
Package ‘tfdatasets’
November 9, 2021

Type Package

Title Interface to 'TensorFlow' Datasets

Version 2.7.0

Description Interface to 'TensorFlow' Datasets, a high-level library for
building complex input pipelines from simple, re-usable pieces.
See <https://www.tensorflow.org/guide> for additional
details.

License Apache License 2.0

URL https://github.com/rstudio/tfdatasets

BugReports https://github.com/rstudio/tfdatasets/issues

SystemRequirements TensorFlow >= 1.4 (https://www.tensorflow.org/)

Encoding UTF-8

LazyData true

Depends R (>= 3.1)

Imports reticulate (>= 1.10), tensorflow (>= 1.13.1), magrittr, rlang,
tidyselect, stats, generics, vctrs

RoxygenNote 7.1.2

Suggests testthat, knitr, keras, rsample, rmarkdown, Metrics, dplyr,
tfestimators

VignetteBuilder knitr

NeedsCompilation no

Author Tomasz Kalinowski [ctb, cph, cre],
Daniel Falbel [ctb, cph],
JJ Allaire [aut, cph],
Yuan Tang [aut] (<https://orcid.org/0000-0001-5243-233X>),
Kevin Ushey [aut],
RStudio [cph, fnd],
Google Inc. [cph]

Maintainer Tomasz Kalinowski <tomasz.kalinowski@rstudio.com>

Repository CRAN

Date/Publication 2021-11-09 20:10:01 UTC

1

https://www.tensorflow.org/guide
https://github.com/rstudio/tfdatasets
https://github.com/rstudio/tfdatasets/issues
https://orcid.org/0000-0001-5243-233X

2 R topics documented:

R topics documented:
all_nominal . 3
all_numeric . 4
as_array_iterator . 4
choose_from_datasets . 5
dataset_batch . 6
dataset_bucket_by_sequence_length . 7
dataset_cache . 9
dataset_collect . 10
dataset_concatenate . 10
dataset_decode_delim . 11
dataset_enumerate . 11
dataset_filter . 12
dataset_flat_map . 13
dataset_interleave . 14
dataset_map . 15
dataset_map_and_batch . 16
dataset_options . 17
dataset_padded_batch . 18
dataset_prefetch . 20
dataset_prefetch_to_device . 21
dataset_prepare . 22
dataset_reduce . 23
dataset_rejection_resample . 24
dataset_repeat . 25
dataset_scan . 26
dataset_shard . 27
dataset_shuffle . 27
dataset_shuffle_and_repeat . 28
dataset_skip . 29
dataset_snapshot . 30
dataset_take . 31
dataset_unique . 32
dataset_use_spec . 33
dataset_window . 34
delim_record_spec . 34
dense_features . 36
feature_spec . 36
file_list_dataset . 37
fit.FeatureSpec . 38
fixed_length_record_dataset . 39
has_type . 40
hearts . 41
input_fn.tf_dataset . 42
iterator_get_next . 43
iterator_initializer . 43
iterator_make_initializer . 44

all_nominal 3

iterator_string_handle . 44
layer_input_from_dataset . 45
length.tf_dataset . 46
make-iterator . 46
make_csv_dataset . 48
next_batch . 50
output_types . 51
random_integer_dataset . 52
range_dataset . 52
read_files . 53
sample_from_datasets . 54
scaler . 54
scaler_min_max . 55
scaler_standard . 55
selectors . 56
sparse_tensor_slices_dataset . 56
sql_record_spec . 57
steps . 58
step_bucketized_column . 58
step_categorical_column_with_hash_bucket . 59
step_categorical_column_with_identity . 61
step_categorical_column_with_vocabulary_file . 62
step_categorical_column_with_vocabulary_list . 63
step_crossed_column . 65
step_embedding_column . 66
step_indicator_column . 68
step_numeric_column . 69
step_remove_column . 70
step_shared_embeddings_column . 71
tensors_dataset . 73
tensor_slices_dataset . 73
text_line_dataset . 74
tfrecord_dataset . 74
until_out_of_range . 75
with_dataset . 76
zip_datasets . 77

Index 78

all_nominal Find all nominal variables.

Description

Currently we only consider "string" type as nominal.

4 as_array_iterator

Usage

all_nominal()

See Also

Other Selectors: all_numeric(), has_type()

all_numeric Speciy all numeric variables.

Description

Find all the variables with the following types: "float16", "float32", "float64", "int16", "int32",
"int64", "half", "double".

Usage

all_numeric()

See Also

Other Selectors: all_nominal(), has_type()

as_array_iterator Convert tf_dataset to an iterator that yields R arrays.

Description

Convert tf_dataset to an iterator that yields R arrays.

Usage

as_array_iterator(dataset)

Arguments

dataset A tensorflow dataset

Value

An iterable. Use iterate() or iter_next() to access values from the iterator.

choose_from_datasets 5

choose_from_datasets Creates a dataset that deterministically chooses elements from
datasets.

Description

Creates a dataset that deterministically chooses elements from datasets.

Usage

choose_from_datasets(datasets, choice_dataset, stop_on_empty_dataset = TRUE)

Arguments

datasets A non-empty list of tf.data.Dataset objects with compatible structure.

choice_dataset A tf.data.Dataset of scalar tf.int64 tensors between 0 and length(datasets)
-1.

stop_on_empty_dataset

If TRUE, selection stops if it encounters an empty dataset. If FALSE, it skips
empty datasets. It is recommended to set it to TRUE. Otherwise, the selected
elements start off as the user intends, but may change as input datasets become
empty. This can be difficult to detect since the dataset starts off looking correct.
Defaults to TRUE.

Value

Returns a dataset that interleaves elements from datasets according to the values of choice_dataset.

Examples

Not run:
datasets <- list(tensors_dataset("foo") %>% dataset_repeat(),

tensors_dataset("bar") %>% dataset_repeat(),
tensors_dataset("baz") %>% dataset_repeat())

Define a dataset containing `[0, 1, 2, 0, 1, 2, 0, 1, 2]`.
choice_dataset <- range_dataset(0, 3) %>% dataset_repeat(3)
result <- choose_from_datasets(datasets, choice_dataset)
result %>% as_array_iterator() %>% iterate(function(s) s$decode()) %>% print()
[1] "foo" "bar" "baz" "foo" "bar" "baz" "foo" "bar" "baz"

End(Not run)

6 dataset_batch

dataset_batch Combines consecutive elements of this dataset into batches.

Description

The components of the resulting element will have an additional outer dimension, which will be
batch_size (or N %% batch_size for the last element if batch_size does not divide the number
of input elements N evenly and drop_remainder is FALSE). If your program depends on the batches
having the same outer dimension, you should set the drop_remainder argument to TRUE to prevent
the smaller batch from being produced.

Usage

dataset_batch(
dataset,
batch_size,
drop_remainder = FALSE,
num_parallel_calls = NULL,
deterministic = NULL

)

Arguments

dataset A dataset

batch_size An integer, representing the number of consecutive elements of this dataset to
combine in a single batch.

drop_remainder (Optional.) A boolean, representing whether the last batch should be dropped in
the case it has fewer than batch_size elements; the default behavior is not to
drop the smaller batch.

num_parallel_calls

(Optional.) A scalar integer, representing the number of batches to compute
asynchronously in parallel. If not specified, batches will be computed sequen-
tially. If the value tf$data$AUTOTUNE is used, then the number of parallel calls
is set dynamically based on available resources.

deterministic (Optional.) When num_parallel_calls is specified, if this boolean is spec-
ified (TRUE or FALSE), it controls the order in which the transformation pro-
duces elements. If set to FALSE, the transformation is allowed to yield ele-
ments out of order to trade determinism for performance. If not specified, the
tf.data.Options.experimental_deterministic option (TRUE by default) con-
trols the behavior. See dataset_options() for how to set dataset options.

Value

A dataset

dataset_bucket_by_sequence_length 7

Note

If your program requires data to have a statically known shape (e.g., when using XLA), you should
use drop_remainder=TRUE. Without drop_remainder=TRUE the shape of the output dataset will
have an unknown leading dimension due to the possibility of a smaller final batch.

See Also

Other dataset methods: dataset_cache(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(),
dataset_filter(), dataset_interleave(), dataset_map_and_batch(), dataset_map(), dataset_padded_batch(),
dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

dataset_bucket_by_sequence_length

A transformation that buckets elements in a Dataset by length

Description

A transformation that buckets elements in a Dataset by length

Usage

dataset_bucket_by_sequence_length(
dataset,
element_length_func,
bucket_boundaries,
bucket_batch_sizes,
padded_shapes = NULL,
padding_values = NULL,
pad_to_bucket_boundary = FALSE,
no_padding = FALSE,
drop_remainder = FALSE,
name = NULL

)

Arguments

dataset A tf_dataset

element_length_func

function from element in Dataset to tf$int32, determines the length of the
element, which will determine the bucket it goes into.

bucket_boundaries

integers, upper length boundaries of the buckets.
bucket_batch_sizes

integers, batch size per bucket. Length should be length(bucket_boundaries)
+ 1.

8 dataset_bucket_by_sequence_length

padded_shapes Nested structure of tf.TensorShape (returned by tensorflow::shape()) to
pass to tf.data.Dataset.padded_batch. If not provided, will use dataset.output_shapes,
which will result in variable length dimensions being padded out to the maxi-
mum length in each batch.

padding_values Values to pad with, passed to tf.data.Dataset.padded_batch. Defaults to
padding with 0.

pad_to_bucket_boundary

bool, if FALSE, will pad dimensions with unknown size to maximum length
in batch. If TRUE, will pad dimensions with unknown size to bucket bound-
ary minus 1 (i.e., the maximum length in each bucket), and caller must ensure
that the source Dataset does not contain any elements with length longer than
max(bucket_boundaries).

no_padding boolean, indicates whether to pad the batch features (features need to be either
of type tf.sparse.SparseTensor or of same shape).

drop_remainder (Optional.) A logical scalar, representing whether the last batch should be
dropped in the case it has fewer than batch_size elements; the default behavior
is not to drop the smaller batch.

name (Optional.) A name for the tf.data operation.

Details

Elements of the Dataset are grouped together by length and then are padded and batched.

This is useful for sequence tasks in which the elements have variable length. Grouping together
elements that have similar lengths reduces the total fraction of padding in a batch which increases
training step efficiency.

Below is an example to bucketize the input data to the 3 buckets "[0, 3), [3, 5), [5, Inf)" based on
sequence length, with batch size 2.

See Also

• https://www.tensorflow.org/api_docs/python/tf/data/Dataset#bucket_by_sequence_
length

Examples

Not run:
dataset <- list(c(0),

c(1, 2, 3, 4),
c(5, 6, 7),
c(7, 8, 9, 10, 11),
c(13, 14, 15, 16, 17, 18, 19, 20),
c(21, 22)) %>%

lapply(as.array) %>% lapply(as_tensor, "int32") %>%
lapply(tensors_dataset) %>%
Reduce(dataset_concatenate, .)

dataset %>%
dataset_bucket_by_sequence_length(

https://www.tensorflow.org/api_docs/python/tf/data/Dataset#bucket_by_sequence_length
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#bucket_by_sequence_length

dataset_cache 9

element_length_func = function(elem) tf$shape(elem)[1],
bucket_boundaries = c(3, 5),
bucket_batch_sizes = c(2, 2, 2)

) %>%
as_array_iterator() %>%
iterate(print)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 0
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 7 8 9 10 11 0 0 0
[2,] 13 14 15 16 17 18 19 20
[,1] [,2]
[1,] 0 0
[2,] 21 22

End(Not run)

dataset_cache Caches the elements in this dataset.

Description

Caches the elements in this dataset.

Usage

dataset_cache(dataset, filename = NULL)

Arguments

dataset A dataset

filename String with the name of a directory on the filesystem to use for caching tensors in
this Dataset. If a filename is not provided, the dataset will be cached in memory.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_collect(), dataset_concatenate(), dataset_decode_delim(),
dataset_filter(), dataset_interleave(), dataset_map_and_batch(), dataset_map(), dataset_padded_batch(),
dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

10 dataset_concatenate

dataset_collect Collects a dataset

Description

Iterates throught the dataset collecting every element into a list. It’s useful for looking at the full
result of the dataset. Note: You may run out of memory if your dataset is too big.

Usage

dataset_collect(dataset, iter_max = Inf)

Arguments

dataset A dataset

iter_max Maximum number of iterations. Inf until the end of the dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_concatenate(), dataset_decode_delim(),
dataset_filter(), dataset_interleave(), dataset_map_and_batch(), dataset_map(), dataset_padded_batch(),
dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

dataset_concatenate Creates a dataset by concatenating given dataset with this dataset.

Description

Creates a dataset by concatenating given dataset with this dataset.

Usage

dataset_concatenate(dataset, ...)

Arguments

dataset, ... tf_datasets to be concatenated

Value

A dataset

Note

Input dataset and dataset to be concatenated should have same nested structures and output types.

dataset_decode_delim 11

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_decode_delim(),
dataset_filter(), dataset_interleave(), dataset_map_and_batch(), dataset_map(), dataset_padded_batch(),
dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

dataset_decode_delim Transform a dataset with delimted text lines into a dataset with named
columns

Description

Transform a dataset with delimted text lines into a dataset with named columns

Usage

dataset_decode_delim(dataset, record_spec, parallel_records = NULL)

Arguments

dataset Dataset containing delimited text lines (e.g. a CSV)

record_spec Specification of column names and types (see delim_record_spec()).
parallel_records

(Optional) An integer, representing the number of records to decode in parallel.
If not specified, records will be processed sequentially.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_filter(), dataset_interleave(), dataset_map_and_batch(), dataset_map(), dataset_padded_batch(),
dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

dataset_enumerate Enumerates the elements of this dataset

Description

Enumerates the elements of this dataset

Usage

dataset_enumerate(dataset, start = 0L)

12 dataset_filter

Arguments

dataset A tensorflow dataset

start An integer (coerced to a tf$int64 scalar tf.Tensor), representing the start
value for enumeration.

Details

It is similar to python’s enumerate, this transforms a sequence of elements into a sequence of
list(index,element), where index is an integer that indicates the position of the element in the
sequence.

Examples

Not run:
dataset <- tensor_slices_dataset(100:103) %>%

dataset_enumerate()

iterator <- reticulate::as_iterator(dataset)
reticulate::iter_next(iterator) # list(0, 100)
reticulate::iter_next(iterator) # list(1, 101)
reticulate::iter_next(iterator) # list(2, 102)
reticulate::iter_next(iterator) # list(3, 103)
reticulate::iter_next(iterator) # NULL (iterator exhausted)
reticulate::iter_next(iterator) # NULL (iterator exhausted)

End(Not run)

dataset_filter Filter a dataset by a predicate

Description

Filter a dataset by a predicate

Usage

dataset_filter(dataset, predicate)

Arguments

dataset A dataset

predicate A function mapping a nested structure of tensors (having shapes and types de-
fined by output_shapes() and output_types() to a scalar tf$bool tensor.

dataset_flat_map 13

Details

Note that the functions used inside the predicate must be tensor operations (e.g. tf$not_equal,
tf$less, etc.). R generic methods for relational operators (e.g. <, >, <=, etc.) and logical operators
(e.g. !, &, |, etc.) are provided so you can use shorthand syntax for most common comparisions
(this is illustrated by the example below).

Value

A dataset composed of records that matched the predicate.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_interleave(), dataset_map_and_batch(), dataset_map(),
dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(),
dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(),
dataset_take(), dataset_window()

Examples

Not run:

dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
dataset_filter(function(record) {
record$mpg >= 20

})

dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%
dataset_filter(function(record) {
record$mpg >= 20 & record$cyl >= 6L

})

End(Not run)

dataset_flat_map Maps map_func across this dataset and flattens the result.

Description

Maps map_func across this dataset and flattens the result.

Usage

dataset_flat_map(dataset, map_func)

14 dataset_interleave

Arguments

dataset A dataset

map_func A function mapping a nested structure of tensors (having shapes and types de-
fined by output_shapes() and output_types() to a dataset.

Value

A dataset

dataset_interleave Maps map_func across this dataset, and interleaves the results

Description

Maps map_func across this dataset, and interleaves the results

Usage

dataset_interleave(dataset, map_func, cycle_length, block_length = 1)

Arguments

dataset A dataset

map_func A function mapping a nested structure of tensors (having shapes and types de-
fined by output_shapes() and output_types() to a dataset.

cycle_length The number of elements from this dataset that will be processed concurrently.

block_length The number of consecutive elements to produce from each input element before
cycling to another input element.

Details

The cycle_length and block_length arguments control the order in which elements are pro-
duced. cycle_length controls the number of input elements that are processed concurrently. In
general, this transformation will apply map_func to cycle_length input elements, open iterators
on the returned dataset objects, and cycle through them producing block_length consecutive ele-
ments from each iterator, and consuming the next input element each time it reaches the end of an
iterator.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_map_and_batch(), dataset_map(), dataset_padded_batch(),
dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

dataset_map 15

Examples

Not run:

dataset <- tensor_slices_dataset(c(1,2,3,4,5)) %>%
dataset_interleave(cycle_length = 2, block_length = 4, function(x) {
tensors_dataset(x) %>%

dataset_repeat(6)
})

resulting dataset (newlines indicate "block" boundaries):
c(1, 1, 1, 1,

2, 2, 2, 2,
1, 1,
2, 2,
3, 3, 3, 3,
4, 4, 4, 4,
3, 3,
4, 4,
5, 5, 5, 5,
5, 5,

)

End(Not run)

dataset_map Map a function across a dataset.

Description

Map a function across a dataset.

Usage

dataset_map(dataset, map_func, num_parallel_calls = NULL)

Arguments

dataset A dataset

map_func A function mapping a nested structure of tensors (having shapes and types
defined by output_shapes() and output_types() to another nested struc-
ture of tensors. It also supports purrr style lambda functions powered by
rlang::as_function().

num_parallel_calls

(Optional) An integer, representing the number of elements to process in parallel
If not specified, elements will be processed sequentially.

16 dataset_map_and_batch

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(),
dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(),
dataset_take(), dataset_window()

dataset_map_and_batch Fused implementation of dataset_map() and dataset_batch()

Description

Maps ‘map_func“ across batch_size consecutive elements of this dataset and then combines them
into a batch. Functionally, it is equivalent to map followed by batch. However, by fusing the two
transformations together, the implementation can be more efficient.

Usage

dataset_map_and_batch(
dataset,
map_func,
batch_size,
num_parallel_batches = NULL,
drop_remainder = FALSE,
num_parallel_calls = NULL

)

Arguments

dataset A dataset

map_func A function mapping a nested structure of tensors (having shapes and types
defined by output_shapes() and output_types() to another nested struc-
ture of tensors. It also supports purrr style lambda functions powered by
rlang::as_function().

batch_size An integer, representing the number of consecutive elements of this dataset to
combine in a single batch.

num_parallel_batches

(Optional) An integer, representing the number of batches to create in parallel.
On one hand, higher values can help mitigate the effect of stragglers. On the
other hand, higher values can increase contention if CPU is scarce.

dataset_options 17

drop_remainder (Optional.) A boolean, representing whether the last batch should be dropped in
the case it has fewer than batch_size elements; the default behavior is not to
drop the smaller batch.

num_parallel_calls

(Optional) An integer, representing the number of elements to process in parallel
If not specified, elements will be processed sequentially.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map(), dataset_padded_batch(),
dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

dataset_options Get or Set Dataset Options

Description

Get or Set Dataset Options

Usage

dataset_options(dataset, ...)

Arguments

dataset a tensorflow dataset

... Valid values include:

• A set of named arguments setting options. Names of nested attributes can
be separated with a "." (see examples). The set of named arguments can
be supplied individually to ..., or as a single named list.

• a tf$data$Options() instance.

Details

The options are "global" in the sense they apply to the entire dataset. If options are set multiple
times, they are merged as long as different options do not use different non-default values.

Value

If values are supplied to ..., returns a tf.data.Dataset with the given options set/updated. Oth-
erwise, returns the currently set options for the dataset.

18 dataset_padded_batch

Examples

Not run:
pass options directly:
range_dataset(0, 10) %>%

dataset_options(
experimental_deterministic = FALSE,
threading.private_threadpool_size = 10

)

pass options as a named list:
opts <- list(

experimental_deterministic = FALSE,
threading.private_threadpool_size = 10

)
range_dataset(0, 10) %>%

dataset_options(opts)

pass a tf.data.Options() instance
opts <- tf$data$Options()
opts$experimental_deterministic <- FALSE
opts$threading$private_threadpool_size <- 10L
range_dataset(0, 10) %>%

dataset_options(opts)

get currently set options
range_dataset(0, 10) %>% dataset_options()

End(Not run)

dataset_padded_batch Combines consecutive elements of this dataset into padded batches.

Description

Combines consecutive elements of this dataset into padded batches.

Usage

dataset_padded_batch(
dataset,
batch_size,
padded_shapes = NULL,
padding_values = NULL,
drop_remainder = FALSE,
name = NULL

)

dataset_padded_batch 19

Arguments

dataset A dataset

batch_size An integer, representing the number of consecutive elements of this dataset to
combine in a single batch.

padded_shapes (Optional.) A (nested) structure of tf.TensorShape (returned by tensorflow::shape())
or tf$int64 vector tensor-like objects representing the shape to which the re-
spective component of each input element should be padded prior to batching.
Any unknown dimensions will be padded to the maximum size of that dimen-
sion in each batch. If unset, all dimensions of all components are padded to the
maximum size in the batch. padded_shapes must be set if any component has
an unknown rank.

padding_values (Optional.) A (nested) structure of scalar-shaped tf.Tensor, representing the
padding values to use for the respective components. NULL represents that the
(nested) structure should be padded with default values. Defaults are 0 for nu-
meric types and the empty string "" for string types. The padding_values
should have the same (nested) structure as the input dataset. If padding_values
is a single element and the input dataset has multiple components, then the
same padding_values will be used to pad every component of the dataset. If
padding_values is a scalar, then its value will be broadcasted to match the
shape of each component.

drop_remainder (Optional.) A boolean scalar, representing whether the last batch should be
dropped in the case it has fewer than batch_size elements; the default behavior
is not to drop the smaller batch.

name (Optional.) A name for the tf.data operation. Requires tensorflow version >=
2.7.

Details

This transformation combines multiple consecutive elements of the input dataset into a single ele-
ment.

Like dataset_batch(), the components of the resulting element will have an additional outer
dimension, which will be batch_size (or N %% batch_size for the last element if batch_size does
not divide the number of input elements N evenly and drop_remainder is FALSE). If your program
depends on the batches having the same outer dimension, you should set the drop_remainder
argument to TRUE to prevent the smaller batch from being produced.

Unlike dataset_batch(), the input elements to be batched may have different shapes, and this
transformation will pad each component to the respective shape in padded_shapes. The padded_shapes
argument determines the resulting shape for each dimension of each component in an output ele-
ment:

• If the dimension is a constant, the component will be padded out to that length in that dimen-
sion.

• If the dimension is unknown, the component will be padded out to the maximum length of all
elements in that dimension.

See also tf$data$experimental$dense_to_sparse_batch, which combines elements that may
have different shapes into a tf$sparse$SparseTensor.

20 dataset_prefetch

Value

A tf_dataset

See Also

• https://www.tensorflow.org/api_docs/python/tf/data/Dataset#padded_batch

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_prefetch_to_device(), dataset_prefetch(), dataset_reduce(),
dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(),
dataset_take(), dataset_window()

Examples

Not run:
A <- range_dataset(1, 5, dtype = tf$int32) %>%

dataset_map(function(x) tf$fill(list(x), x))

Pad to the smallest per-batch size that fits all elements.
B <- A %>% dataset_padded_batch(2)
B %>% as_array_iterator() %>% iterate(print)

Pad to a fixed size.
C <- A %>% dataset_padded_batch(2, padded_shapes=5)
C %>% as_array_iterator() %>% iterate(print)

Pad with a custom value.
D <- A %>% dataset_padded_batch(2, padded_shapes=5, padding_values = -1L)
D %>% as_array_iterator() %>% iterate(print)

Pad with a single value and multiple components.
E <- zip_datasets(A, A) %>% dataset_padded_batch(2, padding_values = -1L)
E %>% as_array_iterator() %>% iterate(print)

End(Not run)

dataset_prefetch Creates a Dataset that prefetches elements from this dataset.

Description

Creates a Dataset that prefetches elements from this dataset.

Usage

dataset_prefetch(dataset, buffer_size = tf$data$AUTOTUNE)

https://www.tensorflow.org/api_docs/python/tf/data/Dataset#padded_batch

dataset_prefetch_to_device 21

Arguments

dataset A dataset

buffer_size An integer, representing the maximum number elements that will be buffered
when prefetching.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_reduce(),
dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(),
dataset_take(), dataset_window()

dataset_prefetch_to_device

A transformation that prefetches dataset values to the given device

Description

A transformation that prefetches dataset values to the given device

Usage

dataset_prefetch_to_device(dataset, device, buffer_size = NULL)

Arguments

dataset A dataset

device A string. The name of a device to which elements will be prefetched (e.g.
"/gpu:0").

buffer_size (Optional.) The number of elements to buffer on device. Defaults to an auto-
matically chosen value.

Value

A dataset

Note

Although the transformation creates a dataset, the transformation must be the final dataset in the
input pipeline.

22 dataset_prepare

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch(), dataset_reduce(), dataset_repeat(),
dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(), dataset_window()

dataset_prepare Prepare a dataset for analysis

Description

Transform a dataset with named columns into a list with features (x) and response (y) elements.

Usage

dataset_prepare(
dataset,
x,
y = NULL,
named = TRUE,
named_features = FALSE,
parallel_records = NULL,
batch_size = NULL,
num_parallel_batches = NULL,
drop_remainder = FALSE

)

Arguments

dataset A dataset

x Features to include. When named_features is FALSE all features will be stacked
into a single tensor so must have an identical data type.

y (Optional). Response variable.

named TRUE to name the dataset elements "x" and "y", FALSE to not name the dataset
elements.

named_features TRUE to yield features as a named list; FALSE to stack features into a single
array. Note that in the case of FALSE (the default) all features will be stacked
into a single 2D tensor so need to have the same underlying data type.

parallel_records

(Optional) An integer, representing the number of records to decode in parallel.
If not specified, records will be processed sequentially.

batch_size (Optional). Batch size if you would like to fuse the dataset_prepare() op-
eration together with a dataset_batch() (fusing generally improves overall
training performance).

dataset_reduce 23

num_parallel_batches

(Optional) An integer, representing the number of batches to create in parallel.
On one hand, higher values can help mitigate the effect of stragglers. On the
other hand, higher values can increase contention if CPU is scarce.

drop_remainder (Optional.) A boolean, representing whether the last batch should be dropped in
the case it has fewer than batch_size elements; the default behavior is not to
drop the smaller batch.

Value

A dataset. The dataset will have a structure of either:

• When named_features is TRUE: list(x = list(feature_name = feature_values,...),y
= response_values)

• When named_features is FALSE: list(x = features_array,y = response_values), where
features_array is a Rank 2 array of (batch_size, num_features).

Note that the y element will be omitted when y is NULL.

See Also

input_fn() for use with tfestimators.

dataset_reduce Reduces the input dataset to a single element.

Description

The transformation calls reduce_func successively on every element of the input dataset until the
dataset is exhausted, aggregating information in its internal state. The initial_state argument is used
for the initial state and the final state is returned as the result.

Usage

dataset_reduce(dataset, initial_state, reduce_func)

Arguments

dataset A dataset

initial_state An element representing the initial state of the transformation.

reduce_func A function that maps (old_state, input_element) to new_state. It must take two
arguments and return a new element. The structure of new_state must match the
structure of initial_state.

Value

A dataset element.

24 dataset_rejection_resample

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(),
dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(),
dataset_take(), dataset_window()

dataset_rejection_resample

A transformation that resamples a dataset to a target distribution.

Description

A transformation that resamples a dataset to a target distribution.

Usage

dataset_rejection_resample(
dataset,
class_func,
target_dist,
initial_dist = NULL,
seed = NULL,
name = NULL

)

Arguments

dataset A tf.Dataset

class_func A function mapping an element of the input dataset to a scalar tf.int32 tensor.
Values should be in [0, num_classes).

target_dist A floating point type tensor, shaped [num_classes].

initial_dist (Optional.) A floating point type tensor, shaped [num_classes]. If not provided,
the true class distribution is estimated live in a streaming fashion.

seed (Optional.) Integer seed for the resampler.

name (Optional.) A name for the tf.data operation.

Value

A tf.Dataset

dataset_repeat 25

Examples

Not run:
initial_dist <- c(.5, .5)
target_dist <- c(.6, .4)
num_classes <- length(initial_dist)
num_samples <- 100000
data <- sample.int(num_classes, num_samples, prob = initial_dist, replace = TRUE)
dataset <- tensor_slices_dataset(data)
tally <- c(0, 0)
`add<-` <- function (x, value) x + value
tfautograph::autograph({
for(i in dataset)
add(tally[as.numeric(i)]) <- 1
})
dataset %>%

as_array_iterator() %>%
iterate(function(i) {
add(tally[i]) <<- 1

}, simplify = FALSE)
The value of `tally` will be close to c(50000, 50000) as
per the `initial_dist` distribution.
tally # c(50287, 49713)

tally <- c(0, 0)
dataset %>%

dataset_rejection_resample(
class_func = function(x) (x-1) %% 2,
target_dist = target_dist,
initial_dist = initial_dist

) %>%
as_array_iterator() %>%
iterate(function(element) {

names(element) <- c("class_id", "i")
add(tally[element$i]) <<- 1

}, simplify = FALSE)
The value of tally will be now be close to c(75000, 50000)
thus satisfying the target_dist distribution.
tally # c(74822, 49921)

End(Not run)

dataset_repeat Repeats a dataset count times.

Description

Repeats a dataset count times.

Usage

dataset_repeat(dataset, count = NULL)

26 dataset_scan

Arguments

dataset A dataset

count (Optional.) An integer value representing the number of times the elements of
this dataset should be repeated. The default behavior (if count is NULL or -1) is
for the elements to be repeated indefinitely.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(),
dataset_reduce(), dataset_shuffle_and_repeat(), dataset_shuffle(), dataset_skip(),
dataset_take(), dataset_window()

dataset_scan A transformation that scans a function across an input dataset

Description

A transformation that scans a function across an input dataset

Usage

dataset_scan(dataset, initial_state, scan_func)

Arguments

dataset A tensorflow dataset

initial_state A nested structure of tensors, representing the initial state of the accumulator.

scan_func A function that maps (old_state, input_element) to (new_state, output_element).
It must take two arguments and return a pair of nested structures of tensors. The
new_state must match the structure of initial_state.

Details

This transformation is a stateful relative of dataset_map(). In addition to mapping scan_func
across the elements of the input dataset, scan() accumulates one or more state tensors, whose
initial values are initial_state.

dataset_shard 27

Examples

Not run:
initial_state <- as_tensor(0, dtype="int64")
scan_func <- function(state, i) list(state + i, state + i)
dataset <- range_dataset(0, 10) %>%

dataset_scan(initial_state, scan_func)

reticulate::iterate(dataset, as.array) %>%
unlist()

0 1 3 6 10 15 21 28 36 45

End(Not run)

dataset_shard Creates a dataset that includes only 1 / num_shards of this dataset.

Description

This dataset operator is very useful when running distributed training, as it allows each worker to
read a unique subset.

Usage

dataset_shard(dataset, num_shards, index)

Arguments

dataset A dataset

num_shards A integer representing the number of shards operating in parallel.

index A integer, representing the worker index.

Value

A dataset

dataset_shuffle Randomly shuffles the elements of this dataset.

Description

Randomly shuffles the elements of this dataset.

28 dataset_shuffle_and_repeat

Usage

dataset_shuffle(
dataset,
buffer_size,
seed = NULL,
reshuffle_each_iteration = NULL

)

Arguments

dataset A dataset

buffer_size An integer, representing the number of elements from this dataset from which
the new dataset will sample.

seed (Optional) An integer, representing the random seed that will be used to create
the distribution.

reshuffle_each_iteration

(Optional) A boolean, which if true indicates that the dataset should be pseudo-
randomly reshuffled each time it is iterated over. (Defaults to TRUE). Not used if
TF version < 1.15

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(),
dataset_reduce(), dataset_repeat(), dataset_shuffle_and_repeat(), dataset_skip(), dataset_take(),
dataset_window()

dataset_shuffle_and_repeat

Shuffles and repeats a dataset returning a new permutation for each
epoch.

Description

Shuffles and repeats a dataset returning a new permutation for each epoch.

Usage

dataset_shuffle_and_repeat(dataset, buffer_size, count = NULL, seed = NULL)

dataset_skip 29

Arguments

dataset A dataset
buffer_size An integer, representing the number of elements from this dataset from which

the new dataset will sample.
count (Optional.) An integer value representing the number of times the elements of

this dataset should be repeated. The default behavior (if count is NULL or -1) is
for the elements to be repeated indefinitely.

seed (Optional) An integer, representing the random seed that will be used to create
the distribution.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(),
dataset_reduce(), dataset_repeat(), dataset_shuffle(), dataset_skip(), dataset_take(),
dataset_window()

dataset_skip Creates a dataset that skips count elements from this dataset

Description

Creates a dataset that skips count elements from this dataset

Usage

dataset_skip(dataset, count)

Arguments

dataset A dataset
count An integer, representing the number of elements of this dataset that should be

skipped to form the new dataset. If count is greater than the size of this dataset,
the new dataset will contain no elements. If count is -1, skips the entire dataset.

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(),
dataset_reduce(), dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(),
dataset_take(), dataset_window()

30 dataset_snapshot

dataset_snapshot Persist the output of a dataset

Description

Persist the output of a dataset

Usage

dataset_snapshot(
dataset,
path,
compression = c("AUTO", "GZIP", "SNAPPY", "None"),
reader_func = NULL,
shard_func = NULL

)

Arguments

dataset A tensorflow dataset

path Required. A directory to use for storing/loading the snapshot to/from.

compression Optional. The type of compression to apply to the snapshot written to disk.
Supported options are "GZIP", "SNAPPY", "AUTO" or NULL (values of "", NA,
and "None" are synonymous with NULL) Defaults to AUTO, which attempts to
pick an appropriate compression algorithm for the dataset.

reader_func Optional. A function to control how to read data from snapshot shards.

shard_func Optional. A function to control how to shard data when writing a snapshot.

Details

The snapshot API allows users to transparently persist the output of their preprocessing pipeline to
disk, and materialize the pre-processed data on a different training run.

This API enables repeated preprocessing steps to be consolidated, and allows re-use of already
processed data, trading off disk storage and network bandwidth for freeing up more valuable CPU
resources and accelerator compute time.

https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md has detailed
design documentation of this feature.

Users can specify various options to control the behavior of snapshot, including how snapshots are
read from and written to by passing in user-defined functions to the reader_func and shard_func
parameters.

shard_func is a user specified function that maps input elements to snapshot shards.

NUM_SHARDS <- parallel::detectCores()
dataset %>%
dataset_enumerate() %>%

dataset_take 31

dataset_snapshot(
"/path/to/snapshot/dir",
shard_func = function(index, ds_elem) x %% NUM_SHARDS) %>%

dataset_map(function(index, ds_elem) ds_elem)

reader_func is a user specified function that accepts a single argument: a Dataset of Datasets,
each representing a "split" of elements of the original dataset. The cardinality of the input dataset
matches the number of the shards specified in the shard_func. The function should return a Dataset
of elements of the original dataset.

Users may want specify this function to control how snapshot files should be read from disk, in-
cluding the amount of shuffling and parallelism.

Here is an example of a standard reader function a user can define. This function enables both
dataset shuffling and parallel reading of datasets:

user_reader_func <- function(datasets) {
num_cores <- parallel::detectCores()
datasets %>%
dataset_shuffle(num_cores) %>%
dataset_interleave(function(x) x, num_parallel_calls=AUTOTUNE)

}

dataset <- dataset %>%
dataset_snapshot("/path/to/snapshot/dir",

reader_func = user_reader_func)

By default, snapshot parallelizes reads by the number of cores available on the system, but will not
attempt to shuffle the data.

dataset_take Creates a dataset with at most count elements from this dataset

Description

Creates a dataset with at most count elements from this dataset

Usage

dataset_take(dataset, count)

Arguments

dataset A dataset

count Integer representing the number of elements of this dataset that should be taken
to form the new dataset. If count is -1, or if count is greater than the size of
this dataset, the new dataset will contain all elements of this dataset.

32 dataset_unique

Value

A dataset

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(),
dataset_reduce(), dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(),
dataset_skip(), dataset_window()

dataset_unique A transformation that discards duplicate elements of a Dataset.

Description

Use this transformation to produce a dataset that contains one instance of each unique element in
the input (See example).

Usage

dataset_unique(dataset, name = NULL)

Arguments

dataset A tf.Dataset.

name (Optional.) A name for the tf.data operation.

Value

A tf.Dataset

Note

This transformation only supports datasets which fit into memory and have elements of either
tf.int32, tf.int64 or tf.string type.

Examples

Not run:
c(0, 37, 2, 37, 2, 1) %>% as_tensor("int32") %>%

tensor_slices_dataset() %>%
dataset_unique() %>%
as_array_iterator() %>% iterate() %>% sort()

[1] 0 1 2 37

End(Not run)

dataset_use_spec 33

dataset_use_spec Transform the dataset using the provided spec.

Description

Prepares the dataset to be used directly in a model.The transformed dataset is prepared to return
tuples (x,y) that can be used directly in Keras.

Usage

dataset_use_spec(dataset, spec)

Arguments

dataset A TensorFlow dataset.

spec A feature specification created with feature_spec().

Value

A TensorFlow dataset.

See Also

• feature_spec() to initialize the feature specification.

• fit.FeatureSpec() to create a tensorflow dataset prepared to modeling.

• steps to a list of all implemented steps.

Other Feature Spec Functions: feature_spec(), fit.FeatureSpec(), step_bucketized_column(),
step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(),
step_remove_column(), step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%

step_numeric_column(age)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

34 delim_record_spec

dataset_window Combines input elements into a dataset of windows.

Description

Combines input elements into a dataset of windows.

Usage

dataset_window(dataset, size, shift = NULL, stride = 1, drop_remainder = FALSE)

Arguments

dataset A dataset

size representing the number of elements of the input dataset to combine into a win-
dow.

shift epresenting the forward shift of the sliding window in each iteration. Defaults
to size.

stride representing the stride of the input elements in the sliding window.

drop_remainder representing whether a window should be dropped in case its size is smaller
than window_size.

See Also

Other dataset methods: dataset_batch(), dataset_cache(), dataset_collect(), dataset_concatenate(),
dataset_decode_delim(), dataset_filter(), dataset_interleave(), dataset_map_and_batch(),
dataset_map(), dataset_padded_batch(), dataset_prefetch_to_device(), dataset_prefetch(),
dataset_reduce(), dataset_repeat(), dataset_shuffle_and_repeat(), dataset_shuffle(),
dataset_skip(), dataset_take()

delim_record_spec Specification for reading a record from a text file with delimited values

Description

Specification for reading a record from a text file with delimited values

delim_record_spec 35

Usage

delim_record_spec(
example_file,
delim = ",",
skip = 0,
names = NULL,
types = NULL,
defaults = NULL

)

csv_record_spec(
example_file,
skip = 0,
names = NULL,
types = NULL,
defaults = NULL

)

tsv_record_spec(
example_file,
skip = 0,
names = NULL,
types = NULL,
defaults = NULL

)

Arguments

example_file File that provides an example of the records to be read. If you don’t explic-
itly specify names and types (or defaults) then this file will be read to generate
default values.

delim Character delimiter to separate fields in a record (defaults to ",")

skip Number of lines to skip before reading data. Note that if names is explicitly
provided and there are column names witin the file then skip should be set to 1
to ensure that the column names are bypassed.

names Character vector with column names (or NULL to automatically detect the column
names from the first row of example_file).
If names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the
datset. Note that if the underlying text file also includes column names in it’s
first row, this row should be skipped explicitly with skip = 1.
If NULL, the first row of the example_file will be used as the column names, and
will be skipped when reading the dataset.

types Column types. If NULL and defaults is specified then types will be imputed
from the defaults. Otherwise, all column types will be imputed from the first
1000 rows of the example_file. This is convenient (and fast), but not robust.
If the imputation fails, you’ll need to supply the correct types yourself.

36 feature_spec

Types can be explicitliy specified in a character vector as "integer", "double",
and "character" (e.g. col_types = c("double", "double", "integer").
Alternatively, you can use a compact string representation where each character
represents one column: c = character, i = integer, d = double (e.g. types = ddi‘).

defaults List of default values which are used when data is missing from a record (e.g.
list(0, 0, 0L). If NULL then defaults will be automatically provided based on
types (0 for numeric columns and "" for character columns).

dense_features Dense Features

Description

Retrives the Dense Features from a spec.

Usage

dense_features(spec)

Arguments

spec A feature specification created with feature_spec().

Value

A list of feature columns.

feature_spec Creates a feature specification.

Description

Used to create initialize a feature columns specification.

Usage

feature_spec(dataset, x, y = NULL)

Arguments

dataset A TensorFlow dataset.

x Features to include can use tidyselect::select_helpers() or a formula.

y (Optional) The response variable. Can also be specified using a formula in the
x argument.

file_list_dataset 37

Details

After creating the feature_spec object you can add steps using the step functions.

Value

a FeatureSpec object.

See Also

• fit.FeatureSpec() to fit the FeatureSpec

• dataset_use_spec() to create a tensorflow dataset prepared to modeling.

• steps to a list of all implemented steps.

Other Feature Spec Functions: dataset_use_spec(), fit.FeatureSpec(), step_bucketized_column(),
step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(),
step_remove_column(), step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ .)

select using `tidyselect` helpers
spec <- feature_spec(hearts, x = c(thal, age), y = target)

End(Not run)

file_list_dataset A dataset of all files matching a pattern

Description

A dataset of all files matching a pattern

Usage

file_list_dataset(file_pattern, shuffle = NULL, seed = NULL)

38 fit.FeatureSpec

Arguments

file_pattern A string, representing the filename pattern that will be matched.

shuffle (Optional) If TRUE``, the file names will be shuffled randomly. Defaults to TRUE‘

seed (Optional) An integer, representing the random seed that will be used to create
the distribution.

Details

For example, if we had the following files on our filesystem: - /path/to/dir/a.txt - /path/to/dir/b.csv -
/path/to/dir/c.csv

If we pass "/path/to/dir/*.csv" as the file_pattern, the dataset would produce: - /path/to/dir/b.csv
- /path/to/dir/c.csv

Value

A dataset of string correponding to file names

Note

The shuffle and seed arguments only apply for TensorFlow >= v1.8

fit.FeatureSpec Fits a feature specification.

Description

This function will fit the specification. Depending on the steps added to the specification it will
compute for example, the levels of categorical features, normalization constants, etc.

Usage

S3 method for class 'FeatureSpec'
fit(object, dataset = NULL, ...)

Arguments

object A feature specification created with feature_spec().

dataset (Optional) A TensorFlow dataset. If NULL it will use the dataset provided when
initilializing the feature_spec.

... (unused)

Value

a fitted FeatureSpec object.

fixed_length_record_dataset 39

See Also

• feature_spec() to initialize the feature specification.

• dataset_use_spec() to create a tensorflow dataset prepared to modeling.

• steps to a list of all implemented steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), step_bucketized_column(),
step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(),
step_remove_column(), step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%

step_numeric_column(age)

spec_fit <- fit(spec)
spec_fit

End(Not run)

fixed_length_record_dataset

A dataset of fixed-length records from one or more binary files.

Description

A dataset of fixed-length records from one or more binary files.

Usage

fixed_length_record_dataset(
filenames,
record_bytes,
header_bytes = NULL,
footer_bytes = NULL,
buffer_size = NULL

)

40 has_type

Arguments

filenames A string tensor containing one or more filenames.

record_bytes An integer representing the number of bytes in each record.

header_bytes (Optional) An integer scalar representing the number of bytes to skip at the start
of a file.

footer_bytes (Optional) A integer scalar representing the number of bytes to ignore at the end
of a file.

buffer_size (Optional) A integer scalar representing the number of bytes to buffer when
reading.

Value

A dataset

has_type Identify the type of the variable.

Description

Can only be used inside the steps specifications to find variables by type.

Usage

has_type(match = "float32")

Arguments

match A list of types to match.

See Also

Other Selectors: all_nominal(), all_numeric()

hearts 41

hearts Heart Disease Data Set

Description

Heart disease (angiographic disease status) dataset.

Usage

hearts

Format

A data frame with 303 rows and 14 variables:

age age in years

sex sex (1 = male; 0 = female)

cp chest pain type: Value 1: typical angina, Value 2: atypical angina, Value 3: non-anginal pain,
Value 4: asymptomatic

trestbps resting blood pressure (in mm Hg on admission to the hospital)

chol serum cholestoral in mg/dl

fbs (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

restecg resting electrocardiographic results: Value 0: normal, Value 1: having ST-T wave abnor-
mality (T wave inversions and/or ST elevation or depression of > 0.05 mV), Value 2: showing
probable or definite left ventricular hypertrophy by Estes’ criteria

thalach maximum heart rate achieved

exang exercise induced angina (1 = yes; 0 = no)

oldpeak ST depression induced by exercise relative to rest

slope the slope of the peak exercise ST segment: Value 1: upsloping, Value 2: flat, Value 3:
downsloping

ca number of major vessels (0-3) colored by flourosopy

thal 3 = normal; 6 = fixed defect; 7 = reversable defect

target diagnosis of heart disease angiographic

Source

https://archive.ics.uci.edu/ml/datasets/heart+Disease

https://archive.ics.uci.edu/ml/datasets/heart+Disease

42 input_fn.tf_dataset

References

The authors of the databases have requested that any publications resulting from the use of the data
include the names of the principal investigator responsible for the data collection at each institution.
They would be:

1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.

2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.

3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.

4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation:Robert Detrano, M.D.,
Ph.D.

input_fn.tf_dataset Construct a tfestimators input function from a dataset

Description

Construct a tfestimators input function from a dataset

Usage

input_fn.tf_dataset(dataset, features, response = NULL)

Arguments

dataset A dataset

features The names of feature variables to be used.

response The name of the response variable.

Details

Creating an input_fn from a dataset requires that the dataset consist of a set of named output tensors
(e.g. like the dataset produced by the tfrecord_dataset() or text_line_dataset() function).

Value

An input_fn suitable for use with tfestimators train, evaluate, and predict methods

iterator_get_next 43

iterator_get_next Get next element from iterator

Description

Returns a nested list of tensors that when evaluated will yield the next element(s) in the dataset.

Usage

iterator_get_next(iterator, name = NULL)

Arguments

iterator An iterator

name (Optional) A name for the created operation.

Value

A nested list of tensors

See Also

Other iterator functions: iterator_initializer(), iterator_make_initializer(), iterator_string_handle(),
make-iterator

iterator_initializer An operation that should be run to initialize this iterator.

Description

An operation that should be run to initialize this iterator.

Usage

iterator_initializer(iterator)

Arguments

iterator An iterator

See Also

Other iterator functions: iterator_get_next(), iterator_make_initializer(), iterator_string_handle(),
make-iterator

44 iterator_string_handle

iterator_make_initializer

Create an operation that can be run to initialize this iterator

Description

Create an operation that can be run to initialize this iterator

Usage

iterator_make_initializer(iterator, dataset, name = NULL)

Arguments

iterator An iterator

dataset A dataset

name (Optional) A name for the created operation.

Value

A tf$Operation that can be run to initialize this iterator on the given dataset.

See Also

Other iterator functions: iterator_get_next(), iterator_initializer(), iterator_string_handle(),
make-iterator

iterator_string_handle

String-valued tensor that represents this iterator

Description

String-valued tensor that represents this iterator

Usage

iterator_string_handle(iterator, name = NULL)

Arguments

iterator An iterator

name (Optional) A name for the created operation.

layer_input_from_dataset 45

Value

Scalar tensor of type string

See Also

Other iterator functions: iterator_get_next(), iterator_initializer(), iterator_make_initializer(),
make-iterator

layer_input_from_dataset

Creates a list of inputs from a dataset

Description

Create a list ok Keras input layers that can be used together with keras::layer_dense_features().

Usage

layer_input_from_dataset(dataset)

Arguments

dataset a TensorFlow dataset or a data.frame

Value

a list of Keras input layers

Examples

Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ age + slope) %>%

step_numeric_column(age, slope) %>%
step_bucketized_column(age, boundaries = c(10, 20, 30))

spec <- fit(spec)
dataset <- hearts %>% dataset_use_spec(spec)

input <- layer_input_from_dataset(dataset)

End(Not run)

46 make-iterator

length.tf_dataset Get Dataset length

Description

Returns the length of the dataset.

Usage

S3 method for class 'tf_dataset'
length(x)

S3 method for class 'tensorflow.python.data.ops.dataset_ops.DatasetV2'
length(x)

Arguments

x a tf.data.Dataset object.

Value

Either Inf if the dataset is infinite, NA if the dataset length is unknown, or an R numeric if it is
known.

Examples

Not run:
range_dataset(0, 42) %>% length()
42

range_dataset(0, 42) %>% dataset_repeat() %>% length()
Inf

range_dataset(0, 42) %>% dataset_repeat() %>%
dataset_filter(function(x) TRUE) %>% length()

NA

End(Not run)

make-iterator Creates an iterator for enumerating the elements of this dataset.

Description

Creates an iterator for enumerating the elements of this dataset.

make-iterator 47

Usage

make_iterator_one_shot(dataset)

make_iterator_initializable(dataset, shared_name = NULL)

make_iterator_from_structure(
output_types,
output_shapes = NULL,
shared_name = NULL

)

make_iterator_from_string_handle(
string_handle,
output_types,
output_shapes = NULL

)

Arguments

dataset A dataset

shared_name (Optional) If non-empty, the returned iterator will be shared under the given
name across multiple sessions that share the same devices (e.g. when using a
remote server).

output_types A nested structure of tf$DType objects corresponding to each component of an
element of this iterator.

output_shapes (Optional) A nested structure of tf$TensorShape objects corresponding to each
component of an element of this dataset. If omitted, each component will have
an unconstrainted shape.

string_handle A scalar tensor of type string that evaluates to a handle produced by the iterator_string_handle()
method.

Value

An Iterator over the elements of this dataset.

Initialization

For make_iterator_one_shot(), the returned iterator will be initialized automatically. A "one-
shot" iterator does not currently support re-initialization.

For make_iterator_initializable(), the returned iterator will be in an uninitialized state, and
you must run the object returned from iterator_initializer() before using it.

For make_iterator_from_structure(), the returned iterator is not bound to a particular dataset,
and it has no initializer. To initialize the iterator, run the operation returned by iterator_make_initializer().

48 make_csv_dataset

See Also

Other iterator functions: iterator_get_next(), iterator_initializer(), iterator_make_initializer(),
iterator_string_handle()

make_csv_dataset Reads CSV files into a batched dataset

Description

Reads CSV files into a dataset, where each element is a (features, labels) list that corresponds to a
batch of CSV rows. The features dictionary maps feature column names to tensors containing the
corresponding feature data, and labels is a tensor containing the batch’s label data.

Usage

make_csv_dataset(
file_pattern,
batch_size,
column_names = NULL,
column_defaults = NULL,
label_name = NULL,
select_columns = NULL,
field_delim = ",",
use_quote_delim = TRUE,
na_value = "",
header = TRUE,
num_epochs = NULL,
shuffle = TRUE,
shuffle_buffer_size = 10000,
shuffle_seed = NULL,
prefetch_buffer_size = 1,
num_parallel_reads = 1,
num_parallel_parser_calls = 2,
sloppy = FALSE,
num_rows_for_inference = 100

)

Arguments

file_pattern List of files or glob patterns of file paths containing CSV records.

batch_size An integer representing the number of records to combine in a single batch.

column_names An optional list of strings that corresponds to the CSV columns, in order. One
per column of the input record. If this is not provided, infers the column names
from the first row of the records. These names will be the keys of the features
dict of each dataset element.

make_csv_dataset 49

column_defaults

A optional list of default values for the CSV fields. One item per selected col-
umn of the input record. Each item in the list is either a valid CSV dtype (integer,
numeric, or string), or a tensor with one of the aforementioned types. The ten-
sor can either be a scalar default value (if the column is optional), or an empty
tensor (if the column is required). If a dtype is provided instead of a tensor,
the column is also treated as required. If this list is not provided, tries to infer
types based on reading the first num_rows_for_inference rows of files spec-
ified, and assumes all columns are optional, defaulting to 0 for numeric values
and "" for string values. If both this and select_columns are specified, these
must have the same lengths, and column_defaults is assumed to be sorted in
order of increasing column index.

label_name A optional string corresponding to the label column. If provided, the data for
this column is returned as a separate tensor from the features dictionary, so that
the dataset complies with the format expected by a TF Estiamtors and Keras.

select_columns (Ignored if using TensorFlow version 1.8.) An optional list of integer indices
or string column names, that specifies a subset of columns of CSV data to se-
lect. If column names are provided, these must correspond to names provided
in column_names or inferred from the file header lines. When this argument
is specified, only a subset of CSV columns will be parsed and returned, corre-
sponding to the columns specified. Using this results in faster parsing and lower
memory usage. If both this and column_defaults are specified, these must
have the same lengths, and column_defaults is assumed to be sorted in order
of increasing column index.

field_delim An optional string. Defaults to ",". Char delimiter to separate fields in a record.
use_quote_delim

An optional bool. Defaults to TRUE. If false, treats double quotation marks as
regular characters inside of the string fields.

na_value Additional string to recognize as NA/NaN.

header A bool that indicates whether the first rows of provided CSV files correspond to
header lines with column names, and should not be included in the data.

num_epochs An integer specifying the number of times this dataset is repeated. If NULL,
cycles through the dataset forever.

shuffle A bool that indicates whether the input should be shuffled.
shuffle_buffer_size

Buffer size to use for shuffling. A large buffer size ensures better shuffling, but
increases memory usage and startup time.

shuffle_seed Randomization seed to use for shuffling.
prefetch_buffer_size

An int specifying the number of feature batches to prefetch for performance im-
provement. Recommended value is the number of batches consumed per train-
ing step.

num_parallel_reads

Number of threads used to read CSV records from files. If >1, the results will
be interleaved.

50 next_batch

num_parallel_parser_calls

(Ignored if using TensorFlow version 1.11 or later.) Number of parallel invoca-
tions of the CSV parsing function on CSV records.

sloppy If TRUE, reading performance will be improved at the cost of non-deterministic
ordering. If FALSE, the order of elements produced is deterministic prior to
shuffling (elements are still randomized if shuffle=TRUE. Note that if the seed
is set, then order of elements after shuffling is deterministic). Defaults to FALSE.

num_rows_for_inference

Number of rows of a file to use for type inference if record_defaults is not pro-
vided. If NULL, reads all the rows of all the files. Defaults to 100.

Value

A dataset, where each element is a (features, labels) list that corresponds to a batch of batch_size
CSV rows. The features dictionary maps feature column names to tensors containing the cor-
responding column data, and labels is a tensor containing the column data for the label column
specified by label_name.

next_batch Tensor(s) for retrieving the next batch from a dataset

Description

Tensor(s) for retrieving the next batch from a dataset

Usage

next_batch(dataset)

Arguments

dataset A dataset

Details

To access the underlying data within the dataset you iteratively evaluate the tensor(s) to read batches
of data.

Note that in many cases you won’t need to explicitly evaluate the tensors. Rather, you will pass
the tensors to another function that will perform the evaluation (e.g. the Keras layer_input() and
compile() functions).

If you do need to perform iteration manually by evaluating the tensors, there are a couple of possible
approaches to controlling/detecting when iteration should end.

One approach is to create a dataset that yields batches infinitely (traversing the dataset multiple
times with different batches randomly drawn). In this case you’d use another mechanism like a
global step counter or detecting a learning plateau.

output_types 51

Another approach is to detect when all batches have been yielded from the dataset. When the tensor
reaches the end of iteration a runtime error will occur. You can catch and ignore the error when it
occurs by wrapping your iteration code in the with_dataset() function.

See the examples below for a demonstration of each of these methods of iteration.

Value

Tensor(s) that can be evaluated to yield the next batch of training data.

Examples

Not run:

iteration with 'infinite' dataset and explicit step counter

library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%

dataset_prepare(x = c(mpg, disp), y = cyl) %>%
dataset_shuffle(5000) %>%
dataset_batch(128) %>%
dataset_repeat() # repeat infinitely

batch <- next_batch(dataset)
steps <- 200
for (i in 1:steps) {

use batch$x and batch$y tensors
}

iteration that detects and ignores end of iteration error

library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%

dataset_prepare(x = c(mpg, disp), y = cyl) %>%
dataset_batch(128) %>%
dataset_repeat(10)

batch <- next_batch(dataset)
with_dataset({

while(TRUE) {
use batch$x and batch$y tensors

}
})

End(Not run)

output_types Output types and shapes

Description

Output types and shapes

52 range_dataset

Usage

output_types(object)

output_shapes(object)

Arguments

object A dataset or iterator

Value

output_types() returns the type of each component of an element of this object; output_shapes()
returns the shape of each component of an element of this object

random_integer_dataset

Creates a Dataset of pseudorandom values

Description

Creates a Dataset of pseudorandom values

Usage

random_integer_dataset(seed = NULL)

Arguments

seed (Optional) If specified, the dataset produces a deterministic sequence of values.

Details

The dataset generates a sequence of uniformly distributed integer values (dtype int64).

range_dataset Creates a dataset of a step-separated range of values.

Description

Creates a dataset of a step-separated range of values.

Usage

range_dataset(from = 0, to = 0, by = 1, ..., dtype = tf$int64)

read_files 53

Arguments

from Range start

to Range end (exclusive)

by Increment of the sequence

... ignored

dtype Output dtype. (Optional, default: tf$int64).

read_files Read a dataset from a set of files

Description

Read files into a dataset, optionally processing them in parallel.

Usage

read_files(
files,
reader,
...,
parallel_files = 1,
parallel_interleave = 1,
num_shards = NULL,
shard_index = NULL

)

Arguments

files List of filenames or glob pattern for files (e.g. "*.csv")

reader Function that maps a file into a dataset (e.g. text_line_dataset() or tfrecord_dataset()).

... Additional arguments to pass to reader function

parallel_files An integer, number of files to process in parallel
parallel_interleave

An integer, number of consecutive records to produce from each file before cy-
cling to another file.

num_shards An integer representing the number of shards operating in parallel.

shard_index An integer, representing the worker index. Shared indexes are 0 based so for
e.g. 8 shards valid indexes would be 0-7.

Value

A dataset

54 scaler

sample_from_datasets Samples elements at random from the datasets in datasets.

Description

Samples elements at random from the datasets in datasets.

Usage

sample_from_datasets(
datasets,
weights = NULL,
seed = NULL,
stop_on_empty_dataset = TRUE

)

Arguments

datasets A list ofobjects with compatible structure.

weights (Optional.) A list of length(datasets) floating-point values where weights[[i]]
represents the probability with which an element should be sampled from datasets[[i]],
or a dataset object where each element is such a list. Defaults to a uniform dis-
tribution across datasets.

seed (Optional.) An integer, representing the random seed that will be used to create
the distribution.

stop_on_empty_dataset

If TRUE, selection stops if it encounters an empty dataset. If FALSE, it skips
empty datasets. It is recommended to set it to TRUE. Otherwise, the selected
elements start off as the user intends, but may change as input datasets become
empty. This can be difficult to detect since the dataset starts off looking correct.
Defaults to TRUE.

Value

A dataset that interleaves elements from datasets at random, according to weights if provided,
otherwise with uniform probability.

scaler List of pre-made scalers

Description

• scaler_standard: mean and standard deviation normalizer.

• scaler_min_max: min max normalizer

scaler_min_max 55

See Also

step_numeric_column

scaler_min_max Creates an instance of a min max scaler

Description

This scaler will learn the min and max of the numeric variable and use this to create a normalizer_fn.

Usage

scaler_min_max()

See Also

scaler to a complete list of normalizers

Other scaler: scaler_standard()

scaler_standard Creates an instance of a standard scaler

Description

This scaler will learn the mean and the standard deviation and use this to create a normalizer_fn.

Usage

scaler_standard()

See Also

scaler to a complete list of normalizers

Other scaler: scaler_min_max()

56 sparse_tensor_slices_dataset

selectors Selectors

Description

List of selectors that can be used to specify variables inside steps.

Usage

cur_info_env

Format

An object of class environment of length 0.

Selectors

• has_type()

• all_numeric()

• all_nominal()

• starts_with()

• ends_with()

• one_of()

• matches()

• contains()

• everything()

sparse_tensor_slices_dataset

Splits each rank-N tf$SparseTensor in this dataset row-wise.

Description

Splits each rank-N tf$SparseTensor in this dataset row-wise.

Usage

sparse_tensor_slices_dataset(sparse_tensor)

Arguments

sparse_tensor A tf$SparseTensor.

sql_record_spec 57

Value

A dataset of rank-(N-1) sparse tensors.

See Also

Other tensor datasets: tensor_slices_dataset(), tensors_dataset()

sql_record_spec A dataset consisting of the results from a SQL query

Description

A dataset consisting of the results from a SQL query

Usage

sql_record_spec(names, types)

sql_dataset(driver_name, data_source_name, query, record_spec)

sqlite_dataset(filename, query, record_spec)

Arguments

names Names of columns returned from the query

types List of tf$DType objects (e.g. tf$int32, tf$double, tf$string) representing
the types of the columns returned by the query.

driver_name String containing the database type. Currently, the only supported value is
’sqlite’.

data_source_name

String containing a connection string to connect to the database.

query String containing the SQL query to execute.

record_spec Names and types of database columns

filename Filename for the database

Value

A dataset

58 step_bucketized_column

steps Steps for feature columns specification.

Description

List of steps that can be used to specify columns in the feature_spec interface.

Steps

• step_numeric_column() to define numeric columns.

• step_categorical_column_with_vocabulary_list() to define categorical columns.

• step_categorical_column_with_hash_bucket() to define categorical columns where ids
are set by hashing.

• step_categorical_column_with_identity() to define categorical columns represented by
integers in the range [0-num_buckets).

• step_categorical_column_with_vocabulary_file() to define categorical columns when
their vocabulary is available in a file.

• step_indicator_column() to create indicator columns from categorical columns.

• step_embedding_column() to create embeddings columns from categorical columns.

• step_bucketized_column() to create bucketized columns from numeric columns.

• step_crossed_column() to perform crosses of categorical columns.

• step_shared_embeddings_column() to share embeddings between a list of categorical columns.

• step_remove_column() to remove columns from the specification.

See Also

• selectors for a list of selectors that can be used to specify variables.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(),
step_remove_column(), step_shared_embeddings_column()

step_bucketized_column

Creates bucketized columns

Description

Use this step to create bucketized columns from numeric columns.

step_categorical_column_with_hash_bucket 59

Usage

step_bucketized_column(spec, ..., boundaries)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

boundaries A sorted list or tuple of floats specifying the boundaries.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(),
step_remove_column(), step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%

step_numeric_column(age) %>%
step_bucketized_column(age, boundaries = c(10, 20, 30))

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_categorical_column_with_hash_bucket

Creates a categorical column with hash buckets specification

Description

Represents sparse feature where ids are set by hashing.

60 step_categorical_column_with_hash_bucket

Usage

step_categorical_column_with_hash_bucket(
spec,
...,
hash_bucket_size,
dtype = tf$string

)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

hash_bucket_size

An int > 1. The number of buckets.

dtype The type of features. Only string and integer types are supported.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(),
step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(),
step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(),
steps

Examples

Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%

step_categorical_column_with_hash_bucket(thal, hash_bucket_size = 3)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_categorical_column_with_identity 61

step_categorical_column_with_identity

Create a categorical column with identity

Description

Use this when your inputs are integers in the range [0-num_buckets).

Usage

step_categorical_column_with_identity(
spec,
...,
num_buckets,
default_value = NULL

)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

num_buckets Range of inputs and outputs is [0, num_buckets).

default_value If NULL, this column’s graph operations will fail for out-of-range inputs. Other-
wise, this value must be in the range [0, num_buckets), and will replace inputs
in that range.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_vocabulary_file(),
step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(),
step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(),
steps

Examples

Not run:
library(tfdatasets)
data(hearts)

hearts$thal <- as.integer(as.factor(hearts$thal)) - 1L

62 step_categorical_column_with_vocabulary_file

hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%

step_categorical_column_with_identity(thal, num_buckets = 5)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_categorical_column_with_vocabulary_file

Creates a categorical column with vocabulary file

Description

Use this function when the vocabulary of a categorical variable is written to a file.

Usage

step_categorical_column_with_vocabulary_file(
spec,
...,
vocabulary_file,
vocabulary_size = NULL,
dtype = tf$string,
default_value = NULL,
num_oov_buckets = 0L

)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

vocabulary_file

The vocabulary file name.
vocabulary_size

Number of the elements in the vocabulary. This must be no greater than length
of vocabulary_file, if less than length, later values are ignored. If None, it is
set to the length of vocabulary_file.

dtype The type of features. Only string and integer types are supported.

default_value The integer ID value to return for out-of-vocabulary feature values, defaults to
-1. This can not be specified with a positive num_oov_buckets.

step_categorical_column_with_vocabulary_list 63

num_oov_buckets

Non-negative integer, the number of out-of-vocabulary buckets. All out-of-
vocabulary inputs will be assigned IDs in the range [vocabulary_size, vocab-
ulary_size+num_oov_buckets) based on a hash of the input value. A positive
num_oov_buckets can not be specified with default_value.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(),
step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(),
steps

Examples

Not run:
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%

step_categorical_column_with_vocabulary_file(thal, vocabulary_file = file)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_categorical_column_with_vocabulary_list

Creates a categorical column specification

Description

Creates a categorical column specification

64 step_categorical_column_with_vocabulary_list

Usage

step_categorical_column_with_vocabulary_list(
spec,
...,
vocabulary_list = NULL,
dtype = NULL,
default_value = -1L,
num_oov_buckets = 0L

)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

vocabulary_list

An ordered iterable defining the vocabulary. Each feature is mapped to the index
of its value (if present) in vocabulary_list. Must be castable to dtype. If NULL
the vocabulary will be defined as all unique values in the dataset provided when
fitting the specification.

dtype The type of features. Only string and integer types are supported. If NULL, it will
be inferred from vocabulary_list.

default_value The integer ID value to return for out-of-vocabulary feature values, defaults to
-1. This can not be specified with a positive num_oov_buckets.

num_oov_buckets

Non-negative integer, the number of out-of-vocabulary buckets. All out-of-
vocabulary inputs will be assigned IDs in the range [lenght(vocabulary_list), length(vocabulary_list)+num_oov_buckets)
based on a hash of the input value. A positive num_oov_buckets can not be spec-
ified with default_value.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_crossed_column(), step_embedding_column(),
step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(),
steps

Examples

Not run:
library(tfdatasets)
data(hearts)

step_crossed_column 65

hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%

step_categorical_column_with_vocabulary_list(thal)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_crossed_column Creates crosses of categorical columns

Description

Use this step to create crosses between categorical columns.

Usage

step_crossed_column(spec, ..., hash_bucket_size, hash_key = NULL)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

hash_bucket_size

An int > 1. The number of buckets.

hash_key (optional) Specify the hash_key that will be used by the FingerprintCat64 func-
tion to combine the crosses fingerprints on SparseCrossOp.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(),
step_shared_embeddings_column(), steps

66 step_embedding_column

Examples

Not run:
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%

step_numeric_column(age) %>%
step_bucketized_column(age, boundaries = c(10, 20, 30))

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_embedding_column Creates embeddings columns

Description

Use this step to create ambeddings columns from categorical columns.

Usage

step_embedding_column(
spec,
...,
dimension = function(x) { as.integer(x^0.25) },
combiner = "mean",
initializer = NULL,
ckpt_to_load_from = NULL,
tensor_name_in_ckpt = NULL,
max_norm = NULL,
trainable = TRUE

)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

dimension An integer specifying dimension of the embedding, must be > 0. Can also be a
function of the size of the vocabulary.

step_embedding_column 67

combiner A string specifying how to reduce if there are multiple entries in a single row.
Currently ’mean’, ’sqrtn’ and ’sum’ are supported, with ’mean’ the default.
’sqrtn’ often achieves good accuracy, in particular with bag-of-words columns.
Each of this can be thought as example level normalizations on the column. For
more information, see tf.embedding_lookup_sparse.

initializer A variable initializer function to be used in embedding variable initialization. If
not specified, defaults to tf.truncated_normal_initializer with mean 0.0
and standard deviation 1/sqrt(dimension).

ckpt_to_load_from

String representing checkpoint name/pattern from which to restore column weights.
Required if tensor_name_in_ckpt is not NULL.

tensor_name_in_ckpt

Name of the Tensor in ckpt_to_load_from from which to restore the column
weights. Required if ckpt_to_load_from is not NULL.

max_norm If not NULL, embedding values are l2-normalized to this value.

trainable Whether or not the embedding is trainable. Default is TRUE.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_indicator_column(), step_numeric_column(), step_remove_column(),
step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%

step_categorical_column_with_vocabulary_list(thal) %>%
step_embedding_column(thal, dimension = 3)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

68 step_indicator_column

step_indicator_column Creates Indicator Columns

Description

Use this step to create indicator columns from categorical columns.

Usage

step_indicator_column(spec, ...)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

Value

a FeatureSpec object.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_numeric_column(), step_remove_column(),
step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%

step_categorical_column_with_vocabulary_list(thal) %>%
step_indicator_column(thal)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_numeric_column 69

step_numeric_column Creates a numeric column specification

Description

step_numeric_column creates a numeric column specification. It can also be used to normalize
numeric columns.

Usage

step_numeric_column(
spec,
...,
shape = 1L,
default_value = NULL,
dtype = tf$float32,
normalizer_fn = NULL

)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

shape An iterable of integers specifies the shape of the Tensor. An integer can be
given which means a single dimension Tensor with given width. The Tensor
representing the column will have the shape of batch_size + shape.

default_value A single value compatible with dtype or an iterable of values compatible with
dtype which the column takes on during tf.Example parsing if data is missing.
A default value of NULL will cause tf.parse_example to fail if an example
does not contain this column. If a single value is provided, the same value will
be applied as the default value for every item. If an iterable of values is provided,
the shape of the default_value should be equal to the given shape.

dtype defines the type of values. Default value is tf$float32. Must be a non-
quantized, real integer or floating point type.

normalizer_fn If not NULL, a function that can be used to normalize the value of the tensor
after default_value is applied for parsing. Normalizer function takes the input
Tensor as its argument, and returns the output Tensor. (e.g. function(x) (x -
3.0) / 4.2). Please note that even though the most common use case of this
function is normalization, it can be used for any kind of Tensorflow transforma-
tions. You can also a pre-made scaler, in this case a function will be created
after fit.FeatureSpec is called on the feature specification.

Value

a FeatureSpec object.

70 step_remove_column

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_remove_column(),
step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%

step_numeric_column(age, normalizer_fn = standard_scaler())

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_remove_column Creates a step that can remove columns

Description

Removes features of the feature specification.

Usage

step_remove_column(spec, ...)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

Value

a FeatureSpec object.

step_shared_embeddings_column 71

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(),
step_shared_embeddings_column(), steps

Examples

Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%

step_numeric_column(age, normalizer_fn = scaler_standard()) %>%
step_bucketized_column(age, boundaries = c(20, 50)) %>%
step_remove_column(age)

spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)

End(Not run)

step_shared_embeddings_column

Creates shared embeddings for categorical columns

Description

This is similar to step_embedding_column, except that it produces a list of embedding columns that
share the same embedding weights.

Usage

step_shared_embeddings_column(
spec,
...,
dimension,
combiner = "mean",
initializer = NULL,
shared_embedding_collection_name = NULL,
ckpt_to_load_from = NULL,
tensor_name_in_ckpt = NULL,
max_norm = NULL,

72 step_shared_embeddings_column

trainable = TRUE
)

Arguments

spec A feature specification created with feature_spec().

... Comma separated list of variable names to apply the step. selectors can also be
used.

dimension An integer specifying dimension of the embedding, must be > 0. Can also be a
function of the size of the vocabulary.

combiner A string specifying how to reduce if there are multiple entries in a single row.
Currently ’mean’, ’sqrtn’ and ’sum’ are supported, with ’mean’ the default.
’sqrtn’ often achieves good accuracy, in particular with bag-of-words columns.
Each of this can be thought as example level normalizations on the column. For
more information, see tf.embedding_lookup_sparse.

initializer A variable initializer function to be used in embedding variable initialization. If
not specified, defaults to tf.truncated_normal_initializer with mean 0.0
and standard deviation 1/sqrt(dimension).

shared_embedding_collection_name

Optional collective name of these columns. If not given, a reasonable name will
be chosen based on the names of categorical_columns.

ckpt_to_load_from

String representing checkpoint name/pattern from which to restore column weights.
Required if tensor_name_in_ckpt is not NULL.

tensor_name_in_ckpt

Name of the Tensor in ckpt_to_load_from from which to restore the column
weights. Required if ckpt_to_load_from is not NULL.

max_norm If not NULL, embedding values are l2-normalized to this value.

trainable Whether or not the embedding is trainable. Default is TRUE.

Value

a FeatureSpec object.

Note

Does not work in the eager mode.

See Also

steps for a complete list of allowed steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), fit.FeatureSpec(),
step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(),
step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(),
step_remove_column(), steps

tensors_dataset 73

tensors_dataset Creates a dataset with a single element, comprising the given tensors.

Description

Creates a dataset with a single element, comprising the given tensors.

Usage

tensors_dataset(tensors)

Arguments

tensors A nested structure of tensors.

Value

A dataset.

See Also

Other tensor datasets: sparse_tensor_slices_dataset(), tensor_slices_dataset()

tensor_slices_dataset Creates a dataset whose elements are slices of the given tensors.

Description

Creates a dataset whose elements are slices of the given tensors.

Usage

tensor_slices_dataset(tensors)

Arguments

tensors A nested structure of tensors, each having the same size in the 0th dimension.

Value

A dataset.

See Also

Other tensor datasets: sparse_tensor_slices_dataset(), tensors_dataset()

74 tfrecord_dataset

text_line_dataset A dataset comprising lines from one or more text files.

Description

A dataset comprising lines from one or more text files.

Usage

text_line_dataset(
filenames,
compression_type = NULL,
record_spec = NULL,
parallel_records = NULL

)

Arguments

filenames String(s) specifying one or more filenames
compression_type

A string, one of: NULL (no compression), "ZLIB", or "GZIP".

record_spec (Optional) Specification used to decode delimimted text lines into records (see
delim_record_spec()).

parallel_records

(Optional) An integer, representing the number of records to decode in parallel.
If not specified, records will be processed sequentially.

Value

A dataset

tfrecord_dataset A dataset comprising records from one or more TFRecord files.

Description

A dataset comprising records from one or more TFRecord files.

Usage

tfrecord_dataset(
filenames,
compression_type = NULL,
buffer_size = NULL,
num_parallel_reads = NULL

)

until_out_of_range 75

Arguments

filenames String(s) specifying one or more filenames
compression_type

A string, one of: NULL (no compression), "ZLIB", or "GZIP".

buffer_size An integer representing the number of bytes in the read buffer. (0 means no
buffering).

num_parallel_reads

An integer representing the number of files to read in parallel. Defaults to read-
ing files sequentially.

Details

If the dataset encodes a set of TFExample instances, then they can be decoded into named records
using the dataset_map() function (see example below).

Examples

Not run:

Creates a dataset that reads all of the examples from two files, and extracts
the image and label features.
filenames <- c("/var/data/file1.tfrecord", "/var/data/file2.tfrecord")
dataset <- tfrecord_dataset(filenames) %>%

dataset_map(function(example_proto) {
features <- list(

image = tf$FixedLenFeature(shape(), tf$string, default_value = ""),
label = tf$FixedLenFeature(shape(), tf$int32, default_value = 0L)

)
tf$parse_single_example(example_proto, features)

})

End(Not run)

until_out_of_range Execute code that traverses a dataset until an out of range condition
occurs

Description

Execute code that traverses a dataset until an out of range condition occurs

Usage

until_out_of_range(expr)

out_of_range_handler(e)

76 with_dataset

Arguments

expr Expression to execute (will be executed multiple times until the condition oc-
curs)

e Error object

Details

When a dataset iterator reaches the end, an out of range runtime error will occur. This function will
catch and ignore the error when it occurs.

Examples

Not run:
library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%

dataset_batch(128) %>%
dataset_repeat(10) %>%
dataset_prepare(x = c(mpg, disp), y = cyl)

iter <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iter)

until_out_of_range({
batch <- sess$run(next_batch)
use batch$x and batch$y tensors

})

End(Not run)

with_dataset Execute code that traverses a dataset

Description

Execute code that traverses a dataset

Usage

with_dataset(expr)

Arguments

expr Expression to execute

Details

When a dataset iterator reaches the end, an out of range runtime error will occur. You can catch and
ignore the error when it occurs by wrapping your iteration code in a call to with_dataset() (see
the example below for an illustration).

zip_datasets 77

Examples

Not run:
library(tfdatasets)
dataset <- text_line_dataset("mtcars.csv", record_spec = mtcars_spec) %>%

dataset_prepare(x = c(mpg, disp), y = cyl) %>%
dataset_batch(128) %>%
dataset_repeat(10)

iter <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iter)

with_dataset({
while(TRUE) {
batch <- sess$run(next_batch)
use batch$x and batch$y tensors

}
})

End(Not run)

zip_datasets Creates a dataset by zipping together the given datasets.

Description

Merges datasets together into pairs or tuples that contain an element from each dataset.

Usage

zip_datasets(...)

Arguments

... Datasets to zip (or a single argument with a list or list of lists of datasets).

Value

A dataset

Index

∗ Dataset methods
dataset_shard, 27

∗ Feature Spec Functions
dataset_use_spec, 33
feature_spec, 36
fit.FeatureSpec, 38
step_bucketized_column, 58
step_categorical_column_with_hash_bucket,

59
step_categorical_column_with_identity,

61
step_categorical_column_with_vocabulary_file,

62
step_categorical_column_with_vocabulary_list,

63
step_crossed_column, 65
step_embedding_column, 66
step_indicator_column, 68
step_numeric_column, 69
step_remove_column, 70
step_shared_embeddings_column, 71
steps, 58

∗ Selectors
all_nominal, 3
all_numeric, 4
has_type, 40

∗ dataset methods
dataset_batch, 6
dataset_cache, 9
dataset_collect, 10
dataset_concatenate, 10
dataset_decode_delim, 11
dataset_filter, 12
dataset_interleave, 14
dataset_map, 15
dataset_map_and_batch, 16
dataset_padded_batch, 18
dataset_prefetch, 20
dataset_prefetch_to_device, 21

dataset_reduce, 23
dataset_repeat, 25
dataset_shuffle, 27
dataset_shuffle_and_repeat, 28
dataset_skip, 29
dataset_take, 31
dataset_window, 34

∗ datasets
hearts, 41
selectors, 56

∗ iterator functions
iterator_get_next, 43
iterator_initializer, 43
iterator_make_initializer, 44
iterator_string_handle, 44
make-iterator, 46

∗ reading datasets
until_out_of_range, 75

∗ scaler
scaler_min_max, 55
scaler_standard, 55

∗ tensor datasets
sparse_tensor_slices_dataset, 56
tensor_slices_dataset, 73
tensors_dataset, 73

∗ text datasets
text_line_dataset, 74

all_nominal, 3, 4, 40
all_nominal(), 56
all_numeric, 4, 4, 40
all_numeric(), 56
as_array_iterator, 4

choose_from_datasets, 5
compile(), 50
contains(), 56
csv_record_spec (delim_record_spec), 34
cur_info_env (selectors), 56

78

INDEX 79

dataset_batch, 6, 9–11, 13, 14, 16, 17,
20–22, 24, 26, 28, 29, 32, 34

dataset_batch(), 19
dataset_bucket_by_sequence_length, 7
dataset_cache, 7, 9, 10, 11, 13, 14, 16, 17,

20–22, 24, 26, 28, 29, 32, 34
dataset_collect, 7, 9, 10, 11, 13, 14, 16, 17,

20–22, 24, 26, 28, 29, 32, 34
dataset_concatenate, 7, 9, 10, 10, 11, 13,

14, 16, 17, 20–22, 24, 26, 28, 29, 32,
34

dataset_decode_delim, 7, 9–11, 11, 13, 14,
16, 17, 20–22, 24, 26, 28, 29, 32, 34

dataset_enumerate, 11
dataset_filter, 7, 9–11, 12, 14, 16, 17,

20–22, 24, 26, 28, 29, 32, 34
dataset_flat_map, 13
dataset_interleave, 7, 9–11, 13, 14, 16, 17,

20–22, 24, 26, 28, 29, 32, 34
dataset_map, 7, 9–11, 13, 14, 15, 17, 20–22,

24, 26, 28, 29, 32, 34
dataset_map(), 75
dataset_map_and_batch, 7, 9–11, 13, 14, 16,

16, 20–22, 24, 26, 28, 29, 32, 34
dataset_options, 17
dataset_padded_batch, 7, 9–11, 13, 14, 16,

17, 18, 21, 22, 24, 26, 28, 29, 32, 34
dataset_prefetch, 7, 9–11, 13, 14, 16, 17,

20, 20, 22, 24, 26, 28, 29, 32, 34
dataset_prefetch_to_device, 7, 9–11, 13,

14, 16, 17, 20, 21, 21, 24, 26, 28, 29,
32, 34

dataset_prepare, 22
dataset_reduce, 7, 9–11, 13, 14, 16, 17,

20–22, 23, 26, 28, 29, 32, 34
dataset_rejection_resample, 24
dataset_repeat, 7, 9–11, 13, 14, 16, 17,

20–22, 24, 25, 28, 29, 32, 34
dataset_scan, 26
dataset_shard, 27
dataset_shuffle, 7, 9–11, 13, 14, 16, 17,

20–22, 24, 26, 27, 29, 32, 34
dataset_shuffle_and_repeat, 7, 9–11, 13,

14, 16, 17, 20–22, 24, 26, 28, 28, 29,
32, 34

dataset_skip, 7, 9–11, 13, 14, 16, 17, 20–22,
24, 26, 28, 29, 29, 32, 34

dataset_snapshot, 30

dataset_take, 7, 9–11, 13, 14, 16, 17, 20–22,
24, 26, 28, 29, 31, 34

dataset_unique, 32
dataset_use_spec, 33, 37, 39, 58–61, 63–65,

67, 68, 70–72
dataset_use_spec(), 37, 39
dataset_window, 7, 9–11, 13, 14, 16, 17,

20–22, 24, 26, 28, 29, 32, 34
delim_record_spec, 34
delim_record_spec(), 11, 74
dense_features, 36

ends_with(), 56
evaluate, 42
everything(), 56

feature_spec, 33, 36, 39, 58–61, 63–65, 67,
68, 70–72

feature_spec(), 33, 36, 38, 39, 59–62,
64–66, 68–70, 72

file_list_dataset, 37
fit.FeatureSpec, 33, 37, 38, 58–61, 63–65,

67–72
fit.FeatureSpec(), 33, 37
fixed_length_record_dataset, 39

has_type, 4, 40
has_type(), 56
hearts, 41

input_fn (input_fn.tf_dataset), 42
input_fn(), 23
input_fn.tf_dataset, 42
iter_next(), 4
iterate(), 4
iterator_get_next, 43, 43, 44, 45, 48
iterator_initializer, 43, 43, 44, 45, 48
iterator_initializer(), 47
iterator_make_initializer, 43, 44, 45, 48
iterator_make_initializer(), 47
iterator_string_handle, 43, 44, 44, 48
iterator_string_handle(), 47

keras::layer_dense_features(), 45

layer_input(), 50
layer_input_from_dataset, 45
length.tensorflow.python.data.ops.dataset_ops.DatasetV2

(length.tf_dataset), 46
length.tf_dataset, 46

80 INDEX

make-iterator, 46
make_csv_dataset, 48
make_iterator_from_string_handle

(make-iterator), 46
make_iterator_from_structure

(make-iterator), 46
make_iterator_initializable

(make-iterator), 46
make_iterator_one_shot (make-iterator),

46
matches(), 56

next_batch, 50

one_of(), 56
out_of_range_handler

(until_out_of_range), 75
output_shapes (output_types), 51
output_shapes(), 12, 14–16
output_types, 51
output_types(), 12, 14–16

predict, 42

random_integer_dataset, 52
range_dataset, 52
read_files, 53
rlang::as_function(), 15, 16

sample_from_datasets, 54
scaler, 54, 55, 69
scaler_min_max, 54, 55, 55
scaler_standard, 54, 55, 55
selectors, 56, 58–62, 64–66, 68–70, 72
sparse_tensor_slices_dataset, 56, 73
sql_dataset (sql_record_spec), 57
sql_record_spec, 57
sqlite_dataset (sql_record_spec), 57
starts_with(), 56
step_bucketized_column, 33, 37, 39, 58, 58,

60, 61, 63–65, 67, 68, 70–72
step_bucketized_column(), 58
step_categorical_column_with_hash_bucket,

33, 37, 39, 58, 59, 59, 61, 63–65, 67,
68, 70–72

step_categorical_column_with_hash_bucket(),
58

step_categorical_column_with_identity,
33, 37, 39, 58–60, 61, 63–65, 67, 68,
70–72

step_categorical_column_with_identity(),
58

step_categorical_column_with_vocabulary_file,
33, 37, 39, 58–61, 62, 64, 65, 67, 68,
70–72

step_categorical_column_with_vocabulary_file(),
58

step_categorical_column_with_vocabulary_list,
33, 37, 39, 58–61, 63, 63, 65, 67, 68,
70–72

step_categorical_column_with_vocabulary_list(),
58

step_crossed_column, 33, 37, 39, 58–61, 63,
64, 65, 67, 68, 70–72

step_crossed_column(), 58
step_embedding_column, 33, 37, 39, 58–61,

63–65, 66, 68, 70–72
step_embedding_column(), 58
step_indicator_column, 33, 37, 39, 58–61,

63–65, 67, 68, 70–72
step_indicator_column(), 58
step_numeric_column, 33, 37, 39, 55, 58–61,

63–65, 67, 68, 69, 71, 72
step_numeric_column(), 58
step_remove_column, 33, 37, 39, 58–61,

63–65, 67, 68, 70, 70, 72
step_remove_column(), 58
step_shared_embeddings_column, 33, 37,

39, 58–61, 63–65, 67, 68, 70, 71, 71
step_shared_embeddings_column(), 58
steps, 33, 37, 39, 40, 58, 59–61, 63–65, 67,

68, 70–72

tensor_slices_dataset, 57, 73, 73
tensorflow::shape(), 8, 19
tensors_dataset, 57, 73, 73
text_line_dataset, 74
text_line_dataset(), 42, 53
tfrecord_dataset, 74
tfrecord_dataset(), 42, 53
tidyselect::select_helpers(), 36
train, 42
tsv_record_spec (delim_record_spec), 34

until_out_of_range, 75

with_dataset, 76

zip_datasets, 77

	all_nominal
	all_numeric
	as_array_iterator
	choose_from_datasets
	dataset_batch
	dataset_bucket_by_sequence_length
	dataset_cache
	dataset_collect
	dataset_concatenate
	dataset_decode_delim
	dataset_enumerate
	dataset_filter
	dataset_flat_map
	dataset_interleave
	dataset_map
	dataset_map_and_batch
	dataset_options
	dataset_padded_batch
	dataset_prefetch
	dataset_prefetch_to_device
	dataset_prepare
	dataset_reduce
	dataset_rejection_resample
	dataset_repeat
	dataset_scan
	dataset_shard
	dataset_shuffle
	dataset_shuffle_and_repeat
	dataset_skip
	dataset_snapshot
	dataset_take
	dataset_unique
	dataset_use_spec
	dataset_window
	delim_record_spec
	dense_features
	feature_spec
	file_list_dataset
	fit.FeatureSpec
	fixed_length_record_dataset
	has_type
	hearts
	input_fn.tf_dataset
	iterator_get_next
	iterator_initializer
	iterator_make_initializer
	iterator_string_handle
	layer_input_from_dataset
	length.tf_dataset
	make-iterator
	make_csv_dataset
	next_batch
	output_types
	random_integer_dataset
	range_dataset
	read_files
	sample_from_datasets
	scaler
	scaler_min_max
	scaler_standard
	selectors
	sparse_tensor_slices_dataset
	sql_record_spec
	steps
	step_bucketized_column
	step_categorical_column_with_hash_bucket
	step_categorical_column_with_identity
	step_categorical_column_with_vocabulary_file
	step_categorical_column_with_vocabulary_list
	step_crossed_column
	step_embedding_column
	step_indicator_column
	step_numeric_column
	step_remove_column
	step_shared_embeddings_column
	tensors_dataset
	tensor_slices_dataset
	text_line_dataset
	tfrecord_dataset
	until_out_of_range
	with_dataset
	zip_datasets
	Index

