Package ‘tfestimators’

August 10, 2021
Type Package

Title Interface to "TensorFlow' Estimators
Version 1.9.2

Description Interface to "TensorFlow' Estimators
<https://www.tensorflow.org/guide/estimator>, a high-level
API that provides implementations of many different model types
including linear models and deep neural networks.

License Apache License 2.0
URL https://github.com/rstudio/tfestimators

BugReports https://github.com/rstudio/tfestimators/issues
SystemRequirements TensorFlow (https://www.tensorflow.org/)
Encoding UTF-8

Depends R (>=3.1)

Imports forge, magrittr, progress, reticulate (>= 1.10), rlang (>=
0.3), tensorflow (>= 1.9), tfruns (>= 1.1), tidyselect, utils,
purrr, tibble, tidyr

RoxygenNote 7.1.1

Suggests ggplot2, modelr (>= 0.1.1), testthat, rmarkdown, knitr

VignetteBuilder knitr

NeedsCompilation no

Author JJ Allaire [aut],
Yuan Tang [aut] (<https://orcid.org/0000-0001-5243-233X>),
Kevin Ushey [aut],
Kevin Kuo [aut] (<https://orcid.org/0000-0001-7803-7901>),
Tomasz Kalinowski [cre],
Daniel Falbel [ctb, cph],
RStudio [cph, fnd],
Google Inc. [cph]

Maintainer Tomasz Kalinowski <tomasz.kalinowski@rstudio.com>
Repository CRAN
Date/Publication 2021-08-09 22:30:02 UTC

https://www.tensorflow.org/guide/estimator
https://github.com/rstudio/tfestimators
https://github.com/rstudio/tfestimators/issues
https://orcid.org/0000-0001-5243-233X
https://orcid.org/0000-0001-7803-7901

2 R topics documented:

R topics documented:

boosted_trees_estimators e e e e e e e e e e e e e e e 3
classifier_parse_example_Speco 5
COlUMN-SCOPE v v v o e e e e e 6
column_base e 7
column_bucketized e 7
column_categorical_weighted 8
column_categorical_with_hash_bucket oL, 9
column_categorical_with_identity L. 10
column_categorical_with_vocabulary_file 11
column_categorical_with_vocabulary_list, . 12
column_crossed e 13
column_embedding L. 14
column_indicator e e e 15
column _NUMETIC v e e e e e e e e e 16
dnn_estimators e 17
dnn_linear_combined_estimators e o e e e 19
ESHMALOr e e e e e e e e e e e e e 21
ESHMALOTS ot o e e e e e e e e e e e e e e e e e e e 22
eStMALOT_SPEC . . .« v v v o v i et e e e e e e e e e e e 23
evaluate.tf_estimator e e 25
eval_Spec e 26
EXPEIIMENt v e e e e e e e e 27
export_savedmodel.tf_estimator 27
feature_columns e e 29
graph_Keys e 30
hook_checkpoint_saver L 31
hook_global_step_waiter 32
hook_history_saver 32
hook_logging_tensor 33
hook_nan_tensor e e e 34
hook_progress_bar e 34
hook_step_counter e 35
hook_stop_at_step 35
hook_summary_saver 36
mput_fno 37
mput_layer e e e e e 39
keras_model_to_estimator 40
latest_checkpoint L 41
linear_estimators 41
Metric_Keys e 43
model_dir e e 43
mode_Keys e e e e 44
numpy_input_fn. Lo 44
plot.tf_estimator_history L 45
predict.tf_estimator 46

prediction_keys L 48

boosted_trees_estimators 3

regressor_parse_example_SPec i e e e e 48
run_config L e e e e 50
SESSION_TUN_ATZS « « . v v v v e e et e e e e e e e e e e e e 50
session_run_hook L e 51
task_type 52
tfestimators e e e e 52
train-evaluate-predict L 53
train.tf_estimator e e e e 53
train_and_evaluate.tf _estimator 54
TraAIN_SPEC . « v v v v e e e e e e e e e 55
variable_names_values e e 56
Index 57

boosted_trees_estimators
Boosted Trees Estimator

Description

Construct a boosted trees estimator.

Usage

boosted_trees_regressor(

feature_columns,
n_batches_per_layer,
model_dir = NULL,
label_dimension = 1L,
weight_column = NULL,
n_trees = 100L,
max_depth = 6L,
learning_rate = 0.1,

11_regularization = 0,
12_regularization = 0,
tree_complexity = 0,
min_node_weight = 0,

config = NULL

boosted_trees_classifier(
feature_columns,
n_batches_per_layer,
model_dir = NULL,
n_classes = 2L,
weight_column = NULL,
label_vocabulary = NULL,
n_trees = 100L,

4 boosted_trees_estimators

max_depth = 6L,
learning_rate = 0.

|

11_regularization = 0,
12_regularization = 0,
tree_complexity = 0,
min_node_weight = 0,

config = NULL

Arguments

feature_columns
An R list containing all of the feature columns used by the model (typically,
generated by feature_columns()).

n_batches_per_layer
The number of batches to collect statistics per layer.

model_dir Directory to save the model parameters, graph, and so on. This can also be used
to load checkpoints from the directory into a estimator to continue training a
previously saved model.

label_dimension
Number of regression targets per example. This is the size of the last dimension
of the labels and logits Tensor objects (typically, these have shape [batch_size, la-
bel_dimension]).

weight_column A string, or a numeric column created by column_numeric() defining feature
column representing weights. It is used to down weight or boost examples dur-
ing training. It will be multiplied by the loss of the example. If it is a string,
it is used as a key to fetch weight tensor from the features argument. If it is
a numeric column, then the raw tensor is fetched by key weight_columns$key,
then weight_column$normalizer_fn is applied on it to get weight tensor.

n_trees Number trees to be created.
max_depth Maximum depth of the tree to grow.

learning_rate Shrinkage parameter to be used when a tree added to the model.
11_regularization

Regularization multiplier applied to the absolute weights of the tree leafs.
12_regularization

Regularization multiplier applied to the square weights of the tree leafs.
tree_complexity

Regularization factor to penalize trees with more leaves.
min_node_weight

Minimum hessian a node must have for a split to be considered. The value will

be compared with sum(leaf_hessian)/(batch_size * n_batches_per_layer).

config A run configuration created by run_config(), used to configure the runtime
settings.

n_classes The number of label classes.

classifier_parse_example_spec 5

label_vocabulary
A list of strings represents possible label values. If given, labels must be string
type and have any value in label_vocabulary. If it is not given, that means
labels are already encoded as integer or float within [0, 1] for n_classes ==
and encoded as integer values in {0, 1,...,n_classes -1} for n_classes > 2. Also
there will be errors if vocabulary is not provided and labels are string.

See Also

Other canned estimators: dnn_estimators, dnn_linear_combined_estimators, linear_estimators

classifier_parse_example_spec

Generates Parsing Spec for TensorFlow Example to be Used with
Classifiers

Description

If users keep data in TensorFlow Example format, they need to call tf$parse_example with a
proper feature spec. There are two main things that this utility helps:

 Users need to combine parsing spec of features with labels and weights (if any) since they are
all parsed from same tf$Example instance. This utility combines these specs.

* It is difficult to map expected label by a classifier such as dnn_classifier to corresponding
tf$parse_example spec. This utility encodes it by getting related information from users
(key, dtype).

Usage

classifier_parse_example_spec(
feature_columns,
label_key,
label_dtype = tf$int64,
label_default = NULL,
weight_column = NULL

Arguments

feature_columns
An iterable containing all feature columns. All items should be instances of
classes derived from _FeatureColumn.

label_key A string identifying the label. It means tf$Example stores labels with this key.

label_dtype A tf$dtype identifies the type of labels. By default it is tf$int64. If user
defines a label_vocabulary, this should be set as tf$string. tf$float32
labels are only supported for binary classification.

6 column-scope

label_default used as label if label_key does not exist in given tf$Example. An example
usage: let’s say label_key is ’clicked’ and tf$Example contains clicked data
only for positive examples in following format key:clicked, value:1. This means
that if there is no data with key ’clicked’ it should count as negative example
by setting label_deafault=0. Type of this value should be compatible with
label_dtype.

weight_column A string or a numeric column created by column_numeric() defining feature
column representing weights. It is used to down weight or boost examples
during training. It will be multiplied by the loss of the example. If it is a
string, it is used as a key to fetch weight tensor from the features. If it
is a numeric column, raw tensor is fetched by key weight_column$key, then
weight_column$normalizer_fn is applied on it to get weight tensor.

Value

A dict mapping each feature key to a FixedLenFeature or VarLenFeature value.

Raises

¢ ValueError: If label is used in feature_columns.

* ValueError: If weight_column is used in feature_columns.

* ValueError: If any of the given feature_columns is not a feature column instance.
¢ ValueError: If weight_column is not a numeric column instance.

* ValueError: if label_key is NULL.

See Also

Other parsing utilities: regressor_parse_example_spec()

column-scope Establish a Feature Columns Selection Scope

Description

This helper function provides a set of names to be used by tidyselect helpersine.g. feature_columns().
Usage

set_columns(columns)

with_columns(columns, expr)

scoped_columns(columns)

column_base 7

Arguments
columns Either a named R object (whose names will be used to provide a selection con-
text), or a character vector of such names.
expr An R expression, to be evaluated with the selection context active.
column_base Base Documentation for Feature Column Constructors
Description

Base Documentation for Feature Column Constructors

Arguments
Expression(s) identifying input feature(s). Used as the column name and the
dictionary key for feature parsing configs, feature tensors, and feature columns.
column_bucketized Construct a Bucketized Column
Description

Construct a bucketized column, representing discretized dense input. Buckets include the left
boundary, and exclude the right boundary.
Usage

column_bucketized(source_column, boundaries)

Arguments

source_column A one-dimensional dense column, as generated by column_numeric().
boundaries A sorted list or list of floats specifying the boundaries.

Value

A bucketized column.

Raises

e ValueError: If source_column is not a numeric column, or if it is not one-dimensional.
e ValueError: If boundaries is not a sorted list or list.

See Also

Other feature column constructors: column_categorical_weighted(), column_categorical_with_hash_bucket(),
column_categorical _with_identity(), column_categorical_with_vocabulary_file(), column_categorical_witl
column_crossed(), column_embedding (), column_numeric(), input_layer()

column_categorical_weighted

column_categorical _weighted

Construct a Weighted Categorical Column

Description

Use this when each of your sparse inputs has both an ID and a value. For example, if you're

representing text documents as a collection of word frequencies, you can provide 2 parallel sparse
input features ("terms’ and ’frequencies’ below).

Usage

column_categorical_weighted(
categorical_column,
weight_feature_key,
dtype = tf$float32

)

Arguments
categorical_column

A categorical column created by column_categorical_*() functions.
weight_feature_key

String key for weight values.

dtype Type of weights, such as tf$float32. Only float and integer weights are sup-
ported.

Value

A categorical column composed of two sparse features: one represents id, the other represents
weight (value) of the id feature in that example.

Raises
¢ ValueError: if dtype is not convertible to float.
See Also

Other feature column constructors: column_bucketized(), column_categorical_with_hash_bucket(),

column_categorical_with_identity(), column_categorical_with_vocabulary_file(), column_categorical_witl
column_crossed(), column_embedding(), column_numeric(), input_layer()

column_categorical_with_hash_bucket 9

column_categorical_with_hash_bucket
Represents Sparse Feature where IDs are set by Hashing

Description

Use this when your sparse features are in string or integer format, and you want to distribute
your inputs into a finite number of buckets by hashing. output_id = Hash(input_feature_string)
% bucket_size For input dictionary features, featureskey is either tensor or sparse tensor ob-
ject. If it’s tensor object, missing values can be represented by -1 for int and ' ' for string. Note
that these values are independent of the default_value argument.

Usage

column_categorical_with_hash_bucket(..., hash_bucket_size, dtype = tf$string)

Arguments

Expression(s) identifying input feature(s). Used as the column name and the
dictionary key for feature parsing configs, feature tensors, and feature columns.

hash_bucket_size
An int > 1. The number of buckets.

dtype The type of features. Only string and integer types are supported.

Value

A _HashedCategoricalColumn.

Raises

* ValueError: hash_bucket_size is not greater than 1.

* ValueError: dtype is neither string nor integer.

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted(),
column_categorical _with_identity(), column_categorical_with_vocabulary_file(), column_categorical_witl
column_crossed(), column_embedding (), column_numeric(), input_layer()

10 column_categorical_with_identity

column_categorical_with_identity
Construct a Categorical Column that Returns Identity Values

Description

Use this when your inputs are integers in the range [0, num_buckets), and you want to use the
input value itself as the categorical ID. Values outside this range will result in default_value if
specified, otherwise it will fail.

Usage
column_categorical_with_identity(..., num_buckets, default_value = NULL)
Arguments
Expression(s) identifying input feature(s). Used as the column name and the
dictionary key for feature parsing configs, feature tensors, and feature columns.
num_buckets Number of unique values.

default_value If NULL, this column’s graph operations will fail for out-of-range inputs. Other-
wise, this value must be in the range [0, num_buckets), and will replace inputs
in that range.

Details

Typically, this is used for contiguous ranges of integer indexes, but it doesn’t have to be. This might
be inefficient, however, if many of IDs are unused. Consider column_categorical_with_hash_bucket()
in that case.

For input dictionary features, features$key is either tensor or sparse tensor object. If it’s tensor
object, missing values can be represented by -1 for int and ' ' for string. Note that these values are
independent of the default_value argument.

Value

A categorical column that returns identity values.

Raises

e ValueError: if num_buckets is less than one.
* ValueError: if default_value is not in range [0, num_buckets).

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted()
column_categorical_with_hash_bucket(), column_categorical_with_vocabulary_file(),
column_categorical_with_vocabulary_list(), column_crossed(), column_embedding(), column_numeric(),
input_layer()

column_categorical_with_vocabulary_file 11

column_categorical_with_vocabulary_file
Construct a Categorical Column with a Vocabulary File

Description

Use this when your inputs are in string or integer format, and you have a vocabulary file that maps
each value to an integer ID. By default, out-of-vocabulary values are ignored. Use either (but
not both) of num_oov_buckets and default_value to specify how to include out-of-vocabulary
values. For input dictionary features, features[key] is either tensor or sparse tensor object. If
it’s tensor object, missing values can be represented by -1 for int and ' ' for string. Note that these
values are independent of the default_value argument.

Usage

column_categorical_with_vocabulary_file(
vocabulary_file,
vocabulary_size,
num_oov_buckets = 0L,
default_value = NULL,
dtype = tf$string

Arguments

Expression(s) identifying input feature(s). Used as the column name and the
dictionary key for feature parsing configs, feature tensors, and feature columns.
vocabulary_file
The vocabulary file name.
vocabulary_size
Number of the elements in the vocabulary. This must be no greater than length
of vocabulary_file, if less than length, later values are ignored.
num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-
vocabulary inputs will be assigned IDs in the range [vocabulary_size, vocab-
ulary_size+num_oov_buckets) based on a hash of the input value. A positive
num_oov_buckets can not be specified with default_value.

default_value The integer ID value to return for out-of-vocabulary feature values, defaults to
-1. This can not be specified with a positive num_oov_buckets.

dtype The type of features. Only string and integer types are supported.

Value

A categorical column with a vocabulary file.

12 column_categorical_with_vocabulary_list

Raises

ValueError: vocabulary_file is missing.

ValueError: vocabulary_size is missing or < 1.

ValueError: num_oov_buckets is not a non-negative integer.

* ValueError: dtype is neither string nor integer.

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted(),
column_categorical_with_hash_bucket(), column_categorical_with_identity(), column_categorical_with_vo
column_crossed(), column_embedding(), column_numeric(), input_layer()

column_categorical_with_vocabulary_list
Construct a Categorical Column with In-Memory Vocabulary

Description

Use this when your inputs are in string or integer format, and you have an in-memory vocabu-
lary mapping each value to an integer ID. By default, out-of-vocabulary values are ignored. Use
default_value to specify how to include out-of-vocabulary values. For the input dictionary
features, features$key is either tensor or sparse tensor object. If it’s tensor object, missing
values can be represented by -1 for int and ' ' for string.

Usage

column_categorical_with_vocabulary_list(
vocabulary_list,
dtype = NULL,
default_value = -1L,
num_oov_buckets = 0L

Arguments

Expression(s) identifying input feature(s). Used as the column name and the

dictionary key for feature parsing configs, feature tensors, and feature columns.
vocabulary_list

An ordered iterable defining the vocabulary. Each feature is mapped to the index

of its value (if present) in vocabulary_list. Must be castable to dtype.

dtype The type of features. Only string and integer types are supported. If NULL, it will
be inferred from vocabulary_list.

default_value The value to use for values not in vocabulary_list.

column_crossed 13

num_oov_buckets
Non-negative integer, the number of out-of-vocabulary buckets. All out-of-
vocabulary inputs will be assigned IDs in the range [vocabulary_size, vocab-
ulary_size+num_oov_buckets) based on a hash of the input value. A positive
num_oov_buckets can not be specified with default_value.

Details

Note that these values are independent of the default_value argument.

Value

A categorical column with in-memory vocabulary.

Raises

* ValueError: if vocabulary_list is empty, or contains duplicate keys.

* ValueError: if dtype is not integer or string.

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted(),
column_categorical_with_hash_bucket(), column_categorical_with_identity(), column_categorical_with_vo
column_crossed(), column_embedding (), column_numeric(), input_layer()

column_crossed Construct a Crossed Column

Description

Returns a column for performing crosses of categorical features. Crossed features will be hashed
according to hash_bucket_size.

Usage

column_crossed(keys, hash_bucket_size, hash_key = NULL)

Arguments

keys An iterable identifying the features to be crossed. Each element can be either:

* string: Will use the corresponding feature which must be of string type.
* categorical column: Will use the transformed tensor produced by this col-
umn. Does not support hashed categorical columns.
hash_bucket_size
The number of buckets (> 1).

hash_key Optional: specify the hash_key that will be used by the FingerprintCat64
function to combine the crosses fingerprints on SparseCrossOp.

14 column_embedding

Value

A crossed column.

Raises

ValueError: If 1en(keys) < 2.

* ValueError: If any of the keys is neither a string nor categorical column.

ValueError: If any of the keys is _HashedCategoricalColumn.

ValueError: If hash_bucket_size < 1.

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted(),
column_categorical_with_hash_bucket(), column_categorical_with_identity(), column_categorical_with_vo
column_categorical_with_vocabulary_list(), column_embedding(), column_numeric(), input_layer()

column_embedding Construct a Dense Column

Description

Use this when your inputs are sparse, but you want to convert them to a dense representation (e.g., to
feed to a DNN). Inputs must be a categorical column created by any of the column_categorical_*()
functions.

Usage

column_embedding(
categorical_column,
dimension,
combiner = "mean”,
initializer = NULL,
ckpt_to_load_from = NULL,
tensor_name_in_ckpt = NULL,
max_norm = NULL,
trainable = TRUE

Arguments

categorical_column
A categorical column created by a column_categorical_*() function. This col-
umn produces the sparse IDs that are inputs to the embedding lookup.

dimension A positive integer, specifying dimension of the embedding.

column_indicator 15

combiner A string specifying how to reduce if there are multiple entries in a single row.
Currently "mean”, "sqrtn” and "sum” are supported, with "mean” the default.
"sgrtn"’ often achieves good accuracy, in particular with bag-of-words columns.

Each of this can be thought as example level normalizations on the column.

initializer A variable initializer function to be used in embedding variable initialization. If
not specified, defaults to tf$truncated_normal_initializer with mean 0.0
and standard deviation 1 / sqrt(dimension).

ckpt_to_load_from

String representing checkpoint name/pattern from which to restore column weights.
Required if tensor_name_in_ckpt is not NULL.

tensor_name_in_ckpt

Name of the Tensor in ckpt_to_load_from from which to restore the column
weights. Required if ckpt_to_load_fromis not NULL.

max_norm If not NULL, embedding values are 12-normalized to this value.
trainable Whether or not the embedding is trainable. Default is TRUE.
Value

A dense column that converts from sparse input.

Raises

 ValueError: if dimension not > 0.
* ValueError: if exactly one of ckpt_to_load_from and tensor_name_in_ckpt is specified.

* ValueError: if initializer is specified and is not callable.

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted(),
column_categorical_with_hash_bucket(), column_categorical_with_identity(), column_categorical_with_vo
column_categorical _with_vocabulary_list(), column_crossed(), column_numeric(), input_layer()

column_indicator Represents Multi-Hot Representation of Given Categorical Column

Description

Used to wrap any column_categorical()* (e.g., to feed to DNN). Use column_embedding() if the
inputs are sparse.

Usage

column_indicator(categorical_column)

16

Arguments

column_numeric

categorical_column

Value

A categorical column which is created by the column_categorical_with_*() or
column_crossed() functions.

An indicator column.

column_numeric

Construct a Real-Valued Column

Description

Construct a Real-Valued Column

Usage

column_numeric(

<

shape = c(1L),

default_value = NULL,
dtype = tf$float32,
normalizer_fn = NULL
)
Arguments
Expression(s) identifying input feature(s). Used as the column name and the
dictionary key for feature parsing configs, feature tensors, and feature columns.
shape An integer vector that specifies the shape of the tensor. An integer can be given

default_value

dtype

normalizer_fn

which means a single dimension tensor with given width. The tensor represent-
ing the column will have the shape of batch_size + shape.

A single value compatible with dtype or an iterable of values compatible with
dtype which the column takes on during parsing if data is missing. A default
value of NULL will cause tf$parse_example to fail if an example does not con-
tain this column. If a single value is provided, the same value will be applied as
the default value for every item. If an iterable of values is provided, the shape
of the default_value should be equal to the given shape.

The types for values contained in the column. The default value is tf$float32.
Must be a non-quantized, real integer or floating point type.

If not NULL, a function that can be used to normalize the value of the tensor af-
ter default_value is applied for parsing. Normalizer function takes the input
Tensor as its argument, and returns the output tensor. (e.g. function(x) {(x -
3.0) / 4.2)}. Please note that even though the most common use case of this
function is normalization, it can be used for any kind of Tensorflow transforma-
tions.

dnn_estimators 17

Value

A numeric column.

Raises

TypeError: if any dimension in shape is not an int

ValueError: if any dimension in shape is not a positive integer
* TypeError: if default_value is an iterable but not compatible with shape

* TypeError: if default_value is not compatible with dtype

ValueError: if dtype is not convertible to tf$float32

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted(),
column_categorical_with_hash_bucket(), column_categorical_with_identity(), column_categorical_with_vo
column_categorical _with_vocabulary_list(), column_crossed(), column_embedding(), input_layer()

dnn_estimators Deep Neural Networks

Description

Create a deep neural network (DNN) estimator.

Usage

dnn_regressor(
hidden_units,
feature_columns,
model_dir = NULL,
label_dimension = 1L,
weight_column = NULL,
optimizer = "Adagrad”,
activation_fn = "relu”,
dropout = NULL,
input_layer_partitioner = NULL,
config = NULL

)

dnn_classifier(
hidden_units,
feature_columns,
model_dir = NULL,
n_classes = 2L,
weight_column = NULL,
label_vocabulary = NULL,

18 dnn_estimators

optimizer = "Adagrad”,
activation_fn = "relu”,

dropout = NULL,
input_layer_partitioner = NULL,
config = NULL

Arguments

hidden_units Aninteger vector, indicating the number of hidden units in each layer. All layers
are fully connected. For example, c(64, 32) means the first layer has 64 nodes,
and the second layer has 32 nodes.

feature_columns
An R list containing all of the feature columns used by the model (typically,
generated by feature_columns()).

model_dir Directory to save the model parameters, graph, and so on. This can also be used
to load checkpoints from the directory into a estimator to continue training a
previously saved model.

label_dimension
Number of regression targets per example. This is the size of the last dimension
of the labels and logits Tensor objects (typically, these have shape [batch_size, la-
bel_dimension]).

weight_column A string, or a numeric column created by column_numeric() defining feature
column representing weights. It is used to down weight or boost examples dur-
ing training. It will be multiplied by the loss of the example. If it is a string,
it is used as a key to fetch weight tensor from the features argument. If it is
a numeric column, then the raw tensor is fetched by key weight_column$key,
then weight_column$normalizer_fn is applied on it to get weight tensor.

optimizer Either the name of the optimizer to be used when training the model, or a Ten-
sorFlow optimizer instance. Defaults to the Adagrad optimizer.

activation_fn The activation function to apply to each layer. This can either be an actual
activation function (e.g. tfnnrelu), or the name of an activation function
(e.g. "relu”). Defaults to the "relu” activation function. See https://www.
tensorflow.org/versions/ri1.15/api_docs/python/tf/nn for documenta-
tion related to the set of activation functions available in TensorFlow.

dropout When not NULL, the probability we will drop out a given coordinate.
input_layer_partitioner

An optional partitioner for the input layer. Defaults tomin_max_variable_partitioner
withmin_slice_size 64 « 20.

config A run configuration created by run_config(), used to configure the runtime
settings.
n_classes The number of label classes.

label_vocabulary
A list of strings represents possible label values. If given, labels must be string
type and have any value in label_vocabulary. If it is not given, that means
labels are already encoded as integer or float within [0, 1] for n_classes ==

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/nn
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/nn

dnn_linear_combined_estimators 19

and encoded as integer values in {0, 1,...,n_classes -1} for n_classes > 2. Also
there will be errors if vocabulary is not provided and labels are string.

See Also

Other canned estimators: boosted_trees_estimators, dnn_linear_combined_estimators, linear_estimators

dnn_linear_combined_estimators
Linear Combined Deep Neural Networks

Description

Also known as wide-n-deep estimators, these are estimators for TensorFlow Linear and DNN
joined models for regression.

Usage

dnn_linear_combined_regressor(
model_dir = NULL,
linear_feature_columns = NULL,
linear_optimizer = "Ftrl”,
dnn_feature_columns = NULL,
dnn_optimizer = "Adagrad”,
dnn_hidden_units = NULL,
dnn_activation_fn = "relu”,
dnn_dropout = NULL,
label_dimension = 1L,
weight_column = NULL,
input_layer_partitioner = NULL,
config = NULL

)

dnn_linear_combined_classifier(
model_dir = NULL,
linear_feature_columns = NULL,
linear_optimizer = "Ftrl”,
dnn_feature_columns = NULL,
dnn_optimizer = "Adagrad”,
dnn_hidden_units = NULL,
dnn_activation_fn = "relu”,
dnn_dropout = NULL,
n_classes = 2L,
weight_column = NULL,
label_vocabulary = NULL,
input_layer_partitioner = NULL,
config = NULL

20 dnn_linear_combined_estimators

Arguments

model_dir Directory to save the model parameters, graph, and so on. This can also be used
to load checkpoints from the directory into a estimator to continue training a
previously saved model.
linear_feature_columns
The feature columns used by linear (wide) part of the model.
linear_optimizer
Either the name of the optimizer to be used when training the model, or a Ten-
sorFlow optimizer instance. Defaults to the FTRL optimizer.
dnn_feature_columns
The feature columns used by the neural network (deep) part in the model.

dnn_optimizer Either the name of the optimizer to be used when training the model, or a Ten-
sorFlow optimizer instance. Defaults to the Adagrad optimizer.

dnn_hidden_units
An integer vector, indicating the number of hidden units in each layer. All layers
are fully connected. For example, c(64,32) means the first layer has 64 nodes,
and the second layer has 32 nodes.

dnn_activation_fn
The activation function to apply to each layer. This can either be an actual
activation function (e.g. tfnnrelu), or the name of an activation function
(e.g. "relu"). Defaults to the "relu” activation function. See https://www.
tensorflow.org/versions/r1.15/api_docs/python/tf/nn for documenta-
tion related to the set of activation functions available in TensorFlow.

dnn_dropout When not NULL, the probability we will drop out a given coordinate.
label_dimension
Number of regression targets per example. This is the size of the last dimension
of the labels and logits Tensor objects (typically, these have shape [batch_size, la-
bel_dimension]).

weight_column A string, or a numeric column created by column_numeric() defining feature

column representing weights. It is used to down weight or boost examples dur-

ing training. It will be multiplied by the loss of the example. If it is a string,

it is used as a key to fetch weight tensor from the features argument. If it is

a numeric column, then the raw tensor is fetched by key weight_column$key,

then weight_column$normalizer_fn is applied on it to get weight tensor.
input_layer_partitioner

An optional partitioner for the input layer. Defaults tomin_max_variable_partitioner

with min_slice_size 64 « 20.

config A run configuration created by run_config(), used to configure the runtime
settings.
n_classes The number of label classes.

label_vocabulary
A list of strings represents possible label values. If given, labels must be string
type and have any value in label_vocabulary. If it is not given, that means
labels are already encoded as integer or float within [0, 1] for n_classes ==
and encoded as integer values in {0, 1,...,n_classes -1} forn_classes > 2. Also
there will be errors if vocabulary is not provided and labels are string.

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/nn
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/nn

estimator 21

See Also

Other canned estimators: boosted_trees_estimators, dnn_estimators, linear_estimators

estimator Construct a Custom Estimator

Description

Construct a custom estimator, to be used to train and evaluate TensorFlow models.

Usage

estimator(
model_fn,
model_dir = NULL,
config = NULL,
params = NULL,

class = NULL
)
Arguments
model_fn The model function. See Model Function for details on the structure of a model
function.
model_dir Directory to save model parameters, graph and etc. This can also be used to load
checkpoints from the directory into a estimator to continue training a previously
saved model. If NULL, the model_dir in config will be used if set. If both are
set, they must be same. If both are NULL, a temporary directory will be used.
config Configuration object.
params List of hyper parameters that will be passed into model_fn. Keys are names of
parameters, values are basic python types.
class An optional set of R classes to add to the generated object.
Details

The Estimator object wraps a model which is specified by a model_fn, which, given inputs and
a number of other parameters, returns the operations necessary to perform training, evaluation, and
prediction.

All outputs (checkpoints, event files, etc.) are written to model_dir, or a subdirectory thereof. If
model_dir is not set, a temporary directory is used.

The config argument can be used to passed run configuration object containing information about
the execution environment. It is passed on to the model_fn, if the model_fn has a parameter named
"config" (and input functions in the same manner). If the config parameter is not passed, it is
instantiated by estimator (). Not passing config means that defaults useful for local execution are
used. estimator () makes config available to the model (for instance, to allow specialization based

22 estimators

on the number of workers available), and also uses some of its fields to control internals, especially
regarding checkpointing.

The params argument contains hyperparameters. It is passed to the model_fn, if the model_fn has
a parameter named "params", and to the input functions in the same manner. estimator() only
passes params along, it does not inspect it. The structure of params is therefore entirely up to the
developer.

None of estimator’s methods can be overridden in subclasses (its constructor enforces this). Sub-
classes should use model_fn to configure the base class, and may add methods implementing spe-
cialized functionality.

Model Functions

The model_fn should be an R function of the form:

function(features, labels, mode, params) {
1. Configure the model via TensorFlow operations.
2. Define the loss function for training and evaluation.
3. Define the training optimizer.
4. Define how predictions should be produced.
5. Return the result as an ‘estimator_spec()" object.
estimator_spec(mode, predictions, loss, train_op, eval_metric_ops)

The model function’s inputs are defined as follows:

features The feature tensor(s).

labels The label tensor(s).

mode The current training mode ("train", "eval", "infer"). These can be accessed through the mode_keys () object.
params An optional list of hyperparameters, as received through the estimator () constructor.

See estimator_spec() for more details as to how the estimator specification should be con-
structed, and https://www. tensorflow.org/versions/r1.15/api_docs/python/tf/estimator/
Estimator for more information as to how the model function should be constructed.

See Also

Other custom estimator methods: estimator_spec(), evaluate.tf_estimator(), export_savedmodel.tf_estimator(
predict.tf_estimator(), train.tf_estimator()

estimators Base Documentation for Canned Estimators

Description

Base Documentation for Canned Estimators

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/estimator/Estimator
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/estimator/Estimator

estimator._spec 23

Arguments

object A TensorFlow estimator.

feature_columns
An R list containing all of the feature columns used by the model (typically,
generated by feature_columns()).

model_dir Directory to save the model parameters, graph, and so on. This can also be used
to load checkpoints from the directory into a estimator to continue training a
previously saved model.

label_dimension
Number of regression targets per example. This is the size of the last dimension
of the labels and logits Tensor objects (typically, these have shape [batch_size, la-
bel_dimension]).

label_vocabulary
A list of strings represents possible label values. If given, labels must be string
type and have any value in label_vocabulary. If it is not given, that means
labels are already encoded as integer or float within [0, 1] for n_classes ==
and encoded as integer values in {0, 1,...,n_classes -1} for n_classes > 2. Also
there will be errors if vocabulary is not provided and labels are string.

weight_column A string, or a numeric column created by column_numeric() defining feature
column representing weights. It is used to down weight or boost examples dur-
ing training. It will be multiplied by the loss of the example. If it is a string,
it is used as a key to fetch weight tensor from the features argument. If it is
a numeric column, then the raw tensor is fetched by key weight_columns$key,
then weight_column$normalizer_fn is applied on it to get weight tensor.

n_classes The number of label classes.
config A run configuration created by run_config(), used to configure the runtime
settings.

input_layer_partitioner
An optional partitioner for the input layer. Defaults tomin_max_variable_partitioner
withmin_slice_size 64 « 20.

partitioner An optional partitioner for the input layer.
estimator_spec Define an Estimator Specification
Description

Define the estimator specification, used as part of the model_fn defined with custom estimators
created by estimator(). See estimator () for more details.

24

Usage

estimator_spec(

mode,
predictions
loss = NULL,

estimator_spec

NULL,

train_op = NULL,
eval_metric_ops = NULL,
training_hooks = NULL,
evaluation_hooks = NULL,
prediction_hooks = NULL,
training_chief_hooks = NULL,

Arguments

mode

predictions
loss

train_op

eval_metric_ops

training_hooks

A key that specifies whether we are performing training ("train"), evaluation
("eval"), or prediction ("infer"). These values can also be accessed through
the mode_keys () object.

The prediction tensor(s).
The training loss tensor. Must be either scalar, or with shape c(1).

The training operation — typically, a call to optimizer$minimize(...), de-
pending on the type of optimizer used during training.

A list of metrics to be computed as part of evaluation. This should be a named
list, mapping metric names (e.g. "rmse") to the operation that computes the as-
sociated metric (e.g. tf$metrics$root_mean_squared_error(...)). These
metric operations should be evaluated without any impact on state (typically is a
pure computation results based on variables). For example, it should not trigger
the update ops or requires any input fetching.

(Available since TensorFlow v1.4) A list of session run hooks to run on all work-
ers during training.

evaluation_hooks

(Available since TensorFlow v1.4) A list of session run hooks to run during
evaluation.

prediction_hooks

(Available since TensorFlow v1.7) A list of session run hooks to run during
prediciton.

training_chief_hooks

(Available since TensorFlow v1.4) A list of session run hooks to run on chief
worker during training.

Other optional (named) arguments, to be passed to the EstimatorSpec con-
structor.

evaluate.tf _estimator 25

See Also

Other custom estimator methods: estimator(), evaluate.tf_estimator(), export_savedmodel.tf_estimator(),
predict.tf_estimator(), train.tf_estimator()

evaluate.tf_estimator Evaluate an Estimator

Description

Evaluate an estimator on input data provided by an input_fn().

Usage

S3 method for class 'tf_estimator'
evaluate(

object,

input_fn,

steps = NULL,

checkpoint_path = NULL,

name = NULL,

hooks = NULL,

simplify = TRUE,

)
Arguments
object A TensorFlow estimator.
input_fn An input function, typically generated by the input_fn() helper function.
steps The number of steps for which the model should be evaluated on this particular

evaluate() invocation. If NULL (the default), this function will either evaluate

forever, or until the supplied input_fn() has provided all available data.
checkpoint_path

The path to a specific model checkpoint to be used for prediction. If NULL (the

default), the latest checkpoint in model_dir is used.

name Name of the evaluation if user needs to run multiple evaluations on different
data sets, such as on training data vs test data. Metrics for different evaluations
are saved in separate folders, and appear separately in tensorboard.

hooks A list of R functions, to be used as callbacks inside the training loop. By default,
hook_history_saver(every_n_step =10) and hook_progress_bar() will
be attached if not provided to save the metrics history and create the progress
bar.

simplify Whether to simplify evaluation results into a tibble, as opposed to a list. De-
faults to TRUE.

Optional arguments passed on to the estimator’s evaluate () method.

26 eval_spec

Details

For each step, this method will call input_fn() to produce a single batch of data. Evaluation
continues until:

* steps batches are processed, or

e The input_fn() is exhausted of data.

Value

An R list of evaluation metrics.

See Also

Other custom estimator methods: estimator_spec(), estimator(), export_savedmodel.tf_estimator(),
predict.tf_estimator(), train.tf_estimator()

eval_spec Configuration for the eval component of train_and_evaluate

Description

EvalSpec combines details of evaluation of the trained model as well as its export. Evaluation
consists of computing metrics to judge the performance of the trained model. Export writes out the
trained model on to external storage.

Usage

eval_spec(
input_fn,
steps = 100,
name = NULL,
hooks = NULL,
exporters = NULL,
start_delay_secs = 120,
throttle_secs = 600

)
Arguments
input_fn Evaluation input function returning a tuple of:
* features - Tensor or dictionary of string feature name to Tensor.
* labels - Tensor or dictionary of Tensor with labels.
steps Positive number of steps for which to evaluate model. If NULL, evaluates until
input_fn raises an end-of-input exception.
name Name of the evaluation if user needs to run multiple evaluations on different data

sets. Metrics for different evaluations are saved in separate folders, and appear
separately in tensorboard.

experiment

hooks

exporters

27

List of session run hooks to run during evaluation.

List of Exporters, or a single one, or NULL. exporters will be invoked after
each evaluation.

start_delay_secs

throttle_secs

See Also

Start evaluating after waiting for this many seconds.

Do not re-evaluate unless the last evaluation was started at least this many sec-
onds ago. Of course, evaluation does not occur if no new checkpoints are avail-
able, hence, this is the minimum.

Other training methods: train_and_evaluate.tf_estimator(), train_spec()

experiment

Construct an Experiment

Description

Construct an experiment object.

Usage

experiment(object, ...)
Arguments

object An R object.

Optional arguments passed on to implementing methods.

export_savedmodel.tf_estimator

Save an Estimator

Description

Save an estimator (alongside its weights) to the directory export_dir_base.

28 export_savedmodel.tf_estimator

Usage

S3 method for class 'tf_estimator'
export_savedmodel (
object,
export_dir_base,
serving_input_receiver_fn = NULL,
assets_extra = NULL,
as_text = FALSE,
checkpoint_path = NULL,
overwrite = TRUE,

versioned = !overwrite,
)
Arguments
object A TensorFlow estimator.

export_dir_base
A string containing a directory in which to export the SavedModel.
serving_input_receiver_fn
A function that takes no argument and returns a ServingInputReceiver. Re-
quired for custom models.

assets_extra A dict specifying how to populate the assets.extra directory within the exported
SavedModel, or NULL if no extra assets are needed.

as_text whether to write the SavedModel proto in text format.
checkpoint_path

The checkpoint path to export. If NULL (the default), the most recent checkpoint
found within the model directory is chosen.

overwrite Should the export_dir directory be overwritten?
versioned Should the model be exported under a versioned subdirectory?

Optional arguments passed on to the estimator’s export_savedmodel () method.

Details

This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature
Tensors, and then calling this Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most recent checkpoint) into this
graph in a fresh session. Finally it creates a timestamped export directory below the given ex-
port_dir_base, and writes a SavedModel into it containing a single MetaGraphDef saved from this
session. The exported MetaGraphDef will provide one SignatureDef for each element of the
export_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always signature_constants. DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating which
signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding ExportOutputs, and the inputs are always the input receivers
provided by the serving_input_receiver_fn. Extra assets may be written into the SavedModel via
the extra_assets argument. This should be a dict, where each key gives a destination path (including

feature_columns 29

the filename) relative to the assets.extra directory. The corresponding value gives the full path of
the source file to be copied. For example, the simple case of copying a single file without renaming
it is specified as { 'my_asset_file.txt': '/path/to/my_asset_file.txt'}.

Value

The path to the exported directory, as a string.

Raises

ValueError: if no serving_input_receiver_fn is provided, no export_outputs are provided, or no
checkpoint can be found.

See Also

Other custom estimator methods: estimator_spec(), estimator(), evaluate.tf_estimator(),
predict.tf_estimator(), train.tf_estimator ()

feature_columns Feature Columns

Description

Constructors for feature columns. A feature column defines the expected *shape’ of an input Tensor.

Usage
feature_columns(..., names = NULL)
Arguments
One or more feature column definitions. The tidyselect package is used to power
generation of feature columns.
names Available feature names (for selection / pattern matching) as a character vector

(or R object that implements names () or colnames()).

30 graph_keys

graph_keys Standard Names to Use for Graph Collections

Description

The standard library uses various well-known names to collect and retrieve values associated with
a graph.

Usage

graph_keys()

Details

For example, the tf$0ptimizer subclasses default to optimizing the variables collected undergraph_keys () $TRAINABLE_VA
if NULL is specified, but it is also possible to pass an explicit list of variables.

The following standard keys are defined:

* GLOBAL_VARIABLES: the default collection of Variable objects, shared across distributed en-
vironment (model variables are subset of these). See tf$global_variables for more de-
tails. Commonly, all TRAINABLE_VARIABLES variables will be in MODEL_VARIABLES, and all
MODEL _VARIABLES variables will be in GLOBAL_VARIABLES.

* LOCAL_VARIABLES: the subset of Variable objects that are local to each machine. Usually
used for temporarily variables, like counters. Note: use tf$contrib$framework$local_variable
to add to this collection.

* MODEL_VARIABLES: the subset of Variable objects that are used in the model for inference
(feed forward). Note: use tf$contrib$framework$model_variable to add to this collec-
tion.

* TRAINABLE_VARIABLES: the subset of Variable objects that will be trained by an optimizer.
See tf$trainable_variables for more details.

* SUMMARIES: the summary Tensor objects that have been created in the graph. See tf$summary$merge_all
for more details.

* QUEUE_RUNNERS: the QueueRunner objects that are used to produce input for a computation.
See tf$train$start_queue_runners for more details.

* MOVING_AVERAGE_VARIABLES: the subset of Variable objects that will also keep moving av-
erages. See tf$moving_average_variables for more details.

* REGULARIZATION_LOSSES: regularization losses collected during graph construction. The fol-
lowing standard keys are defined, but their collections are not automatically populated as
many of the others are:

— WEIGHTS
— BIASES
— ACTIVATIONS

hook_checkpoint_saver 31

See Also

Other utility functions: latest_checkpoint()

Examples

Not run:
graph_keys()
graph_keys() $LOSSES

End(Not run)

hook_checkpoint_saver Saves Checkpoints Every N Steps or Seconds

Description

Saves Checkpoints Every N Steps or Seconds

Usage

hook_checkpoint_saver(
checkpoint_dir,
save_secs = NULL,
save_steps = NULL,
saver = NULL,
checkpoint_basename = "model.ckpt”,
scaffold = NULL,
listeners = NULL

Arguments

checkpoint_dir The base directory for the checkpoint files.

save_secs An integer, indicating saving checkpoints every N secs.
save_steps An integer, indicating saving checkpoints every N steps.
saver A saver object, used for saving.

checkpoint_basename
The base name for the checkpoint files.

scaffold A scaffold, used to get saver object.

listeners List of checkpoint saver listener subclass instances, used for callbacks that run
immediately after the corresponding hook_checkpoint_saver callbacks, only
in steps where the hook_checkpoint_saver was triggered.

32 hook_history_saver

See Also

Other session_run_hook wrappers: hook_global_step_waiter(), hook_history_saver(), hook_logging_tensor(),
hook_nan_tensor (), hook_progress_bar (), hook_step_counter(), hook_stop_at_step(), hook_summary_saver(),
session_run_hook()

hook_global_step_waiter
Delay Execution until Global Step Reaches to wait_until_step.

Description

This hook delays execution until global step reaches to wait_until_step. It is used to gradually
start workers in distributed settings. One example usage would be setting wait_until_step=int(K*log(task_id+1))
assuming that task_id=0 is the chief.

Usage

hook_global_step_waiter(wait_until_step)

Arguments

wait_until_step
An integer indicating that until which global step should we wait.

See Also

Other session_run_hook wrappers: hook_checkpoint_saver (), hook_history_saver(), hook_logging_tensor(),
hook_nan_tensor (), hook_progress_bar (), hook_step_counter(), hook_stop_at_step(), hook_summary_saver(),
session_run_hook()

hook_history_saver A Custom Run Hook for Saving Metrics History

Description
This hook allows users to save the metrics history produced during training or evaluation in a spec-
ified frequency.

Usage

hook_history_saver(every_n_step = 10)

Arguments

every_n_step Save the metrics every N steps

hook_logging_tensor 33

See Also

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_logging_tensor(), hook_nan_tensor (), hook_progress_bar(), hook_step_counter(),
hook_stop_at_step(), hook_summary_saver (), session_run_hook()

hook_logging_tensor Prints Given Tensors Every N Local Steps, Every N Seconds, or at End

Description

The tensors will be printed to the log, with INFO severity.

Usage

hook_logging_tensor(
tensors,
every_n_iter = NULL,
every_n_secs = NULL,
formatter = NULL,
at_end = FALSE

Arguments

tensors A list that maps string-valued tags to tensors/tensor names.

every_n_iter An integer value, indicating the values of tensors will be printed once every N
local steps taken on the current worker.

every_n_secs An integer or float value, indicating the values of tensors will be printed once
every N seconds. Exactly one of every_n_iter and every_n_secs should be

provided.
formatter A function that takes list(tag = tensor) and returns a string. If NULL uses
default printing all tensors.
at_end A boolean value specifying whether to print the values of tensors at the end of
the run.
Details

Note that if at_end is TRUE, tensors should not include any tensor whose evaluation produces a
side effect such as consuming additional inputs.

See Also

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_history_saver(), hook_nan_tensor(), hook_progress_bar(), hook_step_counter(),
hook_stop_at_step(), hook_summary_saver (), session_run_hook()

34 hook_progress_bar

hook_nan_tensor NaN Loss Monitor

Description

Monitors loss and stops training if loss is NaN. Can either fail with exception or just stop training.

Usage

hook_nan_tensor(loss_tensor, fail_on_nan_loss = TRUE)

Arguments

loss_tensor The loss tensor.
fail_on_nan_loss
A boolean indicating whether to raise exception when loss is NaN.

See Also

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_history_saver(), hook_logging_tensor(), hook_progress_bar(), hook_step_counter(),
hook_stop_at_step(), hook_summary_saver(), session_run_hook ()

hook_progress_bar A Custom Run Hook to Create and Update Progress Bar During Train-
ing or Evaluation

Description

This hook creates a progress bar that creates and updates the progress bar during training or evalu-
ation.

Usage

hook_progress_bar ()

See Also

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_history_saver(), hook_logging_tensor(), hook_nan_tensor(), hook_step_counter(),
hook_stop_at_step(), hook_summary_saver (), session_run_hook()

hook_step_counter 35

hook_step_counter Steps per Second Monitor

Description

Steps per Second Monitor

Usage

hook_step_counter(
every_n_steps = 100,
every_n_secs = NULL,
output_dir = NULL,
summary_writer = NULL

)

Arguments

every_n_steps Run this counter every N steps
every_n_secs Run this counter every N seconds
output_dir The output directory

summary_writer The summary writer

See Also

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_history_saver(), hook_logging_tensor(), hook_nan_tensor(), hook_progress_bar(),
hook_stop_at_step(), hook_summary_saver (), session_run_hook()

hook_stop_at_step Monitor to Request Stop at a Specified Step

Description

Monitor to Request Stop at a Specified Step

Usage

hook_stop_at_step(num_steps = NULL, last_step = NULL)

Arguments

num_steps Number of steps to execute.

last_step Step after which to stop.

36 hook_summary_saver

See Also

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_history_saver(), hook_logging_tensor(), hook_nan_tensor (), hook_progress_bar(),
hook_step_counter (), hook_summary_saver(), session_run_hook()

hook_summary_saver Saves Summaries Every N Steps

Description

Saves Summaries Every N Steps

Usage

hook_summary_saver (
save_steps = NULL,
save_secs = NULL,
output_dir = NULL,
summary_writer = NULL,
scaffold = NULL,
summary_op = NULL

)
Arguments

save_steps An integer indicating saving summaries every N steps. Exactly one of save_secs
and save_steps should be set.

save_secs An integer indicating saving summaries every N seconds.

output_dir The directory to save the summaries to. Only used if no summary_writer is
supplied.

summary_writer The summary writer. If NULL and an output_dir was passed, one will be created
accordingly.

scaffold A scaffold to get summary_op if it’s not provided.

summary_op A tensor of type tf$string containing the serialized summary protocol buffer

or a list of tensors. They are most likely an output by TensorFlow summary
methods like tf$summary$scalar or tf$summary$merge_all. It can be passed
in as one tensor; if more than one, they must be passed in as a list.

See Also

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_history_saver(), hook_logging_tensor(), hook_nan_tensor(), hook_progress_bar(),
hook_step_counter(), hook_stop_at_step(), session_run_hook()

input_tn

37

input_fn

Construct an Input Function

Description

This function constructs input function from various types of input used to feed different Tensor-
Flow estimators.

Usage

input_fn(object, ...)

Default S3 method:
input_fn(object, ...)

S3 method for class 'formula'

input_fn(object, data, ...)
S3 method for class 'data.frame'
input_fn(

object,

features,

)

response = NULL,
batch_size = 128,
shuffle = "auto”,
num_epochs = 1,
queue_capacity = 1000,
num_threads = 1,

S3 method for class 'list'
input_fn(

)

object,

features,

response = NULL,
batch_size = 128,
shuffle = "auto”,
num_epochs = 1,
queue_capacity = 1000,
num_threads = 1,

S3 method for class 'matrix'
input_fn(object, ...)

38

Arguments

object, data

features
response
batch_size
shuffle

num_epochs
queue_capacity

num_threads

Details

input_tn

An’input source’ — either a data set (e.g. an R data. frame), or another kind of
object that can provide the data required for training.

Optional arguments passed on to implementing submethods.
The names of feature variables to be used.

The name of the response variable.

The batch size.

Whether to shuffle the queue. When "auto” (the default), shuffling will be
performed except when this input function is called by a predict () method.

The number of epochs to iterate over data.
The size of queue to accumulate.

The number of threads used for reading and enqueueing. In order to have pre-
dictable and repeatable order of reading and enqueueing, such as in prediction
and evaluation mode, num_threads should be 1.

For list objects, this method is particularly useful when constructing dynamic length of inputs for
models like recurrent neural networks. Note that some arguments are not available yet for input_fn
applied to list objects. See S3 method signatures below for more details.

See Also

Other input functions: numpy_input_fn()

Examples

Not run:

Construct the input function through formula interface
input_fn1 <- input_fn(mpg ~ drat + cyl, mtcars)

End(Not run)

Not run:

Construct the input function from a data.frame object
input_fn1 <- input_fn(mtcars, response = mpg, features = c(drat, cyl))

End(Not run)

Not run:

Construct the input function from a list object
input_fn1 <- input_fn(

object = list(

featurel = list(
list(list(1), list(2), list(3)),
list(list(4), list(5), list(6))),
feature2 = list(
list(list(7), list(8), list(9)),

input_layer 39

list(list(10), list(11), list(12))),
response = list(
list(1, 2, 3), list(4, 5, 6))),
features = c("featurel”, "feature2"),
response = "response”,
batch_size = 10L)

End(Not run)

input_layer Construct an Input Layer

Description

Returns a dense tensor as input layer based on given feature_columns. At the first layer of the
model, this column oriented data should be converted to a single tensor.

Usage

input_layer(
features,
feature_columns,
weight_collections = NULL,
trainable = TRUE

Arguments

features A mapping from key to tensors. Feature columns look up via these keys. For
example column_numeric('price") will look at "price’ key in this dict. Values
can be a sparse tensor or tensor depends on corresponding feature column.

feature_columns
An iterable containing the FeatureColumns to use as inputs to your model.
All items should be instances of classes derived from a dense column such as
column_numeric(), column_embedding(), column_bucketized(), column_indicator().
If you have categorical features, you can wrap them with an column_embedding()
or column_indicator().

weight_collections
A list of collection names to which the Variable will be added. Note that, vari-
ables will also be added to collections graph_keys () $GLOBAL_VARIABLES and
graph_keys () $MODEL _VARIABLES.

trainable If TRUE also add the variable to the graph collection graph_keys () $TRAINABLE_VARIABLES
(see tf$Variable).
Value

A tensor which represents input layer of a model. Its shape is (batch_size, first_layer_dimension)
and its dtype is float32. first_layer_dimension is determined based on given feature_columns.

40 keras_model to_estimator

Raises

e ValueError: if an item in feature_columns is not a dense column.

See Also

Other feature column constructors: column_bucketized(), column_categorical_weighted(),
column_categorical_with_hash_bucket(), column_categorical_with_identity(), column_categorical_with_vo
column_categorical _with_vocabulary_list(), column_crossed(), column_embedding(), column_numeric()

keras_model_to_estimator
Keras Estimators

Description

Create an Estimator from a compiled Keras model

Usage

keras_model_to_estimator(
keras_model = NULL,
keras_model_path = NULL,
custom_objects = NULL,
model_dir = NULL,
config = NULL

Arguments

keras_model A keras model.

keras_model_path
Directory to a keras model on disk.

custom_objects Dictionary for custom objects.
model_dir Directory to save Estimator model parameters, graph and etc.

config Configuration object.

latest_checkpoint 41

latest_checkpoint Get the Latest Checkpoint in a Checkpoint Directory

Description

Get the Latest Checkpoint in a Checkpoint Directory

Usage

latest_checkpoint(checkpoint_dir, ...)

Arguments

checkpoint_dir The path to the checkpoint directory.

Optional arguments passed on to latest_checkpoint().

See Also

Other utility functions: graph_keys()

linear_estimators Construct a Linear Estimator

Description

Construct a linear model, which can be used to predict a continuous outcome (in the case of
linear_regressor()) or a categorical outcome (in the case of linear_classifier()).

Usage

linear_regressor(
feature_columns,
model_dir = NULL,
label_dimension = 1L,
weight_column = NULL,
optimizer = "Ftrl"”,
config = NULL,
partitioner = NULL

)

linear_classifier(
feature_columns,
model_dir = NULL,
n_classes = 2L,
weight_column = NULL,

42 linear_estimators

label_vocabulary = NULL,
optimizer = "Ftrl”,
config = NULL,
partitioner = NULL

Arguments

feature_columns
An R list containing all of the feature columns used by the model (typically,
generated by feature_columns()).

model_dir Directory to save the model parameters, graph, and so on. This can also be used
to load checkpoints from the directory into a estimator to continue training a
previously saved model.

label_dimension
Number of regression targets per example. This is the size of the last dimension
of the labels and logits Tensor objects (typically, these have shape [batch_size, la-
bel_dimension]).

weight_column A string, or a numeric column created by column_numeric() defining feature
column representing weights. It is used to down weight or boost examples dur-
ing training. It will be multiplied by the loss of the example. If it is a string,
it is used as a key to fetch weight tensor from the features argument. If it is
a numeric column, then the raw tensor is fetched by key weight_column$key,
then weight_column$normalizer_fn is applied on it to get weight tensor.

optimizer Either the name of the optimizer to be used when training the model, or a Ten-
sorFlow optimizer instance. Defaults to the FTRL optimizer.

config A run configuration created by run_config(), used to configure the runtime
settings.

partitioner An optional partitioner for the input layer.

n_classes The number of label classes.

label_vocabulary
A list of strings represents possible label values. If given, labels must be string
type and have any value in label_vocabulary. If it is not given, that means
labels are already encoded as integer or float within [0, 1] for n_classes ==
and encoded as integer values in {0, 1,...,n_classes -1} for n_classes > 2. Also
there will be errors if vocabulary is not provided and labels are string.

See Also

Other canned estimators: boosted_trees_estimators, dnn_estimators, dnn_linear_combined_estimators

metric_keys 43

metric_keys Canonical Metric Keys

Description

The canonical set of keys that can be used to access metrics from canned estimators.

Usage

metric_keys()

See Also

Other estimator keys: mode_keys (), prediction_keys()

Examples

Not run:
metrics <- metric_keys()

Get the available keys
metrics

metrics$ACCURACY

End(Not run)

model_dir Model directory

Description

Get the directory where a model’s artifacts are stored.

Usage

model_dir(object, ...)
Arguments

object Model object

Unused

44 numpy_input_fn

mode_keys Canonical Mode Keys

Description

The names for different possible modes for an estimator. The following standard keys are defined:

Usage
mode_keys ()

Details

TRAIN Training mode.

EVAL Evaluation mode.

PREDICT Prediction / inference mode.
See Also

Other estimator keys: metric_keys(), prediction_keys()

Examples

Not run:
modes <- mode_keys()
modes$TRAIN

End(Not run)

numpy_input_fn Construct Input Function Containing Python Dictionaries of Numpy
Arrays

Description

This returns a function outputting features and target based on the dict of numpy arrays. The
dict features has the same keys as the x.

plot.tf_estimator._history 45

Usage
numpy_input_fn(
X,
y = NULL,

batch_size = 128,
num_epochs = 1,
shuffle = NULL,
queue_capacity = 1000,
num_threads = 1

)
Arguments
X dict of numpy array object.
y numpy array object. NULL if absent.
batch_size Integer, size of batches to return.
num_epochs Integer, number of epochs to iterate over data. If NULL will run forever.
shuffle Boolean, if TRUE shuffles the queue. Avoid shuffle at prediction time.

queue_capacity Integer, size of queue to accumulate.

num_threads Integer, number of threads used for reading and enqueueing. In order to have
predicted and repeatable order of reading and enqueueing, such as in prediction
and evaluation mode, num_threads should be 1. #
Details
Note that this function is still experimental and should only be used if necessary, e.g. feed in data
that’s dictionary of numpy arrays.
Raises
ValueError: if the shape of y mismatches the shape of values in x (i.e., values in x have same shape).
TypeError: x is not a dict or shuffle is not bool.
See Also

Other input functions: input_fn()

plot.tf_estimator_history
Plot training history

Description

Plots metrics recorded during training.

46 predict.tf_estimator

Usage

S3 method for class 'tf_estimator_history'
plot(
X7
Y,
metrics = NULL,
method = c("auto”, "ggplot2”, "base"),
smooth = getOption("tf.estimator.plot.history.smooth”, TRUE),
theme_bw = getOption("tf.estimator.plot.history.theme_bw", FALSE),

)
Arguments

X Training history object returned from train().

y Unused.

metrics One or more metrics to plot (e.g. c('total_losses', 'mean_losses')). De-
faults to plotting all captured metrics.

method Method to use for plotting. The default "auto" will use ggplot2 if available, and
otherwise will use base graphics.

smooth Whether a loess smooth should be added to the plot, only available for the
ggplot2 method. If the number of data points is smaller than ten, it is forced to
false.

theme_bw Use ggplot2: : theme_bw() to plot the history in black and white.

Additional parameters to pass to the plot() method.

predict.tf_estimator Generate Predictions with an Estimator

Description

Generate predicted labels / values for input data provided by input_fn().

Usage

S3 method for class 'tf_estimator'
predict(
object,
input_fn,
checkpoint_path = NULL,
predict_keys = c("predictions”, "classes”, "class_ids”, "logistic", "logits",
"probabilities”),
hooks = NULL,
as_iterable = FALSE,
simplify = TRUE,

predict.tf_estimator 47

yield_single_examples = TRUE,

Arguments
object A TensorFlow estimator.
input_fn An input function, typically generated by the input_fn() helper function.

checkpoint_path
The path to a specific model checkpoint to be used for prediction. If NULL (the
default), the latest checkpoint in model_dir is used.

predict_keys The types of predictions that should be produced, as an R list. When this argu-
ment is not specified (the default), all possible predicted values will be returned.

hooks A list of R functions, to be used as callbacks inside the training loop. By default,
hook_history_saver(every_n_step =10) and hook_progress_bar() will
be attached if not provided to save the metrics history and create the progress
bar.

as_iterable Boolean; should a raw Python generator be returned? When FALSE (the default),
the predicted values will be consumed from the generator and returned as an R
object.

simplify Whether to simplify prediction results into a tibble, as opposed to a list. De-
faults to TRUE.

yield_single_examples
(Available since TensorFlow v1.7) If FALSE, yields the whole batch as returned
by the model_fn instead of decomposing the batch into individual elements.
This is useful if model_fn returns some tensors with first dimension not equal
to the batch size.

Optional arguments passed on to the estimator’s predict() method.

Yields

Evaluated values of predictions tensors.

Raises

ValueError: Could not find a trained model in model_dir. ValueError: if batch length of predictions
are not same. ValueError: If there is a conflict between predict_keys and predictions. For
example if predict_keys is not NULL but EstimatorSpec.predictionsis notadict.

See Also

Other custom estimator methods: estimator_spec(), estimator(), evaluate.tf_estimator(),
export_savedmodel.tf_estimator(), train.tf_estimator()

48 regressor_parse_example_spec

prediction_keys Canonical Model Prediction Keys

Description
The canonical set of keys used for models and estimators that provide different types of predicted
values through their predict () method.

Usage

prediction_keys()

See Also

Other estimator keys: metric_keys(), mode_keys()

Examples

Not run:
keys <- prediction_keys()

Get the available keys
keys

Key for retrieving probabilities from prediction values
keys$PROBABILITIES

End(Not run)

regressor_parse_example_spec
Generates Parsing Spec for TensorFlow Example to be Used with Re-
gressors

Description

If users keep data in tf $Example format, they need to call tf$parse_example with a proper feature
spec. There are two main things that this utility helps:

» Users need to combine parsing spec of features with labels and weights (if any) since they are
all parsed from same tf$Example instance. This utility combines these specs.

* It is difficult to map expected label by a regressor such as dnn_regressor to corresponding
tf$parse_example spec. This utility encodes it by getting related information from users

(key, dtype).

regressor_parse_example_spec 49

Usage

regressor_parse_example_spec(
feature_columns,
label_key,
label_dtype = tf$float32,
label_default = NULL,
label_dimension = 1L,
weight_column = NULL

Arguments

feature_columns
An iterable containing all feature columns. All items should be instances of
classes derived from _FeatureColumn.

label_key A string identifying the label. It means tf$Example stores labels with this key.
label_dtype A tf$dtype identifies the type of labels. By default it is tf$float32.

label_default used as label if label_key does not exist in given tf$Example. By default de-
fault_value is none, which means tf$parse_example will error out if there is
any missing label.

label_dimension
Number of regression targets per example. This is the size of the last dimension
of the labels and logits Tensor objects (typically, these have shape [batch_size, la-
bel_dimension]).

weight_column A string or a _NumericColumn created by column_numeric defining feature
column representing weights. It is used to down weight or boost examples
during training. It will be multiplied by the loss of the example. If it is a
string, it is used as a key to fetch weight tensor from the features. If it is
a _NumericColumn, raw tensor is fetched by key weight_column$key, then
weight_column$normalizer_fn is applied on it to get weight tensor.

Value

A dict mapping each feature key to a FixedLenFeature or VarLenFeature value.

Raises

* ValueError: If label is used in feature_columns.

* ValueError: If weight_column is used in feature_columns.

* ValueError: If any of the given feature_columns is not a _FeatureColumn instance.
* ValueError: If weight_column is not a _NumericColumn instance.

* ValueError: if label_key is NULL.

See Also

Other parsing utilities: classifier_parse_example_spec()

50 session_run_args

run_config Run Configuration

Description

This class specifies the configurations for an Estimator run.

Usage

run_config()

See Also

Other run_config methods: task_type()

Examples

Not run:
config <- run_config()

Get the properties of the config
names(config)

Change the mutable properties of the config
config <- config$replace(tf_random_seed = 11L, save_summary_steps = 12L)

Print config as key value pairs
print(config)

End(Not run)

session_run_args Create Session Run Arguments

Description

Create a set of session run arguments. These are used as the return values in the before_run(context)
callback of a session_run_hook (), for requesting the values of specific tensor in the after_run(context,values)
callback.

Usage

session_run_args(...)

Arguments

A set of tensors or operations.

session_run_hook 51

See Also

session_run_hook()

session_run_hook Create Custom Session Run Hooks

Description

Create a set of session run hooks, used to record information during training of an estimator. See
Details for more information on the various hooks that can be defined.

Usage

session_run_hook(
begin = function() { },
after_create_session = function(session, coord) { 1},
before_run = function(context) { 3},
after_run = function(context, values) { },
end = function(session) { }

Arguments

begin function(): An R function, to be called once before using the session.
after_create_session
function(session, coord): An R function, to be called once the new TensorFlow
session has been created.

before_run function(run_context): An R function to be called before a run.
after_run function(run_context, run_values): An R function to be called after a run.
end function(session): An R function to be called at the end of the session.

Typically, you’ll want to define a before_run() hook that defines the set of
tensors you're interested in for a particular run, and then you’ll use the resulting
values of those tensors in your after_run() hook. The tensors requested in
your before_run() hook will be made available as part of the second argument
in the after_run() hook (the values argument).

See Also

session_run_args()

Other session_run_hook wrappers: hook_checkpoint_saver(), hook_global_step_waiter(),
hook_history_saver(), hook_logging_tensor (), hook_nan_tensor(), hook_progress_bar(),
hook_step_counter(), hook_stop_at_step(), hook_summary_saver()

52 tfestimators

task_type Task Types

Description

This constant class gives the constant strings for available task types used in run_config.

Usage

task_type()

See Also

Other run_config methods: run_config()

Examples

Not run:
task_type () $MASTER

End(Not run)

tfestimators High-level Estimator API in TensorFlow for R

Description

This library provides an R interface to the Estimator API inside TensorFlow that’s designed to
streamline the process of creating, evaluating, and deploying general machine learning and deep
learning models.

Details

TensorFlow is an open source software library for numerical computation using data flow graphs.
Nodes in the graph represent mathematical operations, while the graph edges represent the multidi-
mensional data arrays (tensors) communicated between them. The flexible architecture allows you
to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a
single APL

The TensorFlow API is composed of a set of Python modules that enable constructing and executing
TensorFlow graphs. The tensorflow package provides access to the complete TensorFlow API from
within R.

For additional documentation on the tensorflow package see https://tensorflow.rstudio.com

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/estimator
https://www.tensorflow.org
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/all_symbols
https://tensorflow.rstudio.com

train-evaluate-predict 53

train-evaluate-predict
Base Documentation for train, evaluate, and predict.

Description

Base Documentation for train, evaluate, and predict.

Arguments
input_fn An input function, typically generated by the input_fn() helper function.
hooks A list of R functions, to be used as callbacks inside the training loop. By default,

hook_history_saver(every_n_step =10) and hook_progress_bar() will
be attached if not provided to save the metrics history and create the progress
bar.

checkpoint_path
The path to a specific model checkpoint to be used for prediction. If NULL (the
default), the latest checkpoint in model_dir is used.

train.tf_estimator Train an Estimator

Description

Train an estimator on a set of input data provides by the input_fn().

Usage
S3 method for class 'tf_estimator'
train(
object,
input_fn,
steps = NULL,
hooks = NULL,

max_steps = NULL,
saving_listeners = NULL,

Arguments

object A TensorFlow estimator.

input_fn An input function, typically generated by the input_fn() helper function.

54 train_and_evaluate.tf_estimator

steps The number of steps for which the model should be trained on this particular
train() invocation. If NULL (the default), this function will either train forever,
or until the supplied input_fn() has provided all available data.

hooks Alist of R functions, to be used as callbacks inside the training loop. By default,
hook_history_saver(every_n_step =10) and hook_progress_bar() will
be attached if not provided to save the metrics history and create the progress
bar.

max_steps The total number of steps for which the model should be trained. If set, steps
must be NULL. If the estimator has already been trained a total of max_steps
times, then no training will be performed.

saving_listeners
(Available since TensorFlow v1.4) A list of CheckpointSaverListener objects
used for callbacks that run immediately before or after checkpoint savings.

Optional arguments, passed on to the estimator’s train() method.

Value

A data.frame of the training loss history.

See Also

Other custom estimator methods: estimator_spec(), estimator(), evaluate.tf_estimator(),
export_savedmodel.tf_estimator(), predict.tf_estimator()

train_and_evaluate.tf_estimator
Train and evaluate the estimator.

Description

(Available since TensorFlow v1.4)

Usage
S3 method for class 'tf_estimator'
train_and_evaluate(object, train_spec, eval_spec, ...)
Arguments
object An estimator object to train and evaluate.
train_spec A TrainSpec instance to specify the training specification.
eval_spec A EvalSpec instance to specify the evaluation and export specification.

Not used.

train_spec 55

Details

This utility function trains, evaluates, and (optionally) exports the model by using the given estimator.
All training related specification is held in train_spec, including training input_fn and training
max steps, etc. All evaluation and export related specification is held in eval_spec, including
evaluation input_fn, steps, etc.

This utility function provides consistent behavior for both local (non-distributed) and distributed
configurations. Currently, the only supported distributed training configuration is between-graph
replication.

Overfitting: In order to avoid overfitting, it is recommended to set up the training input_fn to
shuffle the training data properly. It is also recommended to train the model a little longer, say
multiple epochs, before performing evaluation, as the input pipeline starts from scratch for each
training. It is particularly important for local training and evaluation.

Stop condition: In order to support both distributed and non-distributed configuration reliably, the
only supported stop condition for model training is train_spec.max_steps. If train_spec.max_steps
is NULL, the model is trained forever. Use with care if model stop condition is different. For exam-

ple, assume that the model is expected to be trained with one epoch of training data, and the training
input_fn is configured to throw OutOfRangeError after going through one epoch, which stops the
Estimator.train. For a three-training-worker distributed configuration, each training worker is
likely to go through the whole epoch independently. So, the model will be trained with three epochs

of training data instead of one epoch.

Raises

* ValueError: if environment variable TF_CONFIG is incorrectly set.

See Also

Other training methods: eval_spec(), train_spec()

train_spec Configuration for the train component of train_and_evaluate

Description

TrainSpec determines the input data for the training, as well as the duration. Optional hooks run at
various stages of training.

Usage

train_spec(input_fn, max_steps = NULL, hooks = NULL)

56 variable_names_values

Arguments
input_fn Training input function returning a tuple of:
* features - Tensor or dictionary of string feature name to Tensor.
* labels - Tensor or dictionary of Tensor with labels.
max_steps Positive number of total steps for which to train model. If NULL, train for-
ever. The training input_fn is not expected to generate OutOfRangeError or
StopIteration exceptions.
hooks List of session run hooks to run on all workers (including chief) during training.
See Also

Other training methods: eval_spec(), train_and_evaluate.tf_estimator()

variable_names_values Get variable names and values associated with an estimator

Description

These helper functions extract the names and values of variables in the graphs associated with
trained estimator models.

Usage

variable_names(object)

variable_value(object, variable = NULL)

Arguments
object A trained estimator model.
variable (Optional) Names of variables to extract as a character vector. If not specified,
values for all variables are returned.
Value

For variable_names(), a vector of variable names. For variable_values(), a named list of
variable values.

Index

+ canned estimators
boosted_trees_estimators, 3
dnn_estimators, 17
dnn_linear_combined_estimators, 19
linear_estimators, 41

* custom estimator methods
estimator, 21
estimator_spec, 23
evaluate.tf_estimator, 25
export_savedmodel . tf_estimator, 27
predict.tf_estimator, 46
train.tf_estimator, 53

* estimator keys
metric_keys, 43
mode_keys, 44
prediction_keys, 48

+ feature column constructors
column_bucketized, 7
column_categorical_weighted, 8

column_categorical_with_hash_bucket,

9
column_categorical_with_identity,
10

column_categorical_with_vocabulary_file,

11

column_categorical_with_vocabulary_list,

12

column_crossed, 13
column_embedding, 14
column_numeric, 16
input_layer, 39

* input function constructors
input_fn, 37

* input functions
input_fn, 37
numpy_input_fn, 44

+ parsing utilities
classifier_parse_example_spec, 5
regressor_parse_example_spec, 48

57

* run_config methods
run_config, 50
task_type, 52

* session_run_hook wrappers
hook_checkpoint_saver, 31
hook_global_step_waiter, 32
hook_history_saver, 32
hook_logging_tensor, 33
hook_nan_tensor, 34
hook_progress_bar, 34
hook_step_counter, 35
hook_stop_at_step, 35
hook_summary_saver, 36
session_run_hook, 51

* training methods
eval_spec, 26
train_and_evaluate.tf_estimator,

54
train_spec, 55

x utility functions
graph_keys, 30
latest_checkpoint, 41

boosted_trees_classifier
(boosted_trees_estimators), 3

boosted_trees_estimators, 3, 19, 21, 42

boosted_trees_regressor
(boosted_trees_estimators), 3

classifier_parse_example_spec, 5, 49
column-scope, 6
column_base, 7
column_bucketized, 7, 8-10, 12-15, 17, 40
column_bucketized(), 39
column_categorical_weighted, 7, 8, 9, 10,
12-15,17,40
column_categorical_with_hash_bucket, 7,
8,9,10,12-15,17, 40
column_categorical_with_identity, 7-9,
10, 12-15, 17,40

58

column_categorical_with_vocabulary_file,
7—10,11,13—15,17,40
column_categorical_with_vocabulary_list,
7-10,12,12, 14, 15,17, 40
column_crossed, 7-10, 12, 13,13, 15, 17,40
column_embedding, 7-10, 12—-14, 14, 17, 40
column_embedding(), 39
column_indicator, 15
column_indicator(), 39
column_numeric, 7-10, 12—15, 16, 40
column_numeric(), 4,6, 7, 18, 20, 23, 39, 42

dnn_classifier (dnn_estimators), 17
dnn_estimators, 5, 17, 21,42
dnn_linear_combined_classifier

(dnn_linear_combined_estimators),

19
dnn_linear_combined_estimators, 5, 19,

19, 42
dnn_linear_combined_regressor

(dnn_linear_combined_estimators),

19
dnn_regressor (dnn_estimators), 17

estimator, 21, 25, 26, 29, 47, 54

estimator(), 23

estimator_spec, 22, 23, 26, 29, 47, 54

estimator_spec(), 22

estimators, 22

eval_spec, 26, 55, 56

evaluate.tf_estimator, 22, 25, 25, 29, 47,
54

experiment, 27

export_savedmodel . tf_estimator, 22, 25,
26,27,47, 54

feature_columns, 29
feature_columns(), 4, 6, 18, 23,42

graph_keys, 30, 41

hook_checkpoint_saver, 31, 32-36, 51
hook_global_step_waiter, 32, 32, 33-36,
51

hook_history_saver, 32, 32, 33-36, 51
hook_logging_tensor, 32, 33, 33, 34-36, 51
hook_nan_tensor, 32-34, 34, 35, 36, 51
hook_progress_bar, 32-34, 34, 35, 36, 51
hook_step_counter, 32-34, 35, 36, 51

INDEX

hook_stop_at_step, 32-35, 35, 36, 51
hook_summary_saver, 32-36, 36, 51

input_fn, 37, 45
input_fn(), 25,47, 53
input_layer, 7-10, 12-15, 17, 39

keras_model_to_estimator, 40

latest_checkpoint, 31, 41
linear_classifier (linear_estimators),
41
linear_estimators, 5, 19, 21, 41
linear_regressor (linear_estimators), 41

metric_keys, 43, 44,48
mode_keys, 43, 44, 48
mode_keys (), 24
model_dir, 43

numpy_input_fn, 38, 44

plot(), 46

plot.tf_estimator_history, 45
predict.tf_estimator, 22, 25, 26, 29, 46, 54
prediction_keys, 43, 44, 48

regressor_parse_example_spec, 6, 48
run_config, 50, 52
run_config(), 4, 18, 20, 23, 42

scoped_columns (column-scope), 6
session_run_args, 50
session_run_args(), 51
session_run_hook, 32-36, 51
session_run_hook(), 50, 51
set_columns (column-scope), 6

task_type, 50, 52

tfestimators, 52

tidyselect, 29

train-evaluate-predict, 53

train.tf_estimator, 22, 25, 26, 29, 47, 53

train_and_evaluate.tf_estimator, 27, 54,
56

train_spec, 27, 55, 55

variable_names (variable_names_values),
56
variable_names_values, 56

INDEX

variable_value (variable_names_values),
56

with_columns (column-scope), 6

59

	boosted_trees_estimators
	classifier_parse_example_spec
	column-scope
	column_base
	column_bucketized
	column_categorical_weighted
	column_categorical_with_hash_bucket
	column_categorical_with_identity
	column_categorical_with_vocabulary_file
	column_categorical_with_vocabulary_list
	column_crossed
	column_embedding
	column_indicator
	column_numeric
	dnn_estimators
	dnn_linear_combined_estimators
	estimator
	estimators
	estimator_spec
	evaluate.tf_estimator
	eval_spec
	experiment
	export_savedmodel.tf_estimator
	feature_columns
	graph_keys
	hook_checkpoint_saver
	hook_global_step_waiter
	hook_history_saver
	hook_logging_tensor
	hook_nan_tensor
	hook_progress_bar
	hook_step_counter
	hook_stop_at_step
	hook_summary_saver
	input_fn
	input_layer
	keras_model_to_estimator
	latest_checkpoint
	linear_estimators
	metric_keys
	model_dir
	mode_keys
	numpy_input_fn
	plot.tf_estimator_history
	predict.tf_estimator
	prediction_keys
	regressor_parse_example_spec
	run_config
	session_run_args
	session_run_hook
	task_type
	tfestimators
	train-evaluate-predict
	train.tf_estimator
	train_and_evaluate.tf_estimator
	train_spec
	variable_names_values
	Index

