Fast and memory-friendly tools for text vectorization, topic modeling (LDA, LSA), word embeddings (GloVe), similarities. This package provides a source-agnostic streaming API, which allows researchers to perform analysis of collections of documents which are larger than available RAM. All core functions are parallelized to benefit from multicore machines.
| Version: | 0.6.1 | 
| Depends: | R (≥ 3.6.0), methods | 
| Imports: | Matrix (≥ 1.1), Rcpp (≥ 1.0.3), R6 (≥ 2.3.0), data.table (≥ 1.9.6), rsparse (≥ 0.3.3.4), stringi (≥ 1.1.5), mlapi (≥ 0.1.0), lgr (≥ 0.2), digest (≥ 0.6.8) | 
| LinkingTo: | Rcpp, digest (≥ 0.6.8) | 
| Suggests: | magrittr, udpipe (≥ 0.6), glmnet, testthat, covr, knitr, rmarkdown, proxy | 
| Published: | 2022-04-21 | 
| Author: | Dmitriy Selivanov [aut, cre, cph], Manuel Bickel [aut, cph] (Coherence measures for topic models), Qing Wang [aut, cph] (Author of the WaprLDA C++ code) | 
| Maintainer: | Dmitriy Selivanov <selivanov.dmitriy at gmail.com> | 
| BugReports: | https://github.com/dselivanov/text2vec/issues | 
| License: | GPL-2 | GPL-3 | file LICENSE [expanded from: GPL (≥ 2) | file LICENSE] | 
| URL: | http://text2vec.org | 
| NeedsCompilation: | yes | 
| SystemRequirements: | C++11 | 
| Materials: | README NEWS | 
| In views: | NaturalLanguageProcessing | 
| CRAN checks: | text2vec results | 
| Reference manual: | text2vec.pdf | 
| Vignettes: | 
Advanced topics GloVe Word Embeddings Analyzing Texts with the text2vec Package  | 
| Package source: | text2vec_0.6.1.tar.gz | 
| Windows binaries: | r-devel: text2vec_0.6.zip, r-release: text2vec_0.6.zip, r-oldrel: text2vec_0.6.zip | 
| macOS binaries: | r-release (arm64): text2vec_0.6.tgz, r-oldrel (arm64): text2vec_0.6.tgz, r-release (x86_64): text2vec_0.6.tgz, r-oldrel (x86_64): text2vec_0.6.1.tgz | 
| Old sources: | text2vec archive | 
| Reverse imports: | conText, fdm2id, regtools, text2map, textfeatures, textmineR, ttgsea, wactor, wordsalad | 
| Reverse suggests: | lime, oolong, quanteda, sentiment.ai, textrecipes | 
Please use the canonical form https://CRAN.R-project.org/package=text2vec to link to this page.