect_s4_class(x,NA) checks that x isn’t an S4 object.

See expect_vector() for testing properties of objects created by vctrs.

Usage

expect_type(object, type)

expect_s3_class(object, class, exact = FALSE)

expect_s4_class(object, class)

https://adv-r.hadley.nz/oo.html

26 is_testing

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

type String giving base type (as returned by typeof()).

class Either a character vector of class names, or for expect_s3_class() and expect_s4_class(),
an NA to assert that object isn’t an S3 or S4 object.

exact If FALSE, the default, checks that object inherits from class. If TRUE, checks
that object has a class that’s identical to class.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), logical-expectations

Examples

x <- data.frame(x = 1:10, y = "x", stringsAsFactors = TRUE)
A data frame is an S3 object with class data.frame
expect_s3_class(x, "data.frame")
show_failure(expect_s4_class(x, "data.frame"))
A data frame is built from a list:
expect_type(x, "list")

An integer vector is an atomic vector of type "integer"
expect_type(x$x, "integer")
It is not an S3 object
show_failure(expect_s3_class(x$x, "integer"))

Above, we requested data.frame() converts strings to factors:
show_failure(expect_type(x$y, "character"))
expect_s3_class(x$y, "factor")
expect_type(x$y, "integer")

is_testing Determine testing status

Description

• is_testing() determine if code is being run as part of a test

• is_parallel() if the test is being run in parallel.

• testing_package() gives name of the package being tested.

These are thin wrappers that retrieve the values of environment variables. To avoid creating a run-
time dependency on testthat, you can inline the source of these functions directly into your package.

JunitReporter 27

Usage

is_testing()

is_parallel()

testing_package()

JunitReporter Test reporter: summary of errors in jUnit XML format.

Description

This reporter includes detailed results about each test and summaries, written to a file (or stdout) in
jUnit XML format. This can be read by the Jenkins Continuous Integration System to report on a
dashboard etc. Requires the xml2 package.

Details

To fit into the jUnit structure, context() becomes the <testsuite> name as well as the base of the
<testcase> classname. The test_that() name becomes the rest of the <testcase> classname. The
deparsed expect_that() call becomes the <testcase> name. On failure, the message goes into the
<failure> node message argument (first line only) and into its text content (full message).

Execution time and some other details are also recorded.

References for the jUnit XML format: http://llg.cubic.org/docs/junit/

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

ListReporter List reporter: gather all test results along with elapsed time and file
information.

Description

This reporter gathers all results, adding additional information such as test elapsed time, and test
filename if available. Very useful for reporting.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, LocationReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

http://llg.cubic.org/docs/junit/

28 local_test_context

local_test_context Locally set options for maximal test reproducibility

Description

local_test_context() is run automatically by test_that() but you may want to run it yourself
if you want to replicate test results interactively. If run inside a function, the effects are automatically
reversed when the function exits; if running in the global environment, use withr::deferred_run()
to undo.

local_reproducible_output() is run automatically by test_that() in the 3rd edition. You
might want to call it to override the the default settings inside a test, if you want to test Unicode,
coloured output, or a non-standard width.

Usage

local_test_context(.env = parent.frame())

local_reproducible_output(
width = 80,
crayon = FALSE,
unicode = FALSE,
lang = "en",
.env = parent.frame()

)

Arguments

.env Environment to use for scoping; expert use only.

width Value of the "width" option.

crayon Value of the "crayon.enabled" option.

unicode Value of the "cli.unicode" option. The test is skipped if l10n_info()$`UTF-8`
is FALSE.

lang Optionally, supply a BCP47 language code to set the language used for trans-
lating error messages. This is a lower case two letter ISO 639 country code,
optionally followed by "_" or "-" and an upper case two letter ISO 3166 region
code.

Details

local_test_context() sets TESTTHAT = "true", which ensures that is_testing() returns TRUE
and allows code to tell if it is run by testthat.

In the third edition, local_test_context() also calls local_reproducible_output() which
temporary sets the following options:

• cli.dynamic = FALSE so that tests assume that they are not run in a dynamic console (i.e. one
where you can move the cursor around).

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2

local_test_context 29

• cli.unicode (default: FALSE) so that the cli package never generates unicode output (nor-
mally cli uses unicode on Linux/Mac but not Windows). Windows can’t easily save unicode
output to disk, so it must be set to false for consistency.

• cli.condition_width = Inf so that new lines introduced while width-wrapping condition
messages don’t interfere with message matching.

• crayon.enabled (default: FALSE) suppresses ANSI colours generated by the crayon package
(normally colours are used if crayon detects that you’re in a terminal that supports colour).

• cli.num_colors (default: 1L) Same as the crayon option.

• lifecycle_verbosity = "warning" so that every lifecycle problem always generates a warn-
ing (otherwise deprecated functions don’t generate a warning every time).

• max.print = 99999 so the same number of values are printed.

• OutDec = "." so numbers always uses . as the decimal point (European users sometimes set
OutDec = ",").

• rlang_interactive = FALSE so that rlang::is_interactive() returns FALSE, and code
that uses it pretends you’re in a non-interactive environment.

• useFancyQuotes = FALSE so base R functions always use regular (straight) quotes (otherwise
the default is locale dependent, see sQuote() for details).

• width (default: 80) to control the width of printed output (usually this varies with the size of
your console).

And modifies the following env vars:

• Unsets RSTUDIO, which ensures that RStudio is never detected as running.

• Sets LANGUAGE = "en", which ensures that no message translation occurs.

Finally, it sets the collation locale to "C", which ensures that character sorting the same regardless
of system locale.

Examples

local({
local_test_context()
cat(crayon::blue("Text will not be colored"))
cat(cli::symbol$ellipsis)
cat("\n")

})
test_that("test ellipsis", {

local_reproducible_output(unicode = FALSE)
expect_equal(cli::symbol$ellipsis, "...")

local_reproducible_output(unicode = TRUE)
expect_equal(cli::symbol$ellipsis, "\u2026")

})

30 logical-expectations

LocationReporter Test reporter: location

Description

This reporter simply prints the location of every expectation and error. This is useful if you’re
trying to figure out the source of a segfault, or you want to figure out which code triggers a C/C++
breakpoint

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

logical-expectations Does code return TRUE or FALSE?

Description

These are fall-back expectations that you can use when none of the other more specific expectations
apply. The disadvantage is that you may get a less informative error message.

Usage

expect_true(object, info = NULL, label = NULL)

expect_false(object, info = NULL, label = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

Details

Attributes are ignored.

MinimalReporter 31

See Also

is_false() for complement

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), inheritance-expectations

Examples

expect_true(2 == 2)
Failed expectations will throw an error
Not run:
expect_true(2 != 2)

End(Not run)
expect_true(!(2 != 2))
or better:
expect_false(2 != 2)

a <- 1:3
expect_true(length(a) == 3)
but better to use more specific expectation, if available
expect_equal(length(a), 3)

MinimalReporter Test reporter: minimal.

Description

The minimal test reporter provides the absolutely minimum amount of information: whether each
expectation has succeeded, failed or experienced an error. If you want to find out what the failures
and errors actually were, you’ll need to run a more informative test reporter.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

32 RStudioReporter

MultiReporter Multi reporter: combine several reporters in one.

Description

This reporter is useful to use several reporters at the same time, e.g. adding a custom reporter
without removing the current one.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, ProgressReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

ProgressReporter Test reporter: interactive progress bar of errors.

Description

ProgressReporter is designed for interactive use. Its goal is to give you actionable insights to help
you understand the status of your code. This reporter also praises you from time-to-time if all your
tests pass. It’s the default reporter for test_dir().

ParallelProgressReporter is very similar to ProgressReporter, but works better for packages
that want parallel tests.

CompactProgressReporter is a minimal version of ProgressReporter designed for use with
single files. It’s the default reporter for test_file().

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, RStudioReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

RStudioReporter Test reporter: RStudio

Description

This reporter is designed for output to RStudio. It produces results in any easily parsed form.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, Reporter, SilentReporter,
StopReporter, SummaryReporter, TapReporter, TeamcityReporter

SilentReporter 33

SilentReporter Test reporter: gather all errors silently.

Description

This reporter quietly runs all tests, simply gathering all expectations. This is helpful for program-
matically inspecting errors after a test run. You can retrieve the results with the expectations()
method.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

skip Skip a test

Description

skip_if() and skip_if_not() allow you to skip tests, immediately concluding a test_that()
block without executing any further expectations. This allows you to skip a test without failure, if
for some reason it can’t be run (e.g. it depends on the feature of a specific operating system, or it
requires a specific version of a package).

See vignette("skipping") for more details.

Usage

skip(message)

skip_if_not(condition, message = NULL)

skip_if(condition, message = NULL)

skip_if_not_installed(pkg, minimum_version = NULL)

skip_if_offline(host = "r-project.org")

skip_on_cran()

skip_on_os(os, arch = NULL)

skip_on_travis()

skip_on_appveyor()

34 skip

skip_on_ci()

skip_on_covr()

skip_on_bioc()

skip_if_translated(msgid = "'%s' not found")

Arguments

message A message describing why the test was skipped.

condition Boolean condition to check. skip_if_not() will skip if FALSE, skip_if() will
skip if TRUE.

pkg Name of package to check for
minimum_version

Minimum required version for the package

host A string with a hostname to lookup

os Character vector of one or more operating systems to skip on. Supported values
are "windows", "mac", "linux", and "solaris".

arch Character vector of one or more architectures to skip on. Common values in-
clude "i386" (32 bit), "x86_64" (64 bit), and "aarch64" (M1 mac). Supplying
arch makes the test stricter; i.e. both os and arch must match in order for the
test to be skipped.

msgid R message identifier used to check for translation: the default uses a message
included in most translation packs. See the complete list in R-base.pot.

Helpers

• skip_if_not_installed("pkg") skips tests if package "pkg" is not installed or cannot be
loaded (using requireNamespace()). Generally, you can assume that suggested packages
are installed, and you do not need to check for them specifically, unless they are particularly
difficult to install.

• skip_if_offline() skips if an internet connection is not available (using curl::nslookup())
or if the test is run on CRAN.

• skip_if_translated("msg") skips tests if the "msg" is translated.

• skip_on_bioc() skips on Bioconductor (using the BBS_HOME env var).

• skip_on_cran() skips on CRAN (using the NOT_CRAN env var set by devtools and friends).

• skip_on_covr() skips when covr is running (using the R_COVR env var).

• skip_on_ci() skips on continuous integration systems like GitHub Actions, travis, and ap-
pveyor (using the CI env var). It supersedes the older skip_on_travis() and skip_on_appveyor()
functions.

• skip_on_os() skips on the specified operating system(s) ("windows", "mac", "linux", or "so-
laris").

https://github.com/wch/r-source/blob/master/src/library/base/po/R-base.pot

snapshot_accept 35

Examples

if (FALSE) skip("No internet connection")

test_that("skip example", {
expect_equal(1, 1L) # this expectation runs
skip('skip')
expect_equal(1, 2) # this one skipped
expect_equal(1, 3) # this one is also skipped

})

snapshot_accept Snapshot management

Description

• snapshot_accept() accepts all modified snapshots.

• snapshot_review() opens a Shiny app that shows a visual diff of each modified snapshot.
This is particularly useful for whole file snapshots created by expect_snapshot_file().

Usage

snapshot_accept(files = NULL, path = "tests/testthat")

snapshot_review(files = NULL, path = "tests/testthat")

Arguments

files Optionally, filter effects to snapshots from specified files. This can be a snapshot
name (e.g. foo or foo.md), a snapshot file name (e.g. testfile/foo.txt), or
a snapshot file directory (e.g. testfile/).

path Path to tests.

StopReporter Test reporter: stop on error

Description

The default reporter used when expect_that() is run interactively. It responds by stop()ping on
failures and doing nothing otherwise. This will ensure that a failing test will raise an error.

Details

This should be used when doing a quick and dirty test, or during the final automated testing of R
CMD check. Otherwise, use a reporter that runs all tests and gives you more context about the
problem.

36 TapReporter

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SummaryReporter, TapReporter, TeamcityReporter

SummaryReporter Test reporter: summary of errors.

Description

This is a reporter designed for interactive usage: it lets you know which tests have run successfully
and as well as fully reporting information about failures and errors.

Details

You can use the max_reports field to control the maximum number of detailed reports produced
by this reporter. This is useful when running with auto_test()

As an additional benefit, this reporter will praise you from time-to-time if all your tests pass.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, TapReporter, TeamcityReporter

TapReporter Test reporter: TAP format.

Description

This reporter will output results in the Test Anything Protocol (TAP), a simple text-based interface
between testing modules in a test harness. For more information about TAP, see http://testanything.org

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, SummaryReporter, TeamcityReporter

TeamcityReporter 37

TeamcityReporter Test reporter: Teamcity format.

Description

This reporter will output results in the Teamcity message format. For more information about Team-
city messages, see http://confluence.jetbrains.com/display/TCD7/Build+Script+Interaction+with+TeamCity

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, SummaryReporter, TapReporter

teardown_env Run code after all test files

Description

This environment has no purpose other than as a handle for withr::defer(): use it when you want
to run code after all tests have been run. Typically, you’ll use withr::defer(cleanup(),teardown_env())
immediately after you’ve made a mess in a setup-*.R file.

Usage

teardown_env()

test_file Run all tests in a single file

Description

Helper, setup, and teardown files located in the same directory as the test will also be run.

Usage

test_file(path, reporter = default_compact_reporter(), package = NULL, ...)

Arguments

path Path to file.
reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-

mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

package If these tests belong to a package, the name of the package.
... Additional parameters passed on to test_dir()

38 test_package

Value

A list (invisibly) containing data about the test results.

Special files

There are two types of .R file that have special behaviour:

• Test files start with test and are executed in alphabetical order.

• Setup files start with setup and are executed before tests. If clean up is needed after all tests
have been run, you can use withr::defer(clean_up(),teardown_env()). See vignette("test-fixtures")
for more details.

There are two other types of special file that we no longer recommend using:

• Helper files start with helper and are executed before tests are run. They’re also loaded by
devtools::load_all(), so there’s no real point to them and you should just put your helper
code in R/.

• Teardown files start with teardown and are executed after the tests are run. Now we rec-
ommend interleave setup and cleanup code in setup- files, making it easier to check that you
automatically clean up every mess that you make.

All other files are ignored by testthat.

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests,
that environment that inherits from the package’s namespace environment, so that tests can access
internal functions and objects.

Examples

path <- testthat_example("success")
test_file(path)
test_file(path, reporter = "minimal")

test_package Run all tests in a package

Description

• test_local() tests a local source package.

• test_package() tests an installed package.

• test_check() checks a package during R CMD check.

Tests live in tests/testthat.

test_package 39

Usage

test_package(package, reporter = check_reporter(), ...)

test_check(package, reporter = check_reporter(), ...)

test_local(path = ".", reporter = NULL, ...)

Arguments

package If these tests belong to a package, the name of the package.

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

... Additional arguments passed to test_dir()

path Path to directory containing tests.

Value

A list (invisibly) containing data about the test results.

R CMD check

To run testthat automatically from R CMD check, make sure you have a tests/testthat.R that
contains:

library(testthat)
library(yourpackage)

test_check("yourpackage")

Special files

There are two types of .R file that have special behaviour:

• Test files start with test and are executed in alphabetical order.

• Setup files start with setup and are executed before tests. If clean up is needed after all tests
have been run, you can use withr::defer(clean_up(),teardown_env()). See vignette("test-fixtures")
for more details.

There are two other types of special file that we no longer recommend using:

• Helper files start with helper and are executed before tests are run. They’re also loaded by
devtools::load_all(), so there’s no real point to them and you should just put your helper
code in R/.

• Teardown files start with teardown and are executed after the tests are run. Now we rec-
ommend interleave setup and cleanup code in setup- files, making it easier to check that you
automatically clean up every mess that you make.

All other files are ignored by testthat.

40 test_that

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests,
that environment that inherits from the package’s namespace environment, so that tests can access
internal functions and objects.

test_path Locate file in testing directory.

Description

This function is designed to work both interactively and during tests, locating files in the tests/testthat
directory

Usage

test_path(...)

Arguments

... Character vectors giving path component.

Value

A character vector giving the path.

test_that Run a test

Description

A test encapsulates a series of expectations about a small, self-contained set of functionality. Each
test lives in a file and contains multiple expectations, like expect_equal() or expect_error().

Tests are evaluated in their own environments, and should not affect global state.

Usage

test_that(desc, code)

Arguments

desc Test name. Names should be brief, but evocative. They are only used by humans,
so do you

code Test code containing expectations. Braces ({}) should always be used in order
to get accurate location data for test failures.

use_catch 41

Value

When run interactively, returns invisible(TRUE) if all tests pass, otherwise throws an error.

Examples

test_that("trigonometric functions match identities", {
expect_equal(sin(pi / 4), 1 / sqrt(2))
expect_equal(cos(pi / 4), 1 / sqrt(2))
expect_equal(tan(pi / 4), 1)

})

Not run:
test_that("trigonometric functions match identities", {

expect_equal(sin(pi / 4), 1)
})

End(Not run)

use_catch Use Catch for C++ Unit Testing

Description

Add the necessary infrastructure to enable C++ unit testing in R packages with Catch and testthat.

Usage

use_catch(dir = getwd())

Arguments

dir The directory containing an R package.

Details

Calling use_catch() will:

1. Create a file src/test-runner.cpp, which ensures that the testthat package will under-
stand how to run your package’s unit tests,

2. Create an example test file src/test-example.cpp, which showcases how you might use
Catch to write a unit test,

3. Add a test file tests/testthat/test-cpp.R, which ensures that testthat will run your
compiled tests during invocations of devtools::test() or R CMD check, and

4. Create a file R/catch-routine-registration.R, which ensures that R will automatically
register this routine when tools::package_native_routine_registration_skeleton()
is invoked.

You will also need to:

https://github.com/catchorg/Catch2

42 use_catch

• Add xml2 to Suggests, with e.g. usethis::use_package("xml2","Suggests")

• Add testthat to LinkingTo, with e.g. usethis::use_package("testthat","LinkingTo")

C++ unit tests can be added to C++ source files within the src directory of your package, with a
format similar to R code tested with testthat. Here’s a simple example of a unit test written with
testthat + Catch:

context("C++ Unit Test") {
test_that("two plus two is four") {
int result = 2 + 2;
expect_true(result == 4);

}
}

When your package is compiled, unit tests alongside a harness for running these tests will be com-
piled into your R package, with the C entry point run_testthat_tests(). testthat will use that
entry point to run your unit tests when detected.

Functions

All of the functions provided by Catch are available with the CATCH_ prefix – see here for a full list.
testthat provides the following wrappers, to conform with testthat’s R interface:

Function Catch Description
context CATCH_TEST_CASE The context of a set of tests.
test_that CATCH_SECTION A test section.
expect_true CATCH_CHECK Test that an expression evaluates to true.
expect_false CATCH_CHECK_FALSE Test that an expression evalutes to false.
expect_error CATCH_CHECK_THROWS Test that evaluation of an expression throws an exception.
expect_error_as CATCH_CHECK_THROWS_AS Test that evaluation of an expression throws an exception of a specific class.

In general, you should prefer using the testthat wrappers, as testthat also does some work to
ensure that any unit tests within will not be compiled or run when using the Solaris Studio compilers
(as these are currently unsupported by Catch). This should make it easier to submit packages to
CRAN that use Catch.

Symbol Registration

If you’ve opted to disable dynamic symbol lookup in your package, then you’ll need to explicitly
export a symbol in your package that testthat can use to run your unit tests. testthat will look
for a routine with one of the names:

C_run_testthat_tests
c_run_testthat_tests
run_testthat_tests

See Controlling Visibility and Registering Symbols in the Writing R Extensions manual for more
information.

https://github.com/catchorg/Catch2/blob/master/docs/assertions.md
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Controlling-visibility
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Registering-symbols

use_catch 43

Advanced Usage

If you’d like to write your own Catch test runner, you can instead use the testthat::catchSession()
object in a file with the form:

#define TESTTHAT_TEST_RUNNER
#include <testthat.h>

void run()
{

Catch::Session& session = testthat::catchSession();
// interact with the session object as desired

}

This can be useful if you’d like to run your unit tests with custom arguments passed to the Catch
session.

Standalone Usage

If you’d like to use the C++ unit testing facilities provided by Catch, but would prefer not to use the
regular testthat R testing infrastructure, you can manually run the unit tests by inserting a call to:

.Call("run_testthat_tests", PACKAGE = <pkgName>)

as necessary within your unit test suite.

See Also

Catch, the library used to enable C++ unit testing.

https://github.com/catchorg/Catch2/blob/master/docs/assertions.md

Index

∗ debugging
auto_test, 3
auto_test_package, 4

∗ expectations
comparison-expectations, 5
equality-expectations, 7
expect_error, 10
expect_length, 14
expect_named, 15
expect_output, 16
expect_silent, 18
inheritance-expectations, 25
logical-expectations, 30

∗ reporters
CheckReporter, 4
DebugReporter, 6
FailReporter, 25
JunitReporter, 27
ListReporter, 27
LocationReporter, 30
MinimalReporter, 31
MultiReporter, 32
ProgressReporter, 32
RStudioReporter, 32
SilentReporter, 33
StopReporter, 35
SummaryReporter, 36
TapReporter, 36
TeamcityReporter, 37

all.equal(), 7, 8
announce_snapshot_file

(expect_snapshot_file), 21
auto_test, 3
auto_test(), 4, 36
auto_test_package, 4
auto_test_package(), 3

base::all.equal(), 20
base::signalCondition(), 10

base::stop(), 10

CheckReporter, 4, 6, 25, 27, 30–33, 36, 37
CompactProgressReporter

(ProgressReporter), 32
compare(), 8
compare_file_binary

(expect_snapshot_file), 21
compare_file_text

(expect_snapshot_file), 21
comparison-expectations, 5
curl::nslookup(), 34

DebugReporter, 4, 6, 25, 27, 30–33, 36, 37
deparse(), 20
describe, 6

equality-expectations, 7
exp_signal(), 10
expect, 9
expect_condition (expect_error), 10
expect_equal (equality-expectations), 7
expect_equal(), 40
expect_error, 5, 8, 10, 14, 15, 17, 18, 26, 31
expect_error(), 40
expect_false (logical-expectations), 30
expect_gt (comparison-expectations), 5
expect_gte (comparison-expectations), 5
expect_identical

(equality-expectations), 7
expect_invisible, 13
expect_known_hash(), 19
expect_known_output(), 19
expect_known_value(), 19
expect_length, 5, 8, 12, 14, 15, 17, 18, 26, 31
expect_lt (comparison-expectations), 5
expect_lte (comparison-expectations), 5
expect_mapequal (expect_setequal), 17
expect_mapequal(), 8
expect_match, 5, 8, 11, 12, 14–18, 26, 31

44

INDEX 45

expect_message (expect_error), 10
expect_named, 5, 8, 12, 14, 15, 17, 18, 26, 31
expect_null, 5, 8, 12, 14, 15, 17, 18, 26, 31
expect_output, 5, 8, 12, 14, 15, 16, 18, 26, 31
expect_reference, 5, 8, 12, 14, 15, 17, 18,

26, 31
expect_reference(), 8
expect_s3_class

(inheritance-expectations), 25
expect_s4_class

(inheritance-expectations), 25
expect_setequal, 17
expect_setequal(), 8
expect_silent, 5, 8, 12, 14, 15, 17, 18, 26, 31
expect_snapshot, 19
expect_snapshot(), 10, 12
expect_snapshot_error

(expect_snapshot), 19
expect_snapshot_file, 21
expect_snapshot_output

(expect_snapshot), 19
expect_snapshot_value

(expect_snapshot), 19
expect_snapshot_warning

(expect_snapshot), 19
expect_that(), 35
expect_true (logical-expectations), 30
expect_type (inheritance-expectations),

25
expect_vector, 23
expect_vector(), 14, 25
expect_visible (expect_invisible), 13
expect_warning (expect_error), 10

fail, 24
FailReporter, 4, 6, 25, 27, 30–33, 36, 37

identical(), 7, 8
inheritance-expectations, 25
inherits(), 25
is(), 25
is_false(), 31
is_parallel (is_testing), 26
is_testing, 26
is_testing(), 28

jsonlite::fromJSON(), 20
jsonlite::serializeJSON(), 20
jsonlite::toJSON(), 20

jsonlite::unserializeJSON(), 20
JunitReporter, 4, 6, 25, 27, 27, 30–33, 36, 37

ListReporter, 4, 6, 25, 27, 27, 30–33, 36, 37
local_reproducible_output

(local_test_context), 28
local_test_context, 28
LocationReporter, 4, 6, 25, 27, 30, 31–33,

36, 37
logical-expectations, 30

MinimalReporter, 4, 6, 25, 27, 30, 31, 32, 33,
36, 37

MultiReporter, 4, 6, 25, 27, 30–32, 32, 33,
36, 37

new_expectation(), 10

ParallelProgressReporter
(ProgressReporter), 32

ProgressReporter, 4, 6, 25, 27, 30–32, 32,
33, 36, 37

quasi_label, 5, 8, 11, 12, 14–18, 23, 26, 30

recover(), 6
Reporter, 4, 6, 25, 27, 30–33, 36, 37, 39
rlang::is_interactive(), 29
rlang::trace_back(), 9
RStudioReporter, 4, 6, 25, 27, 30–32, 32, 33,

36, 37

serialize(), 20
SilentReporter, 4, 6, 25, 27, 30–32, 33, 36,

37
skip, 33
skip(), 22
skip_if (skip), 33
skip_if_not (skip), 33
skip_if_not_installed (skip), 33
skip_if_offline (skip), 33
skip_if_translated (skip), 33
skip_on_appveyor (skip), 33
skip_on_bioc (skip), 33
skip_on_ci (skip), 33
skip_on_covr (skip), 33
skip_on_cran (skip), 33
skip_on_os (skip), 33
skip_on_travis (skip), 33
snapshot_accept, 35

46 INDEX

snapshot_accept(), 21
snapshot_review (snapshot_accept), 35
snapshot_review(), 21
sQuote(), 29
stop(), 35
StopReporter, 4, 6, 25, 27, 30–33, 35, 36, 37
succeed (fail), 24
SummaryReporter, 4, 6, 25, 27, 30–33, 36, 36,

37
suppressMessages(), 10
suppressWarnings(), 10

TapReporter, 4, 6, 25, 27, 30–33, 36, 36, 37
TeamcityReporter, 4, 6, 25, 27, 30–33, 36, 37
teardown_env, 37
test_check (test_package), 38
test_dir(), 21, 32, 39
test_file, 37
test_file(), 21, 32
test_local (test_package), 38
test_package, 38
test_path, 40
test_that, 40
test_that(), 6, 33
testing_package (is_testing), 26
typeof(), 26

use_catch, 41

vctrs::vec_assert(), 23
verify_output(), 16, 19

waldo::compare(), 8, 20
watch(), 3, 4
withr::defer(), 37
withr::deferred_run(), 28

	auto_test
	auto_test_package
	CheckReporter
	comparison-expectations
	DebugReporter
	describe
	equality-expectations
	expect
	expect_error
	expect_invisible
	expect_length
	expect_named
	expect_output
	expect_setequal
	expect_silent
	expect_snapshot
	expect_snapshot_file
	expect_vector
	fail
	FailReporter
	inheritance-expectations
	is_testing
	JunitReporter
	ListReporter
	local_test_context
	LocationReporter
	logical-expectations
	MinimalReporter
	MultiReporter
	ProgressReporter
	RStudioReporter
	SilentReporter
	skip
	snapshot_accept
	StopReporter
	SummaryReporter
	TapReporter
	TeamcityReporter
	teardown_env
	test_file
	test_package
	test_path
	test_that
	use_catch
	Index

