
Package ‘tibble’
November 7, 2021

Title Simple Data Frames

Version 3.1.6

Description Provides a 'tbl_df' class (the 'tibble') with stricter checking and better format-
ting than the traditional
data frame.

License MIT + file LICENSE

URL https://tibble.tidyverse.org/, https://github.com/tidyverse/tibble

BugReports https://github.com/tidyverse/tibble/issues

Depends R (>= 3.1.0)

Imports ellipsis (>= 0.3.2), fansi (>= 0.4.0), lifecycle (>= 1.0.0),
magrittr, methods, pillar (>= 1.6.2), pkgconfig, rlang (>=
0.4.3), utils, vctrs (>= 0.3.8)

Suggests bench, bit64, blob, brio, callr, cli, covr, crayon (>=
1.3.4), DiagrammeR, dplyr, evaluate, formattable, ggplot2, hms,
htmltools, knitr, lubridate, mockr, nycflights13, pkgbuild,
pkgload, purrr, rmarkdown, stringi, testthat (>= 3.0.2), tidyr,
withr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first subsetting, as_tibble, add, invariants

NeedsCompilation yes

Author Kirill Müller [aut, cre],
Hadley Wickham [aut],
Romain Francois [ctb],
Jennifer Bryan [ctb],
RStudio [cph]

Maintainer Kirill Müller <krlmlr+r@mailbox.org>

1

https://tibble.tidyverse.org/
https://github.com/tidyverse/tibble
https://github.com/tidyverse/tibble/issues

2 tibble-package

Repository CRAN

Date/Publication 2021-11-07 17:30:02 UTC

R topics documented:
tibble-package . 2
add_column . 3
add_row . 4
as_tibble . 5
char . 8
enframe . 10
formatting . 11
frame_matrix . 12
is_tibble . 13
lst . 14
new_tibble . 15
num . 16
rownames . 19
subsetting . 20
tbl_df-class . 22
tibble . 23
tibble_options . 26
tribble . 27
view . 29

Index 30

tibble-package tibble: Simple Data Frames

Description

Provides a ’tbl_df’ class (the ’tibble’) with stricter checking and better formatting than the tradi-
tional data frame.

Details

[Stable]
The tibble package provides utilities for handling tibbles, where "tibble" is a colloquial term for the
S3 tbl_df class. The tbl_df class is a special case of the base data.frame. class, developed in
response to lessons learned over many years of data analysis with data frames.

Tibble is the central data structure for the set of packages known as the tidyverse, including dplyr,
ggplot2, tidyr, and readr.

General resources:

• Website for the tibble package: https://tibble.tidyverse.org

https://www.tidyverse.org/packages/
https://dplyr.tidyverse.org/
https://ggplot2.tidyverse.org/
https://tidyr.tidyverse.org/
https://readr.tidyverse.org/
https://tibble.tidyverse.org

add_column 3

• Tibbles chapter in R for Data Science

Resources on specific topics:

• Create a tibble: tibble(), as_tibble(), tribble(), enframe()

• Inspect a tibble: print.tbl(), glimpse()

• Details on the S3 tbl_df class: tbl_df

• Package options: tibble_options

Author(s)

Maintainer: Kirill Müller <krlmlr+r@mailbox.org>

Authors:

• Hadley Wickham <hadley@rstudio.com>

Other contributors:

• Romain Francois <romain@r-enthusiasts.com> [contributor]

• Jennifer Bryan <jenny@rstudio.com> [contributor]

• RStudio [copyright holder]

See Also

Useful links:

• https://tibble.tidyverse.org/

• https://github.com/tidyverse/tibble

• Report bugs at https://github.com/tidyverse/tibble/issues

add_column Add columns to a data frame

Description

This is a convenient way to add one or more columns to an existing data frame.

Usage

add_column(
.data,
...,
.before = NULL,
.after = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

https://r4ds.had.co.nz/tibbles.html
https://tibble.tidyverse.org/
https://github.com/tidyverse/tibble
https://github.com/tidyverse/tibble/issues

4 add_row

Arguments

.data Data frame to append to.

... <dynamic-dots> Name-value pairs, passed on to tibble(). All values must
have the same size of .data or size 1.

.before, .after

One-based column index or column name where to add the new columns, de-
fault: after last column.

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence,
• "unique": Make sure names are unique and not empty,
• "check_unique": (default value), no name repair, but check they are unique,
• "universal": Make the names unique and syntactic
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).
• A purrr-style anonymous function, see rlang::as_function()

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

See Also

Other addition: add_row()

Examples

add_column ---------------------------------
df <- tibble(x = 1:3, y = 3:1)

df %>% add_column(z = -1:1, w = 0)
df %>% add_column(z = -1:1, .before = "y")

You can't overwrite existing columns
try(df %>% add_column(x = 4:6))

You can't create new observations
try(df %>% add_column(z = 1:5))

add_row Add rows to a data frame

Description

This is a convenient way to add one or more rows of data to an existing data frame. See tribble()
for an easy way to create an complete data frame row-by-row. Use tibble_row() to ensure that
the new data has only one row.

add_case() is an alias of add_row().

as_tibble 5

Usage

add_row(.data, ..., .before = NULL, .after = NULL)

Arguments

.data Data frame to append to.

... <dynamic-dots> Name-value pairs, passed on to tibble(). Values can be
defined only for columns that already exist in .data and unset columns will get
an NA value.

.before, .after

One-based row index where to add the new rows, default: after last row.

See Also

Other addition: add_column()

Examples

add_row ---------------------------------
df <- tibble(x = 1:3, y = 3:1)

df %>% add_row(x = 4, y = 0)

You can specify where to add the new rows
df %>% add_row(x = 4, y = 0, .before = 2)

You can supply vectors, to add multiple rows (this isn't
recommended because it's a bit hard to read)
df %>% add_row(x = 4:5, y = 0:-1)

Use tibble_row() to add one row only
df %>% add_row(tibble_row(x = 4, y = 0))
try(df %>% add_row(tibble_row(x = 4:5, y = 0:-1)))

Absent variables get missing values
df %>% add_row(x = 4)

You can't create new variables
try(df %>% add_row(z = 10))

as_tibble Coerce lists, matrices, and more to data frames

Description

as_tibble() turns an existing object, such as a data frame or matrix, into a so-called tibble, a data
frame with class tbl_df. This is in contrast with tibble(), which builds a tibble from individual
columns. as_tibble() is to tibble() as base::as.data.frame() is to base::data.frame().

as_tibble() is an S3 generic, with methods for:

6 as_tibble

• data.frame: Thin wrapper around the list method that implements tibble’s treatment of
rownames.

• matrix, poly, ts, table

• Default: Other inputs are first coerced with base::as.data.frame().

as_tibble_row() converts a vector to a tibble with one row. If the input is a list, all elements must
have size one.

as_tibble_col() converts a vector to a tibble with one column.

Usage

as_tibble(
x,
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
rownames = pkgconfig::get_config("tibble::rownames", NULL)

)

S3 method for class 'data.frame'
as_tibble(
x,
validate = NULL,
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
rownames = pkgconfig::get_config("tibble::rownames", NULL)

)

S3 method for class 'list'
as_tibble(
x,
validate = NULL,
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

S3 method for class 'matrix'
as_tibble(x, ..., validate = NULL, .name_repair = NULL)

S3 method for class 'table'
as_tibble(x, `_n` = "n", ..., n = `_n`, .name_repair = "check_unique")

S3 method for class '`NULL`'
as_tibble(x, ...)

Default S3 method:

as_tibble 7

as_tibble(x, ...)

as_tibble_row(
x,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

as_tibble_col(x, column_name = "value")

Arguments

x A data frame, list, matrix, or other object that could reasonably be coerced to a
tibble.

... Unused, for extensibility.

.rows The number of rows, useful to create a 0-column tibble or just as an additional
check.

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence,
• "unique": Make sure names are unique and not empty,
• "check_unique": (default value), no name repair, but check they are unique,
• "universal": Make the names unique and syntactic
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).
• A purrr-style anonymous function, see rlang::as_function()

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

rownames How to treat existing row names of a data frame or matrix:

• NULL: remove row names. This is the default.
• NA: keep row names.
• A string: the name of a new column. Existing rownames are transferred

into this column and the row.names attribute is deleted. Read more in
rownames.

_n, validate [Soft-deprecated]
For compatibility only, do not use for new code.

n Name for count column, default: "n".

column_name Name of the column.

Row names

The default behavior is to silently remove row names.

New code should explicitly convert row names to a new column using the rownames argument.

For existing code that relies on the retention of row names, call pkgconfig::set_config("tibble::rownames"
= NA) in your script or in your package’s .onLoad() function.

8 char

Life cycle

Using as_tibble() for vectors is superseded as of version 3.0.0, prefer the more expressive as_tibble_row()
and as_tibble_col() variants for new code.

See Also

tibble() constructs a tibble from individual columns. enframe() converts a named vector to a tib-
ble with a column of names and column of values. Name repair is implemented using vctrs::vec_as_names().

Examples

m <- matrix(rnorm(50), ncol = 5)
colnames(m) <- c("a", "b", "c", "d", "e")
df <- as_tibble(m)

as_tibble_row(c(a = 1, b = 2))
as_tibble_row(list(c = "three", d = list(4:5)))
as_tibble_row(1:3, .name_repair = "unique")

as_tibble_col(1:3)
as_tibble_col(

list(c = "three", d = list(4:5)),
column_name = "data"

)

char Format a character vector

Description

[Experimental]
Constructs a character vector that can be formatted with predefined minimum width or without
width restrictions, and where the abbreviation style can be configured.

The formatting is applied when the vector is printed or formatted, and also in a tibble column.

set_char_opts() adds formatting options to an arbitrary character vector, useful for composing
with other types.

Usage

char(
x,
...,
min_chars = NULL,
shorten = c("back", "front", "mid", "abbreviate")

)

set_char_opts(

char 9

x,
...,
min_chars = NULL,
shorten = c("back", "front", "mid", "abbreviate")

)

Arguments

x A character vector.

... These dots are for future extensions and must be empty.

min_chars The minimum width to allocate to this column, defaults to 15. The "pillar.min_chars"
option is not consulted.

shorten How to abbreviate the data if necessary:

• "back" (default): add an ellipsis at the end
• "front": add an ellipsis at the front
• "mid": add an ellipsis in the middle
• "abbreviate": use abbreviate()

See Also

Other vector classes: num()

Examples

Display as a vector:
char(letters[1:3])

Space constraints:
rand_strings <- stringi::stri_rand_strings(10, seq(40, 22, by = -2))

Plain character vectors get truncated if space is limited:
data_with_id <- function(id) {

tibble(
id,
some_number_1 = 1, some_number_2 = 2, some_number_3 = 3,
some_number_4 = 4, some_number_5 = 5, some_number_6 = 6,
some_number_7 = 7, some_number_8 = 8, some_number_9 = 9

)
}
data_with_id(rand_strings)

Use char() to avoid or control truncation
data_with_id(char(rand_strings, min_chars = 24))
data_with_id(char(rand_strings, min_chars = Inf))
data_with_id(char(rand_strings, min_chars = 24, shorten = "mid"))

Lorem Ipsum, one sentence per row.
lipsum <- unlist(strsplit(stringi::stri_rand_lipsum(1), "(?<=[.]) +", perl = TRUE))
tibble(

back = char(lipsum, shorten = "back"),

10 enframe

front = char(lipsum, shorten = "front"),
mid = char(lipsum, shorten = "mid")

)
tibble(abbr = char(lipsum, shorten = "abbreviate"))

enframe Converting vectors to data frames, and vice versa

Description

enframe() converts named atomic vectors or lists to one- or two-column data frames. For a list,
the result will be a nested tibble with a column of type list. For unnamed vectors, the natural
sequence is used as name column.

deframe() converts two-column data frames to a named vector or list, using the first column as
name and the second column as value. If the input has only one column, an unnamed vector is
returned.

Usage

enframe(x, name = "name", value = "value")

deframe(x)

Arguments

x A vector (for enframe()) or a data frame with one or two columns (for deframe()).

name, value Names of the columns that store the names and values. If name is NULL, a one-
column tibble is returned; value cannot be NULL.

Value

For enframe(), a tibble with two columns (if name is not NULL, the default) or one column (other-
wise).

For deframe(), a vector (named or unnamed).

Examples

enframe(1:3)
enframe(c(a = 5, b = 7))
enframe(list(one = 1, two = 2:3, three = 4:6))
deframe(enframe(3:1))
deframe(tibble(a = 1:3))
deframe(tibble(a = as.list(1:3)))

formatting 11

formatting Printing tibbles

Description

One of the main features of the tbl_df class is the printing:

• Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary
of the remaining rows and columns.

• Tibble reveals the type of each column, which keeps the user informed about whether a
variable is, e.g., <chr> or <fct> (character versus factor). See vignette("types") for an
overview of common type abbreviations.

Printing can be tweaked for a one-off call by calling print() explicitly and setting arguments
like n and width. More persistent control is available by setting the options described in pil-
lar::pillar_options. See also vignette("digits") for a comparison to base options, and vignette("numbers")
that showcases num() and char() for creating columns with custom formatting options.

As of tibble 3.1.0, printing is handled entirely by the pillar package. If you implement a package
that extends tibble, the printed output can be customized in various ways. See vignette("extending",package
= "pillar") for details, and pillar::pillar_options for options that control the display in the console.

Usage

S3 method for class 'tbl_df'
print(
x,
width = NULL,
...,
n = NULL,
max_extra_cols = NULL,
max_footer_lines = NULL

)

S3 method for class 'tbl_df'
format(
x,
width = NULL,
...,
n = NULL,
max_extra_cols = NULL,
max_footer_lines = NULL

)

Arguments

x Object to format or print.

12 frame_matrix

width Width of text output to generate. This defaults to NULL, which means use the
width option.

... Passed on to tbl_format_setup().
n Number of rows to show. If NULL, the default, will print all rows if less than

the print_max option. Otherwise, will print as many rows as specified by the
print_min option.

max_extra_cols Number of extra columns to print abbreviated information for, if the width is
too small for the entire tibble. If NULL, the max_extra_cols option is used. The
previously defined n_extra argument is soft-deprecated.

max_footer_lines

Maximum number of footer lines. If NULL, the max_footer_lines option is
used.

Examples

print(as_tibble(mtcars))
print(as_tibble(mtcars), n = 1)
print(as_tibble(mtcars), n = 3)

print(as_tibble(trees), n = 100)

print(mtcars, width = 10)

mtcars2 <- as_tibble(cbind(mtcars, mtcars), .name_repair = "unique")
print(mtcars2, n = 25, max_extra_cols = 3)

print(nycflights13::flights, max_footer_lines = 1)
print(nycflights13::flights, width = Inf)

frame_matrix Row-wise matrix creation

Description

Create matrices laying out the data in rows, similar to matrix(...,byrow = TRUE), with a nicer-
to-read syntax. This is useful for small matrices, e.g. covariance matrices, where readability is
important. The syntax is inspired by tribble().

Usage

frame_matrix(...)

Arguments

... <dynamic-dots> Arguments specifying the structure of a frame_matrix. Col-
umn names should be formulas, and may only appear before the data. These
arguments are processed with rlang::list2() and support unquote via !! and
unquote-splice via !!!.

is_tibble 13

Value

A matrix.

See Also

See quasiquotation for more details on tidy dots semantics, i.e. exactly how the ... argument is
processed.

Examples

frame_matrix(
~col1, ~col2,
1, 3,
5, 2

)

is_tibble Test if the object is a tibble

Description

This function returns TRUE for tibbles or subclasses thereof, and FALSE for all other objects, includ-
ing regular data frames.

Usage

is_tibble(x)

Arguments

x An object

Value

TRUE if the object inherits from the tbl_df class.

14 lst

lst Build a list

Description

lst() constructs a list, similar to base::list(), but with some of the same features as tibble().
lst() builds components sequentially. When defining a component, you can refer to components
created earlier in the call. lst() also generates missing names automatically.

See rlang::list2() for a simpler and faster alternative without tibble’s evaluation and auto-name
semantics.

Usage

lst(...)

Arguments

... <dynamic-dots> A set of name-value pairs. These arguments are processed
with rlang::quos() and support unquote via !! and unquote-splice via !!!.
Use := to create columns that start with a dot.
Arguments are evaluated sequentially. You can refer to previously created ele-
ments directly or using the .data pronoun. To refer explicitly to objects in the
calling environment, use !! or .env, e.g. !!.data or .env$.data for the special
case of an object named .data.

Value

A named list.

Examples

the value of n can be used immediately in the definition of x
lst(n = 5, x = runif(n))

missing names are constructed from user's input
lst(1:3, z = letters[4:6], runif(3))

a <- 1:3
b <- letters[4:6]
lst(a, b)

pre-formed quoted expressions can be used with lst() and then
unquoted (with !!) or unquoted and spliced (with !!!)
n1 <- 2
n2 <- 3
n_stuff <- quote(n1 + n2)
x_stuff <- quote(seq_len(n))
lst(!!!list(n = n_stuff, x = x_stuff))

new_tibble 15

lst(n = !!n_stuff, x = !!x_stuff)
lst(n = 4, x = !!x_stuff)
lst(!!!list(n = 2, x = x_stuff))

new_tibble Tibble constructor and validator

Description

Creates or validates a subclass of a tibble. These function is mostly useful for package authors that
implement subclasses of a tibble, like sf or tsibble.

new_tibble() creates a new object as a subclass of tbl_df, tbl and data.frame. This function
is optimized for performance, checks are reduced to a minimum. See vctrs::new_data_frame()
for details.

validate_tibble() checks a tibble for internal consistency. Correct behavior can be guaranteed
only if this function runs without raising an error.

Usage

new_tibble(x, ..., nrow = NULL, class = NULL, subclass = NULL)

validate_tibble(x)

Arguments

x A tibble-like object.

... Name-value pairs of additional attributes.

nrow The number of rows, inferred from x if omitted.

class Subclasses to assign to the new object, default: none.

subclass Deprecated, retained for compatibility. Please use the class argument.

Construction

For new_tibble(), x must be a list. The nrow argument may be omitted as of tibble 3.1.4. If
present, every element of the list x should have vctrs::vec_size() equal to this value. (But this
is not checked by the constructor). This takes the place of the "row.names" attribute in a data frame.
x must have names (or be empty), but the names are not checked for correctness.

Validation

validate_tibble() checks for "minimal" names and that all columns are vectors, data frames or
matrices. It also makes sure that all columns have the same length, and that vctrs::vec_size() is
consistent with the data.

16 num

See Also

tibble() and as_tibble() for ways to construct a tibble with recycling of scalars and automatic
name repair, and vctrs::df_list() and vctrs::new_data_frame() for lower-level implemen-
tations.

Examples

The nrow argument is always required:
new_tibble(list(a = 1:3, b = 4:6), nrow = 3)

Existing row.names attributes are ignored:
try(validate_tibble(new_tibble(trees, nrow = 3)))

The length of all columns must be compatible with the nrow argument:
try(validate_tibble(new_tibble(list(a = 1:3, b = 4:6), nrow = 2)))

num Format a numeric vector

Description

[Experimental]

Constructs a numeric vector that can be formatted with predefined significant digits, or with a
maximum or fixed number of digits after the decimal point. Scaling is supported, as well as forcing
a decimal, scientific or engineering notation. If a label is given, it is shown in the header of a
column.

The formatting is applied when the vector is printed or formatted, and also in a tibble column.
The formatting annotation and the class survives most arithmetic transformations, the most notable
exceptions are var() and sd().

set_num_opts() adds formatting options to an arbitrary numeric vector, useful for composing with
other types.

Usage

num(
x,
...,
sigfig = NULL,
digits = NULL,
label = NULL,
scale = NULL,
notation = c("fit", "dec", "sci", "eng", "si"),
fixed_exponent = NULL,
extra_sigfig = NULL

)

num 17

set_num_opts(
x,
...,
sigfig = NULL,
digits = NULL,
label = NULL,
scale = NULL,
notation = c("fit", "dec", "sci", "eng", "si"),
fixed_exponent = NULL,
extra_sigfig = NULL

)

Arguments

x A numeric vector.

... These dots are for future extensions and must be empty.

sigfig Define the number of significant digits to show. Must be one or greater. The
"pillar.sigfig" option is not consulted. Can’t be combined with digits.

digits Number of digits after the decimal points to show. Positive numbers specify
the exact number of digits to show. Negative numbers specify (after negation)
the maximum number of digits to show. With digits = 2, the numbers 1.2 and
1.234 are printed as 1.20 and 1.23, with digits = -2 as 1.2 and 1.23, respec-
tively. Can’t be combined with sigfig.

label A label to show instead of the type description.

scale Multiplier to apply to the data before showing. Useful for displaying e.g. per-
centages. Must be combined with label.

notation One of "fit", "dec", "sci", "eng", or "si".

• "fit": Use decimal notation if it fits and if it consumes 13 digits or less,
otherwise use scientific notation. (The default for numeric pillars.)

• "dec": Use decimal notation, regardless of width.
• "sci": Use scientific notation.
• "eng": Use engineering notation, i.e. scientific notation using exponents

that are a multiple of three.
• "si": Use SI notation, prefixes between 1e-24 and 1e24 are supported.

fixed_exponent Use the same exponent for all numbers in scientific, engineering or SI notation.
-Inf uses the smallest, +Inf the largest fixed_exponent present in the data. The
default is to use varying exponents.

extra_sigfig If TRUE, increase the number of significant digits if the data consists of numbers
of the same magnitude with subtle differences.

See Also

Other vector classes: char()

18 num

Examples

Display as a vector
num(9:11 * 100 + 0.5)

Significant figures
tibble(

x3 = num(9:11 * 100 + 0.5, sigfig = 3),
x4 = num(9:11 * 100 + 0.5, sigfig = 4),
x5 = num(9:11 * 100 + 0.5, sigfig = 5),

)

Maximum digits after the decimal points
tibble(

x0 = num(9:11 * 100 + 0.5, digits = 0),
x1 = num(9:11 * 100 + 0.5, digits = -1),
x2 = num(9:11 * 100 + 0.5, digits = -2),

)

Use fixed digits and a currency label
tibble(

usd = num(9:11 * 100 + 0.5, digits = 2, label = "USD"),
gbp = num(9:11 * 100 + 0.5, digits = 2, label = "£"),
chf = num(9:11 * 100 + 0.5, digits = 2, label = "SFr")

)

Scale
tibble(

small = num(9:11 / 1000 + 0.00005, label = "%", scale = 100),
medium = num(9:11 / 100 + 0.0005 , label = "%", scale = 100),
large = num(9:11 / 10 + 0.005 , label = "%", scale = 100)

)

Notation
tibble(

sci = num(10^(-13:6), notation = "sci"),
eng = num(10^(-13:6), notation = "eng"),
si = num(10^(-13:6), notation = "si"),
dec = num(10^(-13:6), notation = "dec")

)

Fixed exponent
tibble(

scimin = num(10^(-7:6) * 123, notation = "sci", fixed_exponent = -Inf),
engmin = num(10^(-7:6) * 123, notation = "eng", fixed_exponent = -Inf),
simin = num(10^(-7:6) * 123, notation = "si", fixed_exponent = -Inf)

)

tibble(
scismall = num(10^(-7:6) * 123, notation = "sci", fixed_exponent = -3),
scilarge = num(10^(-7:6) * 123, notation = "sci", fixed_exponent = 3),
scimax = num(10^(-7:6) * 123, notation = "sci", fixed_exponent = Inf)

)

rownames 19

#' Extra significant digits
tibble(

default = num(100 + 1:3 * 0.001),
extra1 = num(100 + 1:3 * 0.001, extra_sigfig = TRUE),
extra2 = num(100 + 1:3 * 0.0001, extra_sigfig = TRUE),
extra3 = num(10000 + 1:3 * 0.00001, extra_sigfig = TRUE)

)

rownames Tools for working with row names

Description

While a tibble can have row names (e.g., when converting from a regular data frame), they are
removed when subsetting with the [operator. A warning will be raised when attempting to assign
non-NULL row names to a tibble. Generally, it is best to avoid row names, because they are basically
a character column with different semantics than every other column.

These functions allow to you detect if a data frame has row names (has_rownames()), remove them
(remove_rownames()), or convert them back-and-forth between an explicit column (rownames_to_column()
and column_to_rownames()). Also included is rowid_to_column(), which adds a column at the
start of the dataframe of ascending sequential row ids starting at 1. Note that this will remove any
existing row names.

Usage

has_rownames(.data)

remove_rownames(.data)

rownames_to_column(.data, var = "rowname")

rowid_to_column(.data, var = "rowid")

column_to_rownames(.data, var = "rowname")

Arguments

.data A data frame.

var Name of column to use for rownames.

Value

column_to_rownames() always returns a data frame. has_rownames() returns a scalar logical. All
other functions return an object of the same class as the input.

20 subsetting

Examples

Detect row names --
has_rownames(mtcars)
has_rownames(trees)

Remove row names --
remove_rownames(mtcars) %>% has_rownames()

Convert between row names and column --------------------------------
mtcars_tbl <- rownames_to_column(mtcars, var = "car") %>% as_tibble()
mtcars_tbl
column_to_rownames(mtcars_tbl, var = "car") %>% head()

Adding rowid as a column --
rowid_to_column(trees) %>% head()

subsetting Subsetting tibbles

Description

Accessing columns, rows, or cells via $, [[, or [is mostly similar to regular data frames. However,
the behavior is different for tibbles and data frames in some cases:

• [always returns a tibble by default, even if only one column is accessed.

• Partial matching of column names with $ and [[is not supported, and NULL is returned. For
$, a warning is given.

• Only scalars (vectors of length one) or vectors with the same length as the number of rows can
be used for assignment.

• Rows outside of the tibble’s boundaries cannot be accessed.

• When updating with [[<- and [<-, type changes of entire columns are supported, but updating a
part of a column requires that the new value is coercible to the existing type. See vec_slice()
for the underlying implementation.

Unstable return type and implicit partial matching can lead to surprises and bugs that are hard to
catch. If you rely on code that requires the original data frame behavior, coerce to a data frame via
as.data.frame().

Usage

S3 method for class 'tbl_df'
x$name

S3 replacement method for class 'tbl_df'
x$name <- value

subsetting 21

S3 method for class 'tbl_df'
x[[i, j, ..., exact = TRUE]]

S3 replacement method for class 'tbl_df'
x[[i, j, ...]] <- value

S3 method for class 'tbl_df'
x[i, j, drop = FALSE, ...]

S3 replacement method for class 'tbl_df'
x[i, j, ...] <- value

Arguments

x A tibble.

name A name or a string.

value A value to store in a row, column, range or cell. Tibbles are stricter than data
frames in what is accepted here.

i, j Row and column indices. If j is omitted, i is used as column index.

... Ignored.

exact Ignored, with a warning.

drop Coerce to a vector if fetching one column via tbl[,j] . Default FALSE, ignored
when accessing a column via tbl[j] .

Details

For better compatibility with older code written for regular data frames, [supports a drop argument
which defaults to FALSE. New code should use [[to turn a column into a vector.

Examples

df <- data.frame(a = 1:3, bc = 4:6)
tbl <- tibble(a = 1:3, bc = 4:6)

Subsetting single columns:
df[, "a"]
tbl[, "a"]
tbl[, "a", drop = TRUE]
as.data.frame(tbl)[, "a"]

Subsetting single rows with the drop argument:
df[1, , drop = TRUE]
tbl[1, , drop = TRUE]
as.list(tbl[1,])

Accessing non-existent columns:
df$b
tbl$b

22 tbl_df-class

df[["b", exact = FALSE]]
tbl[["b", exact = FALSE]]

df$bd <- c("n", "e", "w")
tbl$bd <- c("n", "e", "w")
df$b
tbl$b

df$b <- 7:9
tbl$b <- 7:9
df$b
tbl$b

Identical behavior:
tbl[1,]
tbl[1, c("bc", "a")]
tbl[, c("bc", "a")]
tbl[c("bc", "a")]
tbl["a"]
tbl$a
tbl[["a"]]

tbl_df-class tbl_df class

Description

The tbl_df class is a subclass of data.frame, created in order to have different default behaviour.
The colloquial term "tibble" refers to a data frame that has the tbl_df class. Tibble is the central
data structure for the set of packages known as the tidyverse, including dplyr, ggplot2, tidyr, and
readr.

The general ethos is that tibbles are lazy and surly: they do less and complain more than base
data.frames. This forces problems to be tackled earlier and more explicitly, typically leading to
code that is more expressive and robust.

Properties of tbl_df

Objects of class tbl_df have:

• A class attribute of c("tbl_df","tbl","data.frame").

• A base type of "list", where each element of the list has the same vctrs::vec_size().

• A names attribute that is a character vector the same length as the underlying list.

• A row.names attribute, included for compatibility with data.frame. This attribute is only
consulted to query the number of rows, any row names that might be stored there are ignored
by most tibble methods.

https://www.tidyverse.org/packages/
https://dplyr.tidyverse.org/
https://ggplot2.tidyverse.org/
https://tidyr.tidyverse.org/
https://readr.tidyverse.org/

tibble 23

Behavior of tbl_df

How default behaviour of tibbles differs from that of data.frames, during creation and access:

• Column data is not coerced. A character vector is not turned into a factor. List-columns are
expressly anticipated and do not require special tricks. Internal names are never stripped from
column data. Read more in tibble().

• Recycling only happens for a length 1 input. Read more in vctrs::vec_recycle().
• Column names are not munged, although missing names are auto-populated. Empty and du-

plicated column names are strongly discouraged, but the user must indicate how to resolve.
Read more in vctrs::vec_as_names().

• Row names are not added and are strongly discouraged, in favor of storing that info as a
column. Read about in rownames.

• df[,j] returns a tibble; it does not automatically extract the column inside. df[,j,drop =
FALSE] is the default. Read more in subsetting.

• There is no partial matching when $ is used to index by name. df$name for a nonexistent
name generates a warning. Read more in subsetting.

See vignette("invariants") for a detailed description of the behavior.

Furthermore, printing and inspection are a very high priority. The goal is to convey as much infor-
mation as possible, in a concise way, even for large and complex tibbles. Read more in formatting.

See Also

tibble(), as_tibble(), tribble(), print.tbl(), glimpse()

tibble Build a data frame

Description

tibble() constructs a data frame. It is used like base::data.frame(), but with a couple notable
differences:

• The returned data frame has the class tbl_df, in addition to data.frame. This allows so-
called "tibbles" to exhibit some special behaviour, such as enhanced printing. Tibbles are
fully described in tbl_df.

• tibble() is much lazier than base::data.frame() in terms of transforming the user’s input.
– Character vectors are not coerced to factor.
– List-columns are expressly anticipated and do not require special tricks.
– Column names are not modified.
– Inner names in columns are left unchanged.

• tibble() builds columns sequentially. When defining a column, you can refer to columns
created earlier in the call. Only columns of length one are recycled.

• If a column evaluates to a data frame or tibble, it is nested or spliced. See examples.

tibble_row() constructs a data frame that is guaranteed to occupy one row. Vector columns are
required to have size one, non-vector columns are wrapped in a list.

24 tibble

Usage

tibble(
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

tibble_row(
...,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

Arguments

... <dynamic-dots> A set of name-value pairs. These arguments are processed
with rlang::quos() and support unquote via !! and unquote-splice via !!!.
Use := to create columns that start with a dot.
Arguments are evaluated sequentially. You can refer to previously created ele-
ments directly or using the .data pronoun. To refer explicitly to objects in the
calling environment, use !! or .env, e.g. !!.data or .env$.data for the special
case of an object named .data.

.rows The number of rows, useful to create a 0-column tibble or just as an additional
check.

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence,
• "unique": Make sure names are unique and not empty,
• "check_unique": (default value), no name repair, but check they are unique,
• "universal": Make the names unique and syntactic
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).
• A purrr-style anonymous function, see rlang::as_function()

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

Value

A tibble, which is a colloquial term for an object of class tbl_df. A tbl_df object is also a data
frame, i.e. it has class data.frame.

See Also

Use as_tibble() to turn an existing object into a tibble. Use enframe() to convert a named vector
into a tibble. Name repair is detailed in vctrs::vec_as_names(). See quasiquotation for more
details on tidy dots semantics, i.e. exactly how the ... argument is processed.

tibble 25

Examples

Unnamed arguments are named with their expression:
a <- 1:5
tibble(a, a * 2)

Scalars (vectors of length one) are recycled:
tibble(a, b = a * 2, c = 1)

Columns are available in subsequent expressions:
tibble(x = runif(10), y = x * 2)

tibble() never coerces its inputs,
str(tibble(letters))
str(tibble(x = list(diag(1), diag(2))))

or munges column names (unless requested),
tibble(`a + b` = 1:5)

but it forces you to take charge of names, if they need repair:
try(tibble(x = 1, x = 2))
tibble(x = 1, x = 2, .name_repair = "unique")
tibble(x = 1, x = 2, .name_repair = "minimal")

By default, non-syntactic names are allowed,
df <- tibble(`a 1` = 1, `a 2` = 2)
because you can still index by name:
df[["a 1"]]
df$`a 1`
with(df, `a 1`)

Syntactic names are easier to work with, though, and you can request them:
df <- tibble(`a 1` = 1, `a 2` = 2, .name_repair = "universal")
df$a.1

You can specify your own name repair function:
tibble(x = 1, x = 2, .name_repair = make.unique)

fix_names <- function(x) gsub("\\s+", "_", x)
tibble(`year 1` = 1, `year 2` = 2, .name_repair = fix_names)

purrr-style anonymous functions and constants
are also supported
tibble(x = 1, x = 2, .name_repair = ~ make.names(., unique = TRUE))

tibble(x = 1, x = 2, .name_repair = ~ c("a", "b"))

Tibbles can contain columns that are tibbles or matrices
if the number of rows is compatible. Unnamed tibbled are
spliced, i.e. the inner columns are inserted into the
tibble under construction.
tibble(

a = 1:3,

26 tibble_options

tibble(
b = 4:6,
c = 7:9

),
d = tibble(

e = tibble(
f = b

)
)

)
tibble(

a = 1:3,
b = diag(3),
c = cor(trees)

)

data can not contain POSIXlt columns, or tibbles or matrices
with incompatible number of rows:
try(tibble(y = strptime("2000/01/01", "%x")))
try(tibble(a = 1:3, b = tibble(c = 4:7)))

Use := to create columns with names that start with a dot:
tibble(.dotted = 3)
tibble(.dotted := 3)

You can unquote an expression:
x <- 3
tibble(x = 1, y = x)
tibble(x = 1, y = !!x)

You can splice-unquote a list of quosures and expressions:
tibble(!!! list(x = rlang::quo(1:10), y = quote(x * 2)))

Use .data, .env and !! to refer explicitly to columns or outside objects
a <- 1
tibble(a = 2, b = a)
tibble(a = 2, b = .data$a)
tibble(a = 2, b = .env$a)
tibble(a = 2, b = !!a)
try(tibble(a = 2, b = .env$bogus))
try(tibble(a = 2, b = !!bogus))

Use tibble_row() to construct a one-row tibble:
tibble_row(a = 1, lm = lm(Height ~ Girth + Volume, data = trees))

tibble_options Package options

tribble 27

Description

Options that affect interactive display. See pillar::pillar_options for options that affect display on
the console, and cli::num_ansi_colors() for enabling and disabling colored output via ANSI
sequences like [3m[38;5;246m[39m[23m.

Usage

tibble_options

Details

These options can be set via options() and queried via getOption(). For this, add a tibble. pre-
fix (the package name and a dot) to the option name. Example: for an option foo, use options(tibble.foo
= value) to set it and getOption("tibble.foo") to retrieve the current value. An option value of
NULL means that the default is used.

Options for the tibble package

• view_max: Maximum number of rows shown by view() if the input is not a data frame, passed
on to head(). Default: 1000.

Examples

Default setting:
getOption("tibble.view_max")

Change for the duration of the session:
old <- options(tibble.view_max = 100)

view() would show only 100 rows e.g. for a lazy data frame

Change back to the original value:
options(old)

Local scope:
local({

rlang::local_options(tibble.view_max = 100)
view() would show only 100 rows e.g. for a lazy data frame

})
view() would show the default 1000 rows e.g. for a lazy data frame

tribble Row-wise tibble creation

Description

Create tibbles using an easier to read row-by-row layout. This is useful for small tables of data
where readability is important. Please see tibble-package for a general introduction.

28 tribble

Usage

tribble(...)

Arguments

... <dynamic-dots> Arguments specifying the structure of a tibble. Variable
names should be formulas, and may only appear before the data. These ar-
guments are processed with rlang::list2() and support unquote via !! and
unquote-splice via !!!.

Value

A tibble.

See Also

See quasiquotation for more details on tidy dots semantics, i.e. exactly how the ... argument is
processed.

Examples

tribble(
~colA, ~colB,
"a", 1,
"b", 2,
"c", 3

)

tribble will create a list column if the value in any cell is
not a scalar
tribble(

~x, ~y,
"a", 1:3,
"b", 4:6

)

Use dplyr::mutate(dplyr::across(...)) to assign an explicit type
tribble(

~ a, ~ b, ~ c,
1, "2000-01-01", "1.5"

) %>%
dplyr::mutate(
dplyr::across(a, as.integer),
dplyr::across(b, as.Date)

)

view 29

view View an object

Description

[Experimental]
Calls utils::View() on the input and returns it, invisibly. If the input is not a data frame, it is
processed using a variant of as.data.frame(head(x,n)). A message is printed if the number of
rows exceeds n. This function has no effect in noninteractive sessions.

Usage

view(x, title = NULL, ..., n = NULL)

Arguments

x The object to display.

title The title to use for the display, by default the deparsed expression is used.

... Unused, must be empty.

n Maximum number of rows to display. Only used if x is not a data frame. Uses
the view_max option by default.

Details

The RStudio IDE overrides utils::View(), this is picked up correctly.

Index

∗ addition
add_column, 3
add_row, 4

∗ datasets
tibble_options, 26

∗ vector classes
char, 8
num, 16

.data, 14, 24

.env, 14, 24

.onLoad(), 7
[.tbl_df (subsetting), 20
[<-.tbl_df (subsetting), 20
[[.tbl_df (subsetting), 20
[[<-.tbl_df (subsetting), 20
$.tbl_df (subsetting), 20
$<-.tbl_df (subsetting), 20

abbreviate(), 9
add_case (add_row), 4
add_column, 3, 5
add_row, 4, 4
as.data.frame(), 20
as_tibble, 5
as_tibble(), 3, 16, 23, 24
as_tibble_col (as_tibble), 5
as_tibble_row (as_tibble), 5

base::as.data.frame(), 5, 6
base::data.frame(), 5, 23
base::list(), 14

char, 8, 17
char(), 11
cli::num_ansi_colors(), 27
column_to_rownames (rownames), 19

data.frame, 2, 6, 22, 23
deframe (enframe), 10

enframe, 10

enframe(), 3, 8
enhanced printing, 23

format.tbl (formatting), 11
format.tbl_df (formatting), 11
formatting, 11, 23
frame_matrix, 12

getOption(), 27
glimpse(), 3, 23

has_rownames (rownames), 19
head(), 27

interactive, 29
is_tibble, 13

lst, 14

matrix, 6, 13

name, 21
new_tibble, 15
num, 9, 16
num(), 11

option, 9, 12, 17, 29
options(), 27

pillar::pillar_options, 11, 27
poly, 6
print.tbl (formatting), 11
print.tbl(), 3, 23
print.tbl_df (formatting), 11

quasiquotation, 13, 24, 28

regular data frames, 20
remove_rownames (rownames), 19
rlang::as_function(), 4, 7, 24
rlang::list2(), 12, 14, 28
rlang::quos(), 14, 24

30

INDEX 31

rowid_to_column (rownames), 19
rownames, 6, 7, 19, 23
rownames_to_column (rownames), 19

sd(), 16
set_char_opts (char), 8
set_num_opts (num), 16
subsetting, 20, 23

table, 6
tbl_df, 2, 3, 5, 23, 24
tbl_df (tbl_df-class), 22
tbl_df-class, 22
tbl_format_setup(), 12
tibble, 10, 23, 27, 28
tibble(), 3–5, 8, 14, 16, 23
tibble-package, 2, 27
tibble_options, 3, 26
tibble_row (tibble), 23
tibble_row(), 4
tribble, 27
tribble(), 3, 4, 12, 23
ts, 6

utils::View(), 29

validate_tibble (new_tibble), 15
var(), 16
vctrs::df_list(), 16
vctrs::new_data_frame(), 15, 16
vctrs::vec_as_names(), 4, 7, 8, 23, 24
vctrs::vec_recycle(), 23
vctrs::vec_size(), 15, 22
vec_slice(), 20
view, 29
view(), 27

	tibble-package
	add_column
	add_row
	as_tibble
	char
	enframe
	formatting
	frame_matrix
	is_tibble
	lst
	new_tibble
	num
	rownames
	subsetting
	tbl_df-class
	tibble
	tibble_options
	tribble
	view
	Index

