
Package ‘textreg’
October 4, 2018

Type Package

Title n-Gram Text Regression, aka Concise Comparative Summarization

Version 0.1.5

Date 2018-09-01

Author Luke Miratrix

Maintainer Luke Miratrix <lmiratrix@stat.harvard.edu>

Description Function for sparse regression on raw text, regressing a labeling
vector onto a feature space consisting of all possible phrases.

License MIT + file LICENSE

Depends R (>= 2.10),

Imports tm (>= 0.7), NLP (>= 0.1-10), Rcpp (>= 0.12.9), stats,
graphics, utils

Suggests corrplot, knitr, SnowballC (>= 0.5.1), xtable, testthat,
plyr, rmarkdown

LinkingTo Rcpp

VignetteBuilder knitr

RoxygenNote 6.1.0

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-10-04 11:00:03 UTC

R topics documented:
textreg-package . 2
bathtub . 4
build.corpus . 4
calc.loss . 5
clean.text . 6
cluster.phrases . 6
convert.tm.to.character . 7

1

2 textreg-package

cpp_build.corpus . 8
cpp_textreg . 8
dirtyBathtub . 9
find.CV.C . 9
find.threshold.C . 10
grab.fragments . 12
is.fragment.sample . 13
is.textreg.corpus . 13
is.textreg.result . 14
list.table.chart . 14
make.appearance.matrix . 15
make.count.table . 16
make.CV.chart . 17
make.list.table . 17
make.path.matrix . 18
make.phrase.correlation.chart . 19
make.phrase.matrix . 20
make.similarity.matrix . 20
make_search_phrases . 21
path.matrix.chart . 21
phrase.count . 22
phrase.matrix . 22
phrases . 23
plot.textreg.result . 23
predict.textreg.result . 24
print.fragment.sample . 24
print.textreg.corpus . 25
print.textreg.result . 25
reformat.textreg.model . 26
sample.fragments . 26
save.corpus.to.files . 27
stem.corpus . 28
testCorpora . 29
textreg . 29
tm_gregexpr . 31

Index 32

textreg-package Sparse regression package for text that allows for multiple word
phrases.

textreg-package 3

Description

Built on Georgiana Ifrim’s work, but allowing for regularization of phrases, this package does sparse
regression using greedy coordinate descent. In a nutshell, the textreg package allows for regressing
a vector of +1/-1 labels onto raw text. The textreg package takes care of converting the text to all
of the possible related features, allowing you to think of the more organic statement of regressing
onto “text” in some broad sense.

Details

Implementation-wise, it is a wrapper for a modified version of the C++ code written by Georgiana
Ifrim to do this regression. It is also designed to (somewhat) integrate with the tm package, a
commonly used R package for dealing with text.

One warning: this package uses tm, but does need to generate vectors of character strings to pass
to the textreg call, which can be quite expensive. You can also pass a filename to the textreg call
instead, which allows one to avoid loading a large corpus into memory and then copying it over.
You can use a prior build.corpus command before textreg to mitigate this cost, but it is an imperfect
method.

The n-gram package is documented, but it is research code, meaning gaps and errors are possible;
the author would appreciate notification of anything that is out of order.

The primary method in this package is the regression call ‘textreg()‘. This method takes a corpus
and a labeling vector and returns a textreg.result object that contains the final regression result along
with diagnostic information that can be of use.

Start by reading the “bathtub” vignette, which walks through most of the functionality of this pack-
age.

Special thanks and acknowledgements to Pavel Logacev, who found some subtle bugs on the win-
dows platform and gave excellent advice in general. Also thanks to Kevin Wu, who wrote earlier
versions of the stemming and cross-validation code. And Georgiana Ifrim, of course, for the earlier
version of the C++ code.

References

Ifrim, G., Bakir, G., & Weikum, G. (2008). Fast logistic regression for text categorization with
variable-length n-grams. 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 354-362.

Ifrim, G., & Wiuf, C. (2011). Bounded coordinate-descent for biological sequence classification
in high dimensional predictor space. 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 708-716.

Jia, J., Miratrix, L., Yu, B., Gawalt, B., Ghaoui, El, L., Barnesmoore, L., & Clavier, S. (2014).
Concise Comparative Summaries (CCS) of Large Text Corpora with a Human Experiment. The
Annals of Applied Statistics, 8(1), 499-529.

Miratrix, L., & Ackerman, R. (2014). A method for conducting text-based sparse feature selection
for interpretability of selected phrases.

4 build.corpus

bathtub Sample of cleaned OSHA accident summaries.

Description

bathtub consists of several accident reports plus a labeling with a +1 for any report that had been
tagged as related to METHELYNE CHLORIDE.

Format

Corpus object from the tm package. Has a meta info of the METHELYNE CHLORIDE labeling
called "meth.chl"

See Also

Other bathtub: dirtyBathtub

Examples

library(tm)
data(bathtub)
meta(bathtub, "meth.chl")

build.corpus Build a corpus that can be used in the textreg call.

Description

Pre-building a corpus allows for calling multiple textregs without doing a lot of initial data process-
ing (e.g., if you want to explore different ban lists or regularization parameters)

Usage

build.corpus(corpus, labeling, banned = NULL, verbosity = 1,
token.type = "word")

Arguments

corpus A list of strings or a corpus from the tm package.

labeling A vector of +1/-1 or TRUE/FALSE indicating which documents are considered
relevant and which are baseline. The +1/-1 can contain 0 whcih means drop the
document.

banned List of words that should be dropped from consideration.

verbosity Level of output. 0 is no printed output.

token.type "word" or "character" as tokens.

calc.loss 5

Details

See the bathtub vignette for more complete discussion of this method and the options you might
pass to it.

A textreg.corpus object is not a tm-style corpus. In particular, all text pre-processing, etc., to text
should be done to the data before building the textreg.corpus object.

Value

A textreg.corpus object.

Note

Unfortunately, the process of seperating out the textreg call and the build.corpus call is not quite as
clean as one would hope. The build.corpus call moves the text into the C++ memory, but the way
the search tree is built for the regression it is hard to salvage it across runs and so this is of limited
use. In particular, the labeling and banned words cannot be easily changed. Future versions of the
package would ideally remedy this.

Examples

data(testCorpora)
textreg(testCorpora$testI$corpus, testCorpora$testI$labelI, c(), C=1, verbosity=1)

calc.loss Calculate total loss of model (Squared hinge loss).

Description

Calculate the loss for a model in predicting the -1/+1 labeling. If new text and labeling given, then
calc loss on the new text and labeling. This can be useful for cross validation and train-test splits.

Usage

calc.loss(model.blob, new.text = NULL, new.labeling = NULL,
loss = c("square.hinge", "square", "hinge"))

Arguments

model.blob The model returned from textreg

new.text New text (string or tm Corpus) to predict labeling for

new.labeling Labeling to go with new text.

loss Type of loss to calc for.

Value

Three numbers: total loss, loss from prediction, loss from penalty term

6 cluster.phrases

Examples

data(testCorpora)
res = textreg(c("", "", "A", "A"), c(-1, -1, 1, 1), C=1, Lq=1,

convergence.threshold=0.00000001, verbosity=0)
calc.loss(res)
calc.loss(res, new.text=c("A B C A"), new.labeling=c(1))

clean.text Clean text and get it ready for textreg.

Description

Changes multiline documents to single line. Strips extra whitespace and punctuation. Changes
digits to ’X’s. Non-alpha characters converted to spaces.

Usage

clean.text(bigcorp)

Arguments

bigcorp A tm Corpus object.

Examples

library(tm)
txt = c("thhis s! and bonkus 4:33pm and Jan 3, 2015. ",

" big space\n dawg-ness?")
a <- clean.text(VCorpus(VectorSource(txt)))
a[[1]]

cluster.phrases Cluster phrases based on similarity of appearance.

Description

Cluster phrases based on similarity of their appearance in the positive documents. Can also plot this
if so desired.

Uses hclust() with the “ward.D” method on 1-S with S from make.similarity.matrix

Warning: for ’negative weight’ phrases this method does not do well since it ignores negative
documents.

Usage

cluster.phrases(result, num.groups = 5, plot = TRUE, yaxt = "n",
ylab = "", sub = "", main = "Association of Phrases", ...)

convert.tm.to.character 7

Arguments

result A similarity matrix from make.similarity.matrix call or an textreg.result object

num.groups Number of groups to box.

plot Actually plot clustering or just calculate it.

yaxt Whether to include a y-axis

ylab Label for y-axis

sub Subtitle for plot

main Title of plot.

... Extra arguments to pass to the plot command. See par.

See Also

Other Phrase Vizualization: make.appearance.matrix, make.phrase.correlation.chart, make.similarity.matrix

convert.tm.to.character

Convert tm corpus to vector of strings.

Description

A utility function useful for testing and some dirty hacks. This is because the tm package doesn’t
leave vector corpora of strings alone anymore.

and so sometimes you need to convert your tm object to a string vector for various reasons, the main
one being handing it to the C++ method. It is ugly, but so it goes.

It is therefore a possibly better decision to pass a filename to a plain-text file to the textreg call to
be loaded by C++ directly. See textreg.

Usage

convert.tm.to.character(corpus)

Arguments

corpus The tm corpus to convert.

Value

vector of character.

8 cpp_textreg

cpp_build.corpus Driver function for the C++ function.

Description

Given a labeling and a corpus, create a corpus object for use in textreg. Generally you should use
the buildCorpus method, not this method.

Usage

cpp_build.corpus(corpus, labeling, banned = c(), params)

Arguments

corpus A list of strings or a corpus from the tm package.

labeling A vector of +1/-1 or TRUE/FALSE indicating which documents are considered
relevant and which are baseline. The +1/-1 can contain 0 whcih means drop the
document.

banned List of words that should be dropped from consideration.

params List of parameters to pass to the call.

Details

Warning: do not call directly. Use textreg instead

See Also

textreg, find_C_threshold

cpp_textreg Driver function for the C++ function.

Description

Given a labeling and a corpus, find phrases that predict this labeling. Generally you should use the
textreg method, not this method.

Usage

cpp_textreg(corpus, params)

Arguments

corpus A list of strings or a corpus from the tm package.

params List of parameters to pass to the call.

dirtyBathtub 9

Details

Warning: do not call directly. Use textreg instead

See Also

textreg, find_C_threshold

dirtyBathtub Sample of raw-text OSHA accident summaries.

Description

dirtyBathtub consists of the (more) raw data from which the bathtub dataset is derived.

Format

Dataframe. Has a meta info of the METHELYNE CHLORIDE labeling, plus 100s of other labels.

See Also

Other bathtub: bathtub

Examples

data(dirtyBathtub)
table(dirtyBathtub$fatality)

find.CV.C K-fold cross-validation to determine optimal tuning parameter

Description

Given a corpus, divide into K-folds and do test-train spilts averaged over the folds.

Usage

find.CV.C(corpus, labeling, banned, K = 5, length.out = 10,
max_C = NULL, verbose = FALSE, ...)

10 find.threshold.C

Arguments

corpus The text

labeling The labeling

banned The words to drop.

K Number of folds for K-fold cross-validation

length.out number of values of C to examine from 0 to max_C.

max_C upper bound for tuning parameter; if NULL, sets max_C to threshold C

verbose Print progress

... parameters to be passed to the original textreg() function

Details

Increments tuning parameter, performs K-fold cross-validation on each C giving a profile of predic-
tive power for different C.

Value

a dataframe containing the mean/standard error of out-of-sample predictions under K-Fold Cross-
validation

See Also

make.CV.chart

find.threshold.C Conduct permutation test on labeling to get null distribution of regu-
larization parameter.

Description

First determines what regularization will give null model on labeling. Then permutes labeling
repeatidly, recording what regularization will give null model for permuted labeling. This allows for
permutation-style inference on the relationship of the labeling to the text, and allows for appropriate
selection of the tuning parameter.

Usage

find.threshold.C(corpus, labeling, banned = NULL, R = 0,
objective.function = 2, a = 1, verbosity = 0,
step.verbosity = verbosity, positive.only = FALSE,
binary.features = FALSE, no.regularization = FALSE,
positive.weight = 1, Lq = 2, min.support = 1, min.pattern = 1,
max.pattern = 100, gap = 0, token.type = "word",
convergence.threshold = 1e-04)

find.threshold.C 11

Arguments

corpus A list of strings or a corpus from the tm package.

labeling A vector of +1/-1 or TRUE/FALSE indicating which documents are considered
relevant and which are baseline. The +1/-1 can contain 0 whcih means drop the
document.

banned List of words that should be dropped from consideration.

R Number of times to scramble labling. 0 means use given labeling and find single
C value.

objective.function

2 is hinge loss. 0 is something. 1 is something else.

a What percent of regularization should be L1 loss (a=1) vs L2 loss (a=0)

verbosity Level of output. 0 is no printed output.

step.verbosity Level of output for line searches. 0 is no printed output.

positive.only Disallow negative features if true
binary.features

Just code presence/absence of a feature in a document rather than count of fea-
ture in document.

no.regularization

Do not renormalize the features at all. (Lq will be ignored.)
positive.weight

Scale weight pf all positively marked documents by this value. (1, i.e., no scal-
ing) is default) NOT FULLY IMPLEMENTED

Lq Rescaling to put on the features (2 is standard). Can be from 1 up. Values above
10 invoke an infinity-norm.

min.support Only consider phrases that appear this many times or more.

min.pattern Only consider phrases this long or longer

max.pattern Only consider phrases this short or shorter

gap Allow phrases that have wildcard words in them. Number is how many wild-
cards in a row.

token.type "word" or "character" as tokens.
convergence.threshold

How to decide if descent has converged. (Will go for three steps at this threshold
to check for flatness.)

Details

Important: use the same parameter values as used with the original textreg call!

Value

A list of numbers (the Cs) R+1 long. The first number is always the C used for the _passed_
labeling. The remainder are shuffles.

12 grab.fragments

Examples

data(testCorpora)
find.threshold.C(testCorpora$testI$corpus, testCorpora$testI$labelI, c(), R=5, verbosity=1)

grab.fragments Grab all fragments in a corpus with given phrase.

Description

Search corpus for passed phrase, using some wildcard notation. Return snippits of text containing
this phrase, with a specified number of characters before and after. This gives context for phrases
in documents.

Use like this frags = grab.fragments("israel", bigcorp)

Can take phrases such as ’appl+’ which means any word starting with "appl." Can also take phrases
such as "big * city" which consist of any three-word phrase with "big" as the first word and "city"
as the third word.

If a pattern matches overlapping phrases, it will return the first but not the second.

Usage

grab.fragments(phrase, corp, char.before = 80,
char.after = char.before, cap.phrase = TRUE, clean = FALSE)

Arguments

phrase Phrase to find in corpus
corp is a tm corpus
char.before Number of characters of document to pull before phrase to give context.
char.after As above, but trailing characters. Defaults to char.before value.
cap.phrase TRUE if the phrase should be put in ALL CAPS. False if left alone.
clean True means drop all documents without phrase from list. False means leave

NULLs in the list.

Value

fragments in corp that have given phrase.List of lists. First list is len(corp) long with NULL values
for documents without phrase, and lists of phrases for those documents with the phrase

Examples

library(tm)
docs = c("987654321 test 123456789", "987654321 test test word 123456789",

"test at start", "a test b", "this is a test", "without the t-word",
"a test for you and a test for me")

corpus <- VCorpus(VectorSource(docs))
grab.fragments("test *", corpus, char.before=4, char.after=4)

is.fragment.sample 13

is.fragment.sample Is object a fragment.sample object?

Description

Is object a fragment.sample object?

Usage

is.fragment.sample(x)

Arguments

x the object to check.

See Also

Other sample.fragments: print.fragment.sample, sample.fragments

is.textreg.corpus Is object a textreg.corpus object?

Description

Is object a textreg.corpus object?

Usage

is.textreg.corpus(x)

Arguments

x the object to check.

See Also

Other textreg.corpus: print.textreg.corpus

14 list.table.chart

is.textreg.result Is object a textreg.result object?

Description

Is object a textreg.result object?

Usage

is.textreg.result(x)

Arguments

x the object to check.

See Also

Other textreg.result: phrases, print.textreg.result, reformat.textreg.model

list.table.chart Graphic showing multiple word lists side-by-side.

Description

This method basically makes a visual plot of a list table (which you call first).

Usage

list.table.chart(model.list, M = 100, linespace = 4, ytick = NULL,
dates = NULL, main = paste("Word Appearance for ", attr(model.list,
"topic"), "\n(Method: ", attr(model.list, "method"), ")", sep = ""),
xlab = "Model", mar = c(3, 5, 2.5, 0.1), xaxt = "y",
color.breaks = NULL, color.ramp = NULL, ...)

Arguments

model.list Matrix (or data.frame) from the make.list.table call.

M is the max number of words to show in chart

linespace Where to space

ytick Put y tick marks

dates Dates to put on bottom

main Main title

xlab Label for x-axis

mar Margin of plot (see par)

make.appearance.matrix 15

xaxt Plot an x-axis (see par)

color.breaks Cut-points (like on a histogram) defining the different color levels.

color.ramp List of colors to use from lowest value (potentially negative weights) to highest.
If both color.breaks and color.ramp passed, color.breaks is list one longer than
color.ramp.

... Extra arguments for the core image() call that plots the word weights.

See Also

make.list.table

make.appearance.matrix

Make phrase appearance matrix from textreg result.

Description

Make matrix of which phrases appear in which of the positively marked documents.

Usage

make.appearance.matrix(result)

Arguments

result An textreg.result object.

Details

Very similar to phrase.matrix, except this looks only at positively marked documents and just returns
1 or 0 on whether any document has a phrase, rather than giving counts. This is used by the
clustering vizualizations and make.similarity.matrix.

Value

A $n X p$ matrix for n documents and p phrases in the result object. Each entry is a 0/1 value
indicating presence of the given phrase in the given document.

See Also

make.similarity.matrix

phrase.matrix

Other Phrase Vizualization: cluster.phrases, make.phrase.correlation.chart, make.similarity.matrix

16 make.count.table

make.count.table Count number of times documents have a given phrase.

Description

Given a list of phrases, count how many documents they appear in and subdivide by positive and
negative appearance.

Usage

make.count.table(phrases, labeling, corpus)

Arguments

phrases List of strings

labeling Vector of +1/0/-1 labels

corpus A corpus object from tm package

Details

This method does not consider multiple counts of phrases within documents. Phrases can have
wildcards and stemming notation. See grab.fragments.

Value

a dataframe of statistics. per.pos is the percent of the documents with the phrase that are positively
labeled. per.tag is the percent of the positively labeled documents that have the phrase.

See Also

grab.fragments

Other textregCounting: make.phrase.matrix, phrase.count

Examples

library(tm)
data(bathtub)
lbl = meta(bathtub)$meth.chl
make.count.table(c("bathtub","strip+", "vapor *"), lbl, bathtub)

make.CV.chart 17

make.CV.chart Plot K-fold cross validation curves

Description

Make a loess curve with loess() to predict the test error for different values of C by interpolating the
passed evaluated points on the tbl dataframe.

Usage

make.CV.chart(tbl, plot = TRUE, ...)

Arguments

tbl Table from find.CV.C

plot TRUE means plot the chart. False means do not, but return the optimal C

... Parameters to the plot function

Details

Then plot the test error with SE bars for the cross validation. Also calculate the spot that is 1 SE
above the minimum. Fits the points with loess lines so, in principle, few actually evaluated points
are needed in evaluating the function. All a bit ad hoc and worthy of improvement.

Not particularly well implemented.

Value

invisible list of the minimum C value and the estimated test error for both the minimum and the
predicted C corresponding to 1 SE above the minimum estimate.

See Also

find.CV.C

make.list.table Collate multiple regression runs.

Description

This method makes a table of several regression runs side by side. The table has rows being phrases
and the columns being the regression runs. A number is usually the weight found for that word at
that window. If multiple runs have the same phrase, row will have multiple entries.

18 make.path.matrix

Usage

make.list.table(result.list, model.names = names(result.list), M = 100,
topic = "Summary Collection", method = c("rank", "weight", "count",
"word"), annotate = TRUE)

Arguments

result.list List of mix of textreg.result objects and dataframes with two columns of "word"
and "weight". (The latter is for merging lists from other regression packages.)

model.names Names of the textreg.result objects

M maximum number of words to keep

topic String A name for the topic

method Different ways to sort the phrases. ’word’ means make a list of words.

annotate Add summary statistics to table such as phrase counts, etc.

Details

Method will also order rows based on calculated importance of phrases. Multiple ways of ordering
are possible, via the method argument.

Finally, the table can be annotated with descriptive statistics of the phrases.

Warning: this method DOES NOT flip negative weight words (so negative weight usually look less
imporant in the ordering).

See the bathtub vignette for an example of this method.

Value

If annotate = true, a dataframe with each column corresponding to an textreg.result object (and
possibly extra columns about phrases). Otherwise a matrix of the word scores.

make.path.matrix Generate matrix describing gradient descent path of textreg.

Description

Generate a matrix of the sequence of features as they are introduced with the textreg gradient descent
program along with their coefficients with each step of the descent.

Usage

make.path.matrix(res)

Arguments

res A textreg.result object.

make.phrase.correlation.chart 19

See Also

Other plot.path.matrix: path.matrix.chart, plot.textreg.result

Examples

data(testCorpora)
testI = testCorpora$testI
res = textreg(testI$corpus, testI$labelI, c("frog","goat","bat"), C=2, verbosity=0)
make.path.matrix(res)

make.phrase.correlation.chart

Generate visualization of phrase overlap.

Description

Make simple chart showing which phrases have substantial overlap with other phrases.

Usage

make.phrase.correlation.chart(result, count = FALSE, num.groups = 5,
use.corrplot = FALSE, ...)

Arguments

result textreg.result object or a similarity matrix from a make.similarity.matrix call.

count Display counts rather than similarity scores.

num.groups Number of groups to box.

use.corrplot Use the corrplot package of Taiyun Wei (will need to install it).

... Extra arguments to pass to the image() plotting command. See par.

See Also

Other Phrase Vizualization: cluster.phrases, make.appearance.matrix, make.similarity.matrix

20 make.similarity.matrix

make.phrase.matrix Make a table of where phrases appear in a corpus

Description

Generate a n by p phrase count matrix, with n being number of documents and p being number of
phrases: \tabularrrrrr 0 \tab 0 \tab 0 \tab 0 \tab 0 \cr 1 \tab 6 \tab 2 \tab 0 \tab 0 \cr 8 \tab 0 \tab 0 \tab
0 \tab 0 This is the phrase equivilent of a document-term matrix.

Usage

make.phrase.matrix(phrase_list, corpus)

Arguments

phrase_list List of strings

corpus A corpus object from tm package

Value

a n X p matrix, n being number of documents, p being number of phrases.

See Also

Other textregCounting: make.count.table, phrase.count

Examples

library(tm)
data(bathtub)
lbl = meta(bathtub)$meth.chl
head(make.phrase.matrix(c("bathtub","strip+", "vapor *"), bathtub))

make.similarity.matrix

Calculate similarity matrix for set of phrases.

Description

First get phrase appearance pattern on positive labeling (if not directly passed) and then calculate
similarity matrix of how they are similar to each other.

Usage

make.similarity.matrix(result)

make_search_phrases 21

Arguments

result An textreg.result object or a matrix from make.appearance.matrix

Details

Warning: for ’negative weight’ phrases this method does not do well since it ignores negative
documents.

See Also

Other Phrase Vizualization: cluster.phrases, make.appearance.matrix, make.phrase.correlation.chart

make_search_phrases Convert phrases to appropriate search string.

Description

Will change, e.g., "test * pig+" to appropriate regular expression to find in the text.

Usage

make_search_phrases(phrases)

Arguments

phrases List of strings denoting the phrases to be searched for.

path.matrix.chart Plot optimization path of textreg.

Description

Plot the sequence of features as they are introduced with the textreg gradient descent program.

Usage

path.matrix.chart(path.matrix, xlab = "step", ylab = "beta",
bty = "n", ...)

Arguments

path.matrix Either a textreg.result object or a matrix from the make.path.matrix call.

xlab Label for x axis

ylab Label for y axis

bty Box for plot

... Arguments to be passed to the matplot() command.

22 phrase.matrix

See Also

Other plot.path.matrix: make.path.matrix, plot.textreg.result

phrase.count Count phrase appearance.

Description

Count number of times a _single_ phrase appears in the corpus

Usage

phrase.count(phrase, corp)

Arguments

phrase A string

corp A corpus object from tm package

See Also

Other textregCounting: make.count.table, make.phrase.matrix

Examples

library(tm)
data(bathtub)
phrase.count("bathtub", bathtub)

phrase.matrix Make matrix of where phrases appear in corpus.

Description

Construct a $n X p$ matrix of appearances for selected phrases out of textreg object. n is the
number of documents, p is the number of phrases selected in the result object ‘rules.’

Usage

phrase.matrix(rules, n)

Arguments

rules Either a textreg.result object or the rules list from such an object.

n (Optional) If giving a rules list, the number of documents in corpus.

phrases 23

phrases Get the phrases from the textreg.result object?

Description

Get the phrases from the textreg.result object?

Usage

phrases(x)

Arguments

x the object to check.

See Also

Other textreg.result: is.textreg.result, print.textreg.result, reformat.textreg.model

plot.textreg.result Plot the sequence of features as they are introduced with the textreg
gradient descent program.

Description

Simply calls path.matrix.chart.

Usage

S3 method for class 'textreg.result'
plot(x, ...)

Arguments

x A textreg.result object.

... Parameters to be passed to path.matrix.chart.

See Also

path.matrix.chart

Other plot.path.matrix: make.path.matrix, path.matrix.chart

24 print.fragment.sample

predict.textreg.result

Predict labeling with the selected phrases.

Description

Given raw text and a textreg model, predict the labeling by counting appearance of relevant phrases
in text and then multiplying these counts by the beta vector associated with the textreg object. Just
like linear regression.

Usage

S3 method for class 'textreg.result'
predict(object, new.text = NULL,
return.matrix = FALSE, ...)

Arguments

object A textreg.result object

new.text If you want to predict for new text, pass it along.

return.matrix TRUE means hand back the phrase appearance pattern matrix.

... Nothing can be passed extra.

Value

Vector of predictions (numbers).

Examples

res = textreg(c("", "", "A", "A"), c(-1, -1, 1, 1),
C=1, Lq=1, convergence.threshold=0.00000001, verbosity=0)

predict(res)
predict(res, new.text=c("A B C A"))

print.fragment.sample Pretty print results of phrase sampling object.

Description

Pretty print results of phrase sampling object.

Usage

S3 method for class 'fragment.sample'
print(x, ...)

print.textreg.corpus 25

Arguments

x A fragment.sample object.

... No extra options passed.

See Also

Other sample.fragments: is.fragment.sample, sample.fragments

print.textreg.corpus Pretty print textreg corpus object

Description

Pretty print textreg corpus object

Usage

S3 method for class 'textreg.corpus'
print(x, ...)

Arguments

x A textreg.corpus object.

... No extra options passed.

See Also

Other textreg.corpus: is.textreg.corpus

print.textreg.result Pretty print results of textreg regression.

Description

You can also reformat an textreg.result to get simpler diagnostics via reformat.textreg.model.

Usage

S3 method for class 'textreg.result'
print(x, simple = FALSE, ...)

Arguments

x A textreg.result object.

simple TRUE means print out simpler results. False includes some ugly detail.

... No extra options passed.

26 sample.fragments

See Also

reformat.textreg.model

Other textreg.result: is.textreg.result, phrases, reformat.textreg.model

reformat.textreg.model

Clean up output from textreg.

Description

Calculate some useful statistics (percents, etc) and return as dataframe.

Usage

reformat.textreg.model(model, short = TRUE)

Arguments

model The model returned from textreg

short True if the output should be abbrviated for easy consumption.

Value

Dataframe with statistics on the terms in the model

See Also

Other textreg.result: is.textreg.result, phrases, print.textreg.result

sample.fragments Sample fragments of text to contextualize a phrase.

Description

Take a phrase, a labeling and a corpus and return text fragments containing that phrase.

Grab all phrases and then give sample of N from positive class and N from negative class. Sampling
is to first sample from documents and then sample a random phrase from each of those documents.

Usage

sample.fragments(phrases, labeling, corp, N = 10, char.before = 80,
char.after = char.before, metainfo = NULL)

save.corpus.to.files 27

Arguments

phrases Phrases to examine (a list of strings)

labeling – a vector of the same length as the corpus

corp Corpus object (tm package Corpus object)

N size of sample to make.

char.before Number of characters of document to pull before phrase to give context.

char.after As above, but trailing characters. Defaults to char.before value.

metainfo – extra string to add to the printout for clarity if many such printouts are being
generated.

See Also

Other sample.fragments: is.fragment.sample, print.fragment.sample

Examples

library(tm)
data(bathtub)
sample.fragments("bathtub", meta(bathtub)$meth.chl, bathtub)

save.corpus.to.files Save corpus to text (and RData) file.

Description

Small utility to save a corpus to a text file (and RData file) for ease of use.

It is possibly recommended to pass a filename to the C++ function textreg rather than the entire
corpus for large text since I believe it will otherwise copy over everything due to the coder’s (my)
poor understanding of how RCpp converts objects.

Usage

save.corpus.to.files(bigcorp, filename = "corpus")

Arguments

bigcorp A tm Corpus object.

filename The first part of the filename. A rda and txt extension will be appended to the
two generated files.

28 stem.corpus

stem.corpus Step corpus with annotation.

Description

Given a tm-package VCorpus of original text, returns a VCorpus of stemmed text with ’+’ appended
to all stemmed words.

Usage

stem.corpus(corpus, verbose = TRUE)

Arguments

corpus Original text

verbose True means print out text progress bar so you can watch progress.

Details

This is non-optimized code that is expensive to run. First the stemmer chops words. Then this
method passes through and adds a "+" to all chopped words, and builds a list of stems. Finally, the
method passes through and adds a "+" to all stems found without a suffix.

So, e.g., goblins and goblin will both be transformed to "goblin+".

Adding the ’+’ makes stemmed text more readible.

Code based on code from Kevin Wu, UC Berkeley Undergrad Thesis 2014.

Requires, via the tm package, the SnowballC package.

Warning: Do not use this on a textreg.corpus object. Do to text before building the textreg.corpus
object.

Examples

library(tm)
texts <- c("texting goblins the dagger", "text these goblins",

"texting 3 goblins appl daggers goblining gobble")
corpus <- VCorpus(VectorSource(texts))
stemmed_corpus<-stem.corpus(corpus, verbose=FALSE)
inspect(stemmed_corpus[[2]])

testCorpora 29

testCorpora Some small, fake test corpora.

Description

A list of several fake documents along with some labeling schemes primarily used by the unit testing
code. Also used in some examples.

Format

A list of dataframes

textreg Sparse regression of labeling vector onto all phrases in a corpus.

Description

Given a labeling and a corpus, find phrases that predict this labeling. This function calls a C++
function that builds a tree of phrases and searches it using greedy coordinate descent to solve the
optimization problem associated with the associated sparse regression.

Usage

textreg(corpus, labeling, banned = NULL, objective.function = 2,
C = 1, a = 1, maxIter = 40, verbosity = 1,
step.verbosity = verbosity, positive.only = FALSE,
binary.features = FALSE, no.regularization = FALSE,
positive.weight = 1, Lq = 2, min.support = 1, min.pattern = 1,
max.pattern = 100, gap = 0, token.type = "word",
convergence.threshold = 1e-04)

Arguments

corpus A list of strings or a corpus from the tm package.

labeling A vector of +1/-1 or TRUE/FALSE indicating which documents are considered
relevant and which are baseline. The +1/-1 can contain 0 whcih means drop the
document.

banned List of words that should be dropped from consideration.
objective.function

2 is hinge loss. 0 is something. 1 is something else.

C The regularization term. 0 is no regularization.

a What percent of regularization should be L1 loss (a=1) vs L2 loss (a=0)

maxIter Number of gradient descent steps to take (not including intercept adjustments)

30 textreg

verbosity Level of output. 0 is no printed output.

step.verbosity Level of output for line searches. 0 is no printed output.

positive.only Disallow negative features if true

binary.features

Just code presence/absence of a feature in a document rather than count of fea-
ture in document.

no.regularization

Do not renormalize the features at all. (Lq will be ignored.)

positive.weight

Scale weight pf all positively marked documents by this value. (1, i.e., no scal-
ing) is default) NOT FULLY IMPLEMENTED

Lq Rescaling to put on the features (2 is standard). Can be from 1 up. Values above
10 invoke an infinity-norm.

min.support Only consider phrases that appear this many times or more.

min.pattern Only consider phrases this long or longer

max.pattern Only consider phrases this short or shorter

gap Allow phrases that have wildcard words in them. Number is how many wild-
cards in a row.

token.type "word" or "character" as tokens.

convergence.threshold

How to decide if descent has converged. (Will go for three steps at this threshold
to check for flatness.)

Details

See the bathtub vignette for more complete discussion of this method and the options you might
pass to it.

Value

A textreg.result object.

Examples

data(testCorpora)
textreg(testCorpora$testI$corpus, testCorpora$testI$labelI, c(), C=1, verbosity=1)

tm_gregexpr 31

tm_gregexpr Call gregexpr on the content of a tm Corpus.

Description

Pull out content of a tm corpus and call gregexpr on that content represented as a list of character
strings.

Usage

tm_gregexpr(pattern, corpus, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments

pattern See gregexpr

corpus Either a character vector or tm Corpus object.

ignore.case See gregexpr

perl See gregexpr

fixed See gregexpr

useBytes See gregexpr

Details

If ’corpus’ is already a character vector, it just calls gregexpr with no fuss (or warning).

Value

This method gives results exactly as if gregexpr were called on the Corpus represented as a list of
strings.

See gregexpr.

See Also

gregexpr

Index

∗Topic datasets
bathtub, 4
dirtyBathtub, 9
testCorpora, 29

bathtub, 4, 9
build.corpus, 4

calc.loss, 5
clean.text, 6
cluster.phrases, 6, 15, 19, 21
convert.tm.to.character, 7
cpp_build.corpus, 8
cpp_textreg, 8

dirtyBathtub, 4, 9

find.CV.C, 9
find.threshold.C, 10
fragment.sample (is.fragment.sample), 13

grab.fragments, 12, 16
gregexpr, 31

is.fragment.sample, 13, 25, 27
is.textreg.corpus, 13, 25
is.textreg.result, 14, 23, 26

list.table.chart, 14

make.appearance.matrix, 7, 15, 19, 21
make.count.table, 16, 20, 22
make.CV.chart, 17
make.list.table, 17
make.path.matrix, 18, 22, 23
make.phrase.correlation.chart, 7, 15, 19,

21
make.phrase.matrix, 16, 20, 22
make.similarity.matrix, 7, 15, 19, 20
make_search_phrases, 21

path.matrix.chart, 19, 21, 23

phrase.count, 16, 20, 22
phrase.matrix, 22
phrases, 14, 23, 26
plot.textreg.result, 19, 22, 23
predict.textreg.result, 24
print.fragment.sample, 13, 24, 27
print.textreg.corpus, 13, 25
print.textreg.result, 14, 23, 25, 26

reformat.textreg.model, 14, 23, 25, 26, 26

sample.fragments, 13, 25, 26
save.corpus.to.files, 27
stem.corpus, 28

testCorpora, 29
textreg, 5, 7, 26, 27, 29
textreg-package, 2
textreg.corpus, 5, 28
textreg.corpus (is.textreg.corpus), 13
textreg.result, 30
textreg.result (is.textreg.result), 14
tm_gregexpr, 31

32

	textreg-package
	bathtub
	build.corpus
	calc.loss
	clean.text
	cluster.phrases
	convert.tm.to.character
	cpp_build.corpus
	cpp_textreg
	dirtyBathtub
	find.CV.C
	find.threshold.C
	grab.fragments
	is.fragment.sample
	is.textreg.corpus
	is.textreg.result
	list.table.chart
	make.appearance.matrix
	make.count.table
	make.CV.chart
	make.list.table
	make.path.matrix
	make.phrase.correlation.chart
	make.phrase.matrix
	make.similarity.matrix
	make_search_phrases
	path.matrix.chart
	phrase.count
	phrase.matrix
	phrases
	plot.textreg.result
	predict.textreg.result
	print.fragment.sample
	print.textreg.corpus
	print.textreg.result
	reformat.textreg.model
	sample.fragments
	save.corpus.to.files
	stem.corpus
	testCorpora
	textreg
	tm_gregexpr
	Index

