tfdatasets 2.7.0
- Added compatability with Tensorflow version 2.7
as_iterator(), iter_next() and iterate() are is now reexported from {reticualte}.
- New
as_array_iterator(), for converting a dataset into an iterable that yields R arrays. (as_iterator() yields tensorflow tensors)
- New
dataset_bucket_by_sequence_length()
- New
dataset_rejection_resample()
- New
dataset_unique()
- New
choose_from_datasets()
sample_from_datasets() gains argument stop_on_empty_dataset.
dataset_batch() gains arguments num_parallel_calls and deterministic.
dataset_padded_batch(): Fixed error raised when drop_remainder=TRUE with recent TF versions. Added examples, docs, and tests.
dataset_concatenate() gains ... and the ability to combine multiple datasets in one call.
tfdatasets 2.6.0
- New
dataset_options() for setting and getting dataset options.
- New
length() method for tensorflow datasets.
- New
dataset_enumerate().
- New
random_integer_dataset().
- New
dataset_scan(), a stateful variant of dataset_map().
- New
dataset_snapshot() for persisting the output of a dataset to disk.
range_dataset() gains a dtype argument.
dataset_prefetch() argument buffer_size is now optional, defaults to tf$data$AUTOTUNE
tfdatasets 2.4.0
- Fixed problem when saving models with feature specs (#82).
tfdatasets 1.13.1
- Add
datatset_window method.
- Allow
purrr style lambda functions in dataset_map.
- Added a
NEWS.md file to track changes to the package.
- Added a new feature spec interface that can be used to easily create
feature_columns. (#42)