
Package ‘tidybayes’
January 5, 2022

Title Tidy Data and 'Geoms' for Bayesian Models

Version 3.0.2

Date 2022-01-03

Maintainer Matthew Kay <mjskay@northwestern.edu>

Description
Compose data for and extract, manipulate, and visualize posterior draws from Bayesian models
('JAGS', 'Stan', 'rstanarm', 'brms', 'MCMCglmm', 'coda', ...) in a tidy data format. Func-
tions are provided
to help extract tidy data frames of draws from Bayesian models and that generate point
summaries and intervals in a tidy format. In addition, 'ggplot2' 'geoms' and 'stats' are provided for
common visualization primitives like points with multiple uncertainty intervals, eye plots (inter-
vals plus
densities), and fit curves with multiple, arbitrary uncertainty bands.

Depends R (>= 3.5.0)

Imports methods, ggdist (>= 3.0.0), dplyr (>= 0.8.0), tidyr (>=
1.0.0), ggplot2 (>= 3.3.5), coda, rlang (>= 0.3.0),
arrayhelpers, tidyselect, tibble, magrittr, posterior (>=
1.0.1), withr, vctrs

Suggests knitr, testthat, purrr (>= 0.2.3), forcats, vdiffr (>=
1.0.0), svglite, rstan (>= 2.17.0), rstantools (>= 2.1.0),
runjags, rjags, jagsUI, rstanarm (>= 2.19.2), emmeans, broom
(>= 0.4.3), dotwhisker, MCMCglmm, bayesplot, modelr, brms (>=
2.16.0), cowplot, covr, gdtools, rmarkdown, ggrepel, bindrcpp,
RColorBrewer, gganimate, gifski, png, pkgdown, distributional,
transformr

License GPL (>= 3)

Language en-US

BugReports https://github.com/mjskay/tidybayes/issues/new

URL https://mjskay.github.io/tidybayes/,

https://github.com/mjskay/tidybayes/

VignetteBuilder knitr

1

https://github.com/mjskay/tidybayes/issues/new
https://mjskay.github.io/tidybayes/
https://github.com/mjskay/tidybayes/

2 R topics documented:

RoxygenNote 7.1.2

Encoding UTF-8

Collate ``ggdist-curve_interval.R'' ``ggdist-cut_cdf_qi.R''
``ggdist-geom_slabinterval.R'' ``ggdist-geom_dotsinterval.R''
``ggdist-geom_interval.R'' ``ggdist-geom_lineribbon.R''
``ggdist-geom_pointinterval.R'' ``ggdist-lkjcorr_marginal.R''
``ggdist-parse_dist.R'' ``ggdist-scales.R''
``ggdist-stat_slabinterval.R'' ``ggdist-stat_dist_slabinterval.R''
``ggdist-stat_sample_slabinterval.R''
``ggdist-stat_dotsinterval.R'' ``ggdist-stat_pointinterval.R''
``ggdist-stat_interval.R'' ``ggdist-stat_lineribbon.R''
``ggdist-student_t.R'' ``ggdist-theme_ggdist.R''
``ggdist-tidy_format_translators.R'' ``tidybayes-package.R''
``add_draws.R'' ``combine_chains.R'' ``compare_levels.R''
``compose_data.R'' ``density_bins.R'' ``emmeans_comparison.R''
``epred_draws.R'' ``epred_rvars.R'' ``flip_aes.R'' ``gather_draws.R''
``gather_emmeans_draws.R'' ``gather_pairs.R'' ``gather_rvars.R''
``gather_variables.R'' ``get_variables.R'' ``global_variables.R''
``linpred_draws.R'' ``linpred_rvars.R'' ``nest_rvars.R'' ``onAttach.R''
``point_interval.R'' ``predict_curve.R'' ``predicted_draws.R''
``predicted_rvars.R'' ``recover_types.R'' ``residual_draws.R''
``sample_draws.R'' ``spread_draws.R'' ``spread_rvars.R''
``summarise_draws.R'' ``testthat.R'' ``tidy_draws.R''
``tidybayes-models.R'' ``ungather_draws.R'' ``unspread_draws.R''
``util.R'' ``x_at_y.R'' ``deprecated.R''

NeedsCompilation no

Author Matthew Kay [aut, cre],
Timothy Mastny [ctb]

Repository CRAN

Date/Publication 2022-01-05 06:10:02 UTC

R topics documented:
tidybayes-package . 3
add_draws . 4
add_epred_draws . 5
add_epred_rvars . 13
combine_chains . 19
compare_levels . 21
compose_data . 23
data_list . 25
density_bins . 27
emmeans_comparison . 29
gather_draws . 30
gather_emmeans_draws . 35
gather_pairs . 37

tidybayes-package 3

gather_rvars . 40
gather_variables . 43
get_variables . 45
nest_rvars . 46
n_prefix . 47
predict_curve . 48
recover_types . 50
sample_draws . 52
summarise_draws.grouped_df . 54
tidybayes-deprecated . 55
tidybayes-models . 59
tidy_draws . 60
ungather_draws . 62
x_at_y . 64

Index 66

tidybayes-package Tidy Data and ’Geoms’ for Bayesian Models

Description

tidybayes is an R package that aims to make it easy to integrate popular Bayesian modeling meth-
ods into a tidy data + ggplot workflow.

Details

Tidy data frames (one observation per row) are particularly convenient for use in a variety of R
data manipulation and visualization packages (Wickham 2014). However, when using Bayesian
modeling functions like JAGS or Stan in R, we often have to translate this data into a form the
model understands, and then after running the model, translate the resulting sample (or predictions)
into a more tidy format for use with other R functions. tidybayes aims to simplify these two
common (often tedious) operations. It also provides a variety of ggplot geometries aimed at making
the visualization of model output easier.

For a comprehensive overview of the package, see vignette("tidybayes"). For overviews aimed
at the rstanarm and brms packages, see vignette("tidy-rstanarm") and vignette("tidy-brms").
For an overview of the majority of geoms in the ggdist/tidybayes family, see vignette("slabinterval",package
= "ggdist").

For a list of supported models, see tidybayes-models.

References

Wickham, Hadley. (2014). Tidy data. Journal of Statistical Software, 59(10), 1-23. doi: 10.18637/
jss.v059.i10.

https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10

4 add_draws

add_draws Add draws to a data frame in tidy format

Description

Add draws from a matrix of draws (usually draws from a predictive distribution) to a data frame
in tidy format. This is a generic version of add_predicted_draws() that can be used with model
types that have their own prediction functions that are not yet supported by tidybayes.

Usage

add_draws(data, draws, value = ".value")

Arguments

data Data frame to add draws to, with M rows.

draws N by M matrix of draws, with M columns corresponding to the M rows in data,
and N draws in each column.

value The name of the output column; default ".value".

Details

Given a data frame with M rows and an N by M matrix of N draws, adds a .row, .draw, and .value
column (or another name if value is set) to data, and expands data into a long-format dataframe
of draws.

add_epred_draws(df,m) is roughly equivalent to add_draws(df,posterior_epred(m,newdata
= df)), except that add_epred_draws standardizes argument names and values across packages
and has additional features for some model types (like handling ordinal responses and distributional
parameters in brms).

add_predicted_draws(df,m) is roughly equivalent to add_draws(df,posterior_predict(m,newdata
= df)), except that add_predicted_draws standardizes argument names and values across pack-
ages.

Value

A data frame (actually, a tibble) with a .row column (a factor grouping rows from the input data),
a .draw column (a unique index corresponding to each draw from the distribution), and a column
with its name specified by the value argument (default is .value) containing the values of draws
from draws. The data frame is grouped by all rows in data plus the .row column.

Author(s)

Matthew Kay

See Also

add_predicted_draws(), add_draws()

add_epred_draws 5

Examples

library(ggplot2)
library(dplyr)
library(brms)
library(modelr)

theme_set(theme_light())

m_mpg = brm(mpg ~ hp * cyl, data = mtcars,
1 chain / few iterations just so example runs quickly
do not use in practice
chains = 1, iter = 500)

plot posterior predictive intervals
mtcars %>%

group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
the line below is roughly equivalent to add_epred_draws(m_mpg), except
that it does not standardize arguments across model types.
add_draws(posterior_epred(m_mpg, newdata = .)) %>%
ggplot(aes(x = hp, y = mpg, color = ordered(cyl))) +
stat_lineribbon(aes(y = .value), alpha = 0.25) +
geom_point(data = mtcars) +
scale_fill_brewer(palette = "Greys")

add_epred_draws Add draws from the posterior fit, predictions, or residuals of a model
to a data frame

Description

Given a data frame and a model, adds draws from the linear/link-level predictor, the expectation of
the posterior predictive, the posterior predictive, or the residuals of a model to the data frame in a
long format.

Usage

add_epred_draws(
newdata,
object,
...,
value = ".epred",
ndraws = NULL,

6 add_epred_draws

seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL

)

epred_draws(
object,
newdata,
...,
value = ".epred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL

)

Default S3 method:
epred_draws(
object,
newdata,
...,
value = ".epred",
seed = NULL,
category = NULL

)

S3 method for class 'stanreg'
epred_draws(
object,
newdata,
...,
value = ".epred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL

)

S3 method for class 'brmsfit'
epred_draws(
object,
newdata,
...,
value = ".epred",
ndraws = NULL,

add_epred_draws 7

seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL

)

add_linpred_draws(
newdata,
object,
...,
value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL,
n

)

linpred_draws(
object,
newdata,
...,
value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL,
n,
scale

)

Default S3 method:
linpred_draws(
object,
newdata,
...,
value = ".linpred",
seed = NULL,
category = NULL

)

S3 method for class 'stanreg'
linpred_draws(
object,
newdata,
...,

8 add_epred_draws

value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL

)

S3 method for class 'brmsfit'
linpred_draws(
object,
newdata,
...,
value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
dpar = NULL

)

add_predicted_draws(
newdata,
object,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
n

)

predicted_draws(
object,
newdata,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
n,
prediction

)

Default S3 method:
predicted_draws(

add_epred_draws 9

object,
newdata,
...,
value = ".prediction",
seed = NULL,
category = ".category"

)

S3 method for class 'stanreg'
predicted_draws(
object,
newdata,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category"

)

S3 method for class 'brmsfit'
predicted_draws(
object,
newdata,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category"

)

add_residual_draws(
newdata,
object,
...,
value = ".residual",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
n

)

residual_draws(
object,
newdata,
...,

10 add_epred_draws

value = ".residual",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category",
n,
residual

)

Default S3 method:
residual_draws(object, newdata, ...)

S3 method for class 'brmsfit'
residual_draws(
object,
newdata,
...,
value = ".residual",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
category = ".category"

)

Arguments

newdata Data frame to generate predictions from.
object A supported Bayesian model fit that can provide fits and predictions. Supported

models are listed in the second section of tidybayes-models: Models Supporting
Prediction. While other functions in this package (like spread_draws()) sup-
port a wider range of models, to work with add_epred_draws(), add_predicted_draws(),
etc. a model must provide an interface for generating predictions, thus more
generic Bayesian modeling interfaces like runjags and rstan are not directly
supported for these functions (only wrappers around those languages that pro-
vide predictions, like rstanarm and brm, are supported here).

... Additional arguments passed to the underlying prediction method for the type
of model given.

value The name of the output column:
• for [add_]epred_draws(), defaults to ".epred".
• for [add_]predicted_draws(), defaults to ".prediction".
• for [add_]linpred_draws(), defaults to ".linpred".
• for [add_]residual_draws(), defaults to ".residual"

ndraws The number of draws to return, or NULL to return all draws.
seed A seed to use when subsampling draws (i.e. when ndraws is not NULL).
re_formula formula containing group-level effects to be considered in the prediction. If

NULL (default), include all group-level effects; if NA, include no group-level ef-
fects. Some model types (such as brms::brmsfit and rstanarm::stanreg-objects)

add_epred_draws 11

allow marginalizing over grouping factors by specifying new levels of a factor in
newdata. In the case of brms::brm(), you must also pass allow_new_levels
= TRUE here to include new levels (see brms::posterior_predict()).

category For some ordinal, multinomial, and multivariate models (notably, brms::brm()
models but not rstanarm::stan_polr() models), multiple sets of rows will be
returned per input row for epred_draws() or predicted_draws(), depending
on the model type. For ordinal/multinomial models, these rows correspond to
different categories of the response variable. For multivariate models, these cor-
respond to different response variables. The category argument specifies the
name of the column to put the category names (or variable names) into in the re-
sulting data frame. The default name of this column (".category") reflects the
fact that this functionality was originally used only for ordinal models and has
been re-used for multivariate models. The fact that multiple rows per response
are returned only for some model types reflects the fact that tidybayes takes the
approach of tidying whatever output is given to us, and the output from dif-
ferent modeling functions differs on this point. See vignette("tidy-brms")
and vignette("tidy-rstanarm") for examples of dealing with output from
ordinal models using both approaches.

dpar For add_epred_draws() and add_linpred_draws(): Should distributional re-
gression parameters be included in the output? Valid only for models that sup-
port distributional regression parameters, such as submodels for variance pa-
rameters (as in brms::brm()). If TRUE, distributional regression parameters are
included in the output as additional columns named after each parameter (alter-
native names can be provided using a list or named vector, e.g. c(sigma.hat
= "sigma") would output the "sigma" parameter from a model as a column
named "sigma.hat"). If NULL or FALSE (the default), distributional regression
parameters are not included.

n (Deprecated). Use ndraws.
scale (Deprecated). Use the appropriate function (epred_draws() or linpred_draws())

depending on what type of distribution you want. For linpred_draws(), you
may want the transform argument. See rstanarm::posterior_linpred() or
brms::posterior_linpred().

prediction, residual

(Deprecated). Use value.

Details

add_epred_draws() adds draws from expectation of the posterior predictive distribution to the
data. It corresponds to rstanarm::posterior_epred() or brms::posterior_epred().

add_predicted_draws() adds draws from posterior predictive distribution to the data. It corre-
sponds to rstanarm::posterior_predict() or brms::posterior_predict().

add_linpred_draws() adds draws from (possibly transformed) posterior linear predictors (or
"link-level" predictors) to the data. It corresponds to rstanarm::posterior_linpred() or brms::posterior_linpred().

add_residual_draws() adds draws from residuals to the data. It corresponds to brms::residuals.brmsfit().

The corresponding functions without add_ as a prefix are alternate spellings with the opposite order
of the first two arguments: e.g. add_predicted_draws() and predicted_draws(). This facilitates
use in data processing pipelines that start either with a data frame or a model.

12 add_epred_draws

Given equal choice between the two, the spellings prefixed with add_ are preferred.

Value

A data frame (actually, a tibble) with a .row column (a factor grouping rows from the input
newdata), .chain column (the chain each draw came from, or NA if the model does not provide
chain information), .iteration column (the iteration the draw came from, or NA if the model does
not provide iteration information), and a .draw column (a unique index corresponding to each draw
from the distribution). In addition, epred_draws includes a column with its name specified by the
epred argument (default ".epred"); linpred_draws includes a column with its name specified
by the linpred argument (default ".linpred"), and predicted_draws contains a column with
its name specified by the .prediction argument (default ".prediction"). For convenience, the
resulting data frame comes grouped by the original input rows.

Author(s)

Matthew Kay

See Also

add_draws() for the variant of these functions for use with packages that do not have explicit
support for these functions yet. See spread_draws() for manipulating posteriors directly.

Examples

library(ggplot2)
library(dplyr)
library(brms)
library(modelr)

theme_set(theme_light())

m_mpg = brm(mpg ~ hp * cyl, data = mtcars,
1 chain / few iterations just so example runs quickly
do not use in practice
chains = 1, iter = 500)

draw 100 lines from the posterior means and overplot them
mtcars %>%

group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
NOTE: only use ndraws here when making spaghetti plots; for
plotting intervals it is always best to use all draws (omit ndraws)
add_epred_draws(m_mpg, ndraws = 100) %>%
ggplot(aes(x = hp, y = mpg, color = ordered(cyl))) +
geom_line(aes(y = .epred, group = paste(cyl, .draw)), alpha = 0.25) +
geom_point(data = mtcars)

plot posterior predictive intervals

add_epred_rvars 13

mtcars %>%
group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
add_predicted_draws(m_mpg) %>%
ggplot(aes(x = hp, y = mpg, color = ordered(cyl))) +
stat_lineribbon(aes(y = .prediction), .width = c(.99, .95, .8, .5), alpha = 0.25) +
geom_point(data = mtcars) +
scale_fill_brewer(palette = "Greys")

add_epred_rvars Add rvars for the linear predictor, posterior expectation, posterior
predictive, or residuals of a model to a data frame

Description

Given a data frame and a model, adds rvars of draws from the linear/link-level predictor, the
expectation of the posterior predictive, or the posterior predictive to the data frame.

Usage

add_epred_rvars(
newdata,
object,
...,
value = ".epred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

epred_rvars(
object,
newdata,
...,
value = ".epred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

Default S3 method:

14 add_epred_rvars

epred_rvars(
object,
newdata,
...,
value = ".epred",
seed = NULL,
dpar = NULL,
columns_to = NULL

)

S3 method for class 'stanreg'
epred_rvars(
object,
newdata,
...,
value = ".epred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

S3 method for class 'brmsfit'
epred_rvars(
object,
newdata,
...,
value = ".epred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

add_linpred_rvars(
newdata,
object,
...,
value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

add_epred_rvars 15

linpred_rvars(
object,
newdata,
...,
value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

Default S3 method:
linpred_rvars(
object,
newdata,
...,
value = ".linpred",
seed = NULL,
dpar = NULL,
columns_to = NULL

)

S3 method for class 'stanreg'
linpred_rvars(
object,
newdata,
...,
value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

S3 method for class 'brmsfit'
linpred_rvars(
object,
newdata,
...,
value = ".linpred",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
dpar = NULL,
columns_to = NULL

)

16 add_epred_rvars

add_predicted_rvars(
newdata,
object,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
columns_to = NULL

)

predicted_rvars(
object,
newdata,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
columns_to = NULL

)

Default S3 method:
predicted_rvars(
object,
newdata,
...,
value = ".prediction",
seed = NULL,
columns_to = NULL

)

S3 method for class 'stanreg'
predicted_rvars(
object,
newdata,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
columns_to = NULL

)

S3 method for class 'brmsfit'
predicted_rvars(
object,

add_epred_rvars 17

newdata,
...,
value = ".prediction",
ndraws = NULL,
seed = NULL,
re_formula = NULL,
columns_to = NULL

)

Arguments

newdata Data frame to generate predictions from.

object A supported Bayesian model fit that can provide fits and predictions. Supported
models are listed in the second section of tidybayes-models: Models Supporting
Prediction. While other functions in this package (like spread_rvars()) sup-
port a wider range of models, to work with add_epred_rvars(), add_predicted_rvars(),
etc. a model must provide an interface for generating predictions, thus more
generic Bayesian modeling interfaces like runjags and rstan are not directly
supported for these functions (only wrappers around those languages that pro-
vide predictions, like rstanarm and brm, are supported here).

... Additional arguments passed to the underlying prediction method for the type
of model given.

value The name of the output column:

• for [add_]epred_rvars(), defaults to ".epred".
• for [add_]predicted_rvars(), defaults to ".prediction".
• for [add_]linpred_rvars(), defaults to ".linpred".

ndraws The number of draws to return, or NULL to return all draws.

seed A seed to use when subsampling draws (i.e. when ndraws is not NULL).

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects. Some model types (such as brms::brmsfit and rstanarm::stanreg-objects)
allow marginalizing over grouping factors by specifying new levels of a factor in
newdata. In the case of brms::brm(), you must also pass allow_new_levels
= TRUE here to include new levels (see brms::posterior_predict()).

dpar For add_epred_rvars() and add_linpred_rvars(): Should distributional re-
gression parameters be included in the output? Valid only for models that sup-
port distributional regression parameters, such as submodels for variance pa-
rameters (as in brms::brm()). If TRUE, distributional regression parameters are
included in the output as additional columns named after each parameter (alter-
native names can be provided using a list or named vector, e.g. c(sigma.hat
= "sigma") would output the "sigma" parameter from a model as a column
named "sigma.hat"). If NULL or FALSE (the default), distributional regression
parameters are not included.

columns_to For some models, such as ordinal, multinomial, and multivariate models (no-
tably, brms::brm() models but not rstanarm::stan_polr() models), the col-
umn of predictions in the resulting data frame may include nested columns. For

18 add_epred_rvars

example, for ordinal/multinomial models, these columns correspond to different
categories of the response variable. It may be more convenient to turn these
nested columns into rows in the output; if this is desired, set columns_to to
a string representing the name of a column you would like the column names
to be placed in. In this case, a .row column will also be added to the result
indicating which rows of the output correspond to the same row in newdata.
See vignette("tidy-posterior") for examples of dealing with output ordi-
nal models.

Details

add_epred_rvars() adds rvars containing draws from the expectation of the posterior predictive
distribution to the data. It corresponds to rstanarm::posterior_epred() or brms::posterior_epred().

add_predicted_rvars() adds rvars containing draws from the posterior predictive distribution to
the data. It corresponds to rstanarm::posterior_predict() or brms::posterior_predict().

add_linpred_rvars() adds rvars containing draws from the (possibly transformed) posterior lin-
ear predictors (or "link-level" predictors) to the data. It corresponds to rstanarm::posterior_linpred()
or brms::posterior_linpred().

The corresponding functions without add_ as a prefix are alternate spellings with the opposite order
of the first two arguments: e.g. add_predicted_rvars() and predicted_rvars(). This facilitates
use in data processing pipelines that start either with a data frame or a model.

Given equal choice between the two, the spellings prefixed with add_ are preferred.

Value

A data frame (actually, a tibble) equal to the input newdata with additional columns added contain-
ing rvars representing the requested predictions or fits.

Author(s)

Matthew Kay

See Also

add_predicted_draws() for the analogous functions that use a long-data-frame-of-draws format
instead of a data-frame-of-rvars format. See spread_rvars() for manipulating posteriors directly.

Examples

library(ggplot2)
library(dplyr)
library(posterior)
library(brms)
library(modelr)

theme_set(theme_light())

combine_chains 19

m_mpg = brm(mpg ~ hp * cyl, data = mtcars, family = lognormal(),
1 chain / few iterations just so example runs quickly
do not use in practice
chains = 1, iter = 500)

Look at mean predictions for some cars (epred) and compare to
the exponeniated mu parameter of the lognormal distribution (linpred).
Notice how they are NOT the same. This is because exp(mu) for a
lognormal distribution is equal to its median, not its mean.
mtcars %>%

select(hp, cyl, mpg) %>%
add_epred_rvars(m_mpg) %>%
add_linpred_rvars(m_mpg, value = "mu") %>%
mutate(expmu = exp(mu), .epred - expmu)

plot intervals around conditional means (epred_rvars)
mtcars %>%

group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
add_epred_rvars(m_mpg) %>%
ggplot(aes(x = hp, color = ordered(cyl), fill = ordered(cyl))) +
stat_dist_lineribbon(aes(dist = .epred), .width = c(.95, .8, .5), alpha = 1/3) +
geom_point(aes(y = mpg), data = mtcars) +
scale_color_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Set2")

plot posterior predictive intervals (predicted_rvars)
mtcars %>%

group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
add_predicted_rvars(m_mpg) %>%
ggplot(aes(x = hp, color = ordered(cyl), fill = ordered(cyl))) +
stat_dist_lineribbon(aes(dist = .prediction), .width = c(.95, .8, .5), alpha = 1/3) +
geom_point(aes(y = mpg), data = mtcars) +
scale_color_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Set2")

combine_chains Combine the chain and iteration columns of tidy data frames of draws

Description

Combines the chain and iteration columns of a tidy data frame of draws from a Bayesian model
fit into a new column that can uniquely identify each draw. Generally speaking not needed for
pure tidybayes code, as tidybayes functions now automatically include a .draw column, but can
be useful when interacting with packages that do not provide such a column.

20 combine_chains

Usage

combine_chains(data, chain = .chain, iteration = .iteration, into = ".draw")

Arguments

data Tidy data frame of draws with columns representing the chain and iteration of
each draw.

chain Bare name of column in data indicating the chain of each row. The default
(.chain) is the same as used by other functions in tidybayes.

iteration Bare name of column in data indicating the iteration of each row. The default
(.iteration) is the same as used by other functions in tidybayes.

into Name (as a character vector) of the column to combine chains into. The default,
NULL, replaces the chain column with NAs and writes the combined chain iter-
ation numbers into iteration. If provided, chain and iteration will not be
modified, and the combined iteration number will be written into a new column
named into.

Value

A data frame of tidy draws with a combined iteration column

Author(s)

Matthew Kay

See Also

emmeans::emmeans()

Examples

library(magrittr)
library(coda)

data(line, package = "coda")

The `line` posterior has two chains with 200 iterations each:
line %>%

tidy_draws() %>%
summary()

combine_chains combines the chain and iteration column into the .draw column.
line %>%

tidy_draws() %>%
combine_chains() %>%
summary()

compare_levels 21

compare_levels Compare the value of draws of some variable from a Bayesian model
for different levels of a factor

Description

Given posterior draws from a Bayesian model in long format (e.g. as returned by spread_draws()),
compare the value of a variable in those draws across different paired combinations of levels of a
factor.

Usage

compare_levels(
data,
variable,
by,
fun = `-`,
comparison = "default",
draw_indices = c(".chain", ".iteration", ".draw"),
ignore_groups = ".row"

)

Arguments

data Long-format data.frame of draws such as returned by spread_draws() or
gather_draws(). If data is a grouped data frame, comparisons will be made
within groups (if one of the groups in the data frame is the by column, that spe-
cific group will be ignored, as it is not possible to make comparisons both within
some variable and across it simultaneously).

variable Bare (unquoted) name of a column in data representing the variable to compare
across levels. Can be a numeric variable (as in long-data-frame-of-draws format)
or a posterior::rvar.

by Bare (unquoted) name of a column in data that is a factor or ordered. The
value of variable will be compared across pairs of levels of this factor.

fun Binary function to use for comparison. For each pair of levels of by we are
comparing (as determined by comparison), compute the result of this function.

comparison One of (a) the comparison types ordered, control, pairwise, or default
(may also be given as strings, e.g. "ordered"), see Details; (b) a user-specified
function that takes a factor and returns a list of pairs of names of levels to
compare (as strings) and/or unevaluated expressions containing representing
the comparisons to make; or (c) a list of pairs of names of levels to com-
pare (as strings) and/or unevaluated expressions representing the comparisons
to make, e.g.: list(c("a","b"),c("b","c")) or exprs(a -b,b -c), both of
which would compare level "a" against "b" and level "b" against "c". Note
that the unevaluated expression syntax ignores the fun argument, can include

22 compare_levels

any other functions desired (e.g. variable transformations), and can even in-
clude more than two levels or other columns in data. Types (b) and (c) may use
named lists, in which case the provided names are used in the output variable
column instead converting the unevaluated expression to a string. You can also
use emmeans_comparison() to generate a comparison function based on con-
trast methods from the emmeans package.

draw_indices Character vector of column names in data that should be treated as indices when
making the comparison (i.e. values of variable within each level of by will be
compared at each unique combination of levels of draw_indices). Columns in
draw_indices not found in data are ignored. The default is c(".chain",".iteration",".draw"),
which are the same names used for chain/iteration/draw indices returned by
spread_draws() or gather_draws(); thus if you are using compare_levels
with spread_draws() or gather_draws() you generally should not need to
change this value.

ignore_groups character vector of names of groups to ignore by default in the input grouping.
This is primarily provided to make it easier to pipe output of add_epred_draws()
into this function, as that function provides a ".row" output column that is
grouped, but which is virtually never desired to group by when using compare_levels.

Details

This function simplifies conducting comparisons across levels of some variable in a tidy data frame
of draws. It applies fun to all values of variable for each pair of levels of by as selected by
comparison. By default, all pairwise comparisons are generated if by is an unordered factor and
ordered comparisons are made if by is ordered.

The included comparison types are:

• ordered: compare each level i with level i -1; e.g. fun(i,i -1)

• pairwise: compare each level of by with every other level.

• control: compare each level of by with the first level of by. If you wish to compare with a
different level, you can first apply relevel() to by to set the control (reference) level.

• default: use ordered if is.ordered(by) and pairwise otherwise.

Value

A data.frame with the same columns as data, except that the by column contains a symbolic
representation of the comparison of pairs of levels of by in data, and variable contains the result
of that comparison.

Author(s)

Matthew Kay

See Also

emmeans_comparison() to use emmeans-style contrast methods with compare_levels().

compose_data 23

Examples

library(dplyr)
library(ggplot2)

data(RankCorr, package = "ggdist")

Let's do all pairwise comparisons of b[i,1]:
RankCorr %>%

spread_draws(b[i,j]) %>%
filter(j == 1) %>%
compare_levels(b, by = i) %>%
median_qi()

Or let's plot all comparisons against the first level (control):
RankCorr %>%

spread_draws(b[i,j]) %>%
filter(j == 1) %>%
compare_levels(b, by = i, comparison = control) %>%
ggplot(aes(x = b, y = i)) +
stat_halfeye()

Or let's plot comparisons of all levels of j within
all levels of i
RankCorr %>%

spread_draws(b[i,j]) %>%
group_by(i) %>%
compare_levels(b, by = j) %>%
ggplot(aes(x = b, y = j)) +
stat_halfeye() +
facet_grid(cols = vars(i))

compose_data Compose data for input into a Bayesian model

Description

Compose data into a list suitable to be passed into a Bayesian model (JAGS, BUGS, Stan, etc).

Usage

compose_data(..., .n_name = n_prefix("n"))

Arguments

... Data to be composed into a list suitable for being passed into Stan, JAGS,
etc. Named arguments will have their name used as the name argument to
as_data_list when translated; unnamed arguments that are not lists or data

24 compose_data

frames will have their bare value (passed through make.names) used as the name
argument to as_data_list. Each argument is evaluated using eval_tidy in an
environment that includes all list items composed so far.

.n_name A function that is used to form dimension index variables (a variable whose
value is number of levels in a factor or the length of a data frame in ...). For
example, if a data frame with 20 rows and a factor "foo" (having 3 levels) is
passed to compose_data, the list returned by compose_data will include an el-
ement named .n_name("foo"), which by default would be "n_foo", containing
the value 3, and a column named "n" containing the value 20. See n_prefix().

Details

This function recursively translates each argument into list elements using as_data_list(), merg-
ing all resulting lists together. By default this means that:

• numerics are included as-is.

• logicals are translated into numeric using as.numeric().

• factors are translated into numeric using as.numeric(), and an additional element named
.n_name(argument_name) is added with the number of levels in the factor. The default
.n_name function prefixes "n_" before the factor name; e.g. a factor named foo will have
an element named n_foo added containing the number of levels in foo.

• character vectors are converted into factors then translated into numeric in the same manner
as factors are.

• lists are translated by translating all elements of the list (recursively) and adding them to the
result.

• data.frames are translated by translating every column of the data.frame and adding them to
the result. A variable named "n" (or .n_name(argument_name) if the data.frame is passed as
a named argument argument_name) is also added containing the number of rows in the data
frame.

• NULL values are dropped. Setting a named argument to NULL can be used to drop that item
from the resulting list (if an unwanted element was added to the list by a previous argument,
such as a column from a data frame that is not needed in the model).

• all other types are dropped (and a warning given)

As in functions like mutate(), each expression is evaluated in an environment containing the data
list built up so far.

For example, this means that if the first argument to compose_data is a data frame, subsequent
arguments can include direct references to columns from that data frame. This allows you, for
example, to easily use x_at_y() to generate indices for nested models.

If you wish to add support for additional types not described above, provide an implementation of
as_data_list() for the type. See the implementations of as_data_list.numeric, as_data_list.logical,
etc for examples.

Value

A list where each element is a translated variable as described above.

data_list 25

Author(s)

Matthew Kay

See Also

x_at_y(), spread_draws(), gather_draws().

Examples

library(magrittr)

df = data.frame(
plot = factor(paste0("p", rep(1:8, times = 2))),
site = factor(paste0("s", rep(1:4, each = 2, times = 2)))

)

without changing `.n_name`, compose_data() will prefix indices
with "n" by default
df %>%

compose_data()

you can use n_prefix() to define a different prefix (e.g. "N"):
df %>%

compose_data(.n_name = n_prefix("N"))

If you have nesting, you may want a nested index, which can be generated using x_at_y()
Here, site[p] will give the site for plot p
df %>%

compose_data(site = x_at_y(site, plot))

data_list Data lists for input into Bayesian models

Description

Functions used by compose_data() to create lists of data suitable for input into a Bayesian model-
ing function. These functions typically should not be called directly (instead use compose_data()),
but are exposed for the rare cases in which you may need to provide your own conversion routines
for a data type not already supported (see Details).

Usage

data_list(...)

as_data_list(object, name = "", ...)

Default S3 method:

26 data_list

as_data_list(object, name = "", ...)

S3 method for class 'numeric'
as_data_list(object, name = "", scalar_as_array = FALSE, ...)

S3 method for class 'logical'
as_data_list(object, name = "", ...)

S3 method for class 'factor'
as_data_list(object, name = "", .n_name = n_prefix("n"), ...)

S3 method for class 'character'
as_data_list(object, name = "", ...)

S3 method for class 'list'
as_data_list(object, name = "", ...)

S3 method for class 'data.frame'
as_data_list(object, name = "", .n_name = n_prefix("n"), ...)

S3 method for class 'data_list'
as_data_list(object, name = "", ...)

Arguments

... Additional arguments passed to other implementations of as_data_list, or for
data_list, passed to list().

object The object to convert (see Details).

name The name of the element in the returned list corresponding to this object.
scalar_as_array

If TRUE, returns single scalars as an 1-dimensional array with one element. This
is used by as_data_list.data.frame to ensure that columns from a data frame
with only one row are still returned as arrays instead of scalars.

.n_name A function that is used to form variables storing the number of rows in data
frames or the number of levels in factors in ...). For example, if a factor with
name = "foo" (having three levels) is passed in, the list returned will include an
element named .n_name("foo"), which by default would be "n_foo", contain-
ing the value 3.

Details

data_list creates a list with class c("data_list","list") instead of c("list"), but largely
otherwise acts like the list() function.

as_data_list recursively translates its first argument into list elements, concatenating all resulting
lists together. By default this means that:

• numerics are included as-is.

• logicals are translated into numeric using as.numeric().

density_bins 27

• factors are translated into numeric using as.numeric(), and an additional element named
.n_name(name) is added with the number of levels in the factor.

• character vectors are converted into factors then translated into numeric in the same manner
as factors are.

• lists are translated by translating all elements of the list (recursively) and adding them to the
result.

• data.frames are translated by translating every column of the data.frame and adding them to the
result. A variable named "n" (or .n_name(name) if name is not "") is also added containing
the number of rows in the data frame.

• all other types are dropped (and a warning given)

If you wish to add support for additional types not described above, provide an implementation of
as_data_list() for the type. See the implementations of as_data_list.numeric, as_data_list.logical,
etc for examples.

Value

An object of class c("data_list","list"), where each element is a translated variable as de-
scribed above.

Author(s)

Matthew Kay

See Also

compose_data().

Examples

Typically these functions should not be used directly.
See the compose_data function for examples of how to translate
data in lists for input to Bayesian modeling functions.

density_bins Density bins and histogram bins as data frames

Description

Generates a data frame of bins representing the kernel density (or histogram) of a vector, suitable
for use in generating predictive distributions for visualization. These functions were originally
designed for use with the now-deprecated predict_curve(), and may be deprecated in the future.

28 density_bins

Usage

density_bins(x, n = 101, ...)

histogram_bins(x, n = 30, breaks = n, ...)

Arguments

x A numeric vector

n Number of bins

... Additional arguments passed to density() or hist().

breaks Used to set bins for histogram_bins. Can be number of bins (by default it is
set to the value of n) or a method for setting bins. See the breaks argument of
hist().

Details

These functions are simple wrappers to density() and hist() that compute density estimates
and return their results in a consistent format: a data frame of bins suitable for use with the now-
deprecated predict_curve().

density_bins computes a kernel density estimate using density().

histogram_bins computes a density histogram using hist().

Value

A data frame representing bins and their densities with the following columns:

mid Bin midpoint

lower Lower endpoint of each bin

upper Upper endpoint of each bin

density Density estimate of the bin

Author(s)

Matthew Kay

See Also

See add_predicted_draws() and stat_lineribbon() for a better approach. These functions
may be deprecated in the future.

Examples

library(ggplot2)
library(dplyr)
library(brms)

emmeans_comparison 29

library(modelr)

theme_set(theme_light())

m_mpg = brm(mpg ~ hp * cyl, data = mtcars)

step = 1
mtcars %>%

group_by(cyl) %>%
data_grid(hp = seq_range(hp, by = step)) %>%
add_predicted_draws(m_mpg) %>%
summarise(density_bins(.prediction), .groups = "drop") %>%
ggplot() +
geom_rect(aes(
xmin = hp - step/2, ymin = lower, ymax = upper, xmax = hp + step/2,
fill = ordered(cyl), alpha = density

)) +
geom_point(aes(x = hp, y = mpg, fill = ordered(cyl)), shape = 21, data = mtcars) +
scale_alpha_continuous(range = c(0, 1)) +
scale_fill_brewer(palette = "Set2")

emmeans_comparison Use emmeans contrast methods with compare_levels

Description

Convert emmeans contrast methods into comparison functions suitable for use with compare_levels().

Usage

emmeans_comparison(method, ...)

Arguments

method An emmeans-style contrast method. One of: (1) a string specifying the name
of an emmeans contrast method, like "pairwise", "trt.vs.ctrl", "eff"; or
(2) an emmeans-style contrast function itself, like emmeans::pairwise.emmc,
emmeans::trt.vs.ctrl.emmc, etc, or a custom function that takes a vector of factor
levels and returns a contrast matrix.

... Arguments passed on to the contrast method.

Details

Given an emmeans contrast method name as a string (e.g., "pairwise", "trt.vs.ctrl", etc) or an
emmeans-style contrast function (e.g., emmeans::pairwise.emmc, emmeans::trt.vs.ctrl.emmc, etc),
emmeans_comparison() returns a new function that can be used in the comparison argument to
compare_levels() to compute those contrasts.

30 gather_draws

Value

A function that takes a single argument, var, containing a variable to generate contrasts for (e.g.,
a factor or a character vector) and returns a function that generates a list of named unevaluated
expressions representing different contrasts of that variable. This function is suitable to be used as
the comparison argument in compare_levels().

Author(s)

Matthew Kay

See Also

compare_levels(), emmeans::contrast-methods. See gather_emmeans_draws() for a different
approach to using emmeans with tidybayes.

Examples

library(dplyr)
library(ggplot2)

data(RankCorr, package = "ggdist")

emmeans contrast methods return matrices. E.g. the "eff" comparison
compares each level to the average of all levels:
emmeans:::eff.emmc(c("a","b","c","d"))

tidybayes::compare_levels() can't use a contrast matrix like this
directly; it takes arbitrary expressions of factor levels. But
we can use `emmeans_comparison` to generate the equivalent expressions:
emmeans_comparison("eff")(c("a","b","c","d"))

We can use the "eff" comparison type with `compare_levels()` as follows:
RankCorr %>%

spread_draws(b[i,j]) %>%
filter(j == 1) %>%
compare_levels(b, by = i, comparison = emmeans_comparison("eff")) %>%
median_qi()

gather_draws Extract draws of variables in a Bayesian model fit into a tidy data
format

Description

Extract draws from a Bayesian model for one or more variables (possibly with named dimensions)
into one of two types of long-format data frames.

gather_draws 31

Usage

gather_draws(
model,
...,
regex = FALSE,
sep = "[,]",
ndraws = NULL,
seed = NULL,
n

)

spread_draws(
model,
...,
regex = FALSE,
sep = "[,]",
ndraws = NULL,
seed = NULL,
n

)

Arguments

model A supported Bayesian model fit. Tidybayes supports a variety of model objects;
for a full list of supported models, see tidybayes-models.

... Expressions in the form of variable_name[dimension_1,dimension_2,...]
| wide_dimension. See Details.

regex If TRUE, variable names are treated as regular expressions and all column match-
ing the regular expression and number of dimensions are included in the output.
Default FALSE.

sep Separator used to separate dimensions in variable names, as a regular expression.

ndraws The number of draws to return, or NULL to return all draws.

seed A seed to use when subsampling draws (i.e. when ndraws is not NULL).

n (Deprecated). Use ndraws.

Details

Imagine a JAGS or Stan fit named model. The model may contain a variable named b[i,v] (in the
JAGS or Stan language) with dimension i in 1:100 and dimension v in 1:3. However, the default
format for draws returned from JAGS or Stan in R will not reflect this indexing structure, instead
they will have multiple columns with names like "b[1,1]", "b[2,1]", etc.

spread_draws and gather_draws provide a straightforward syntax to translate these columns back
into properly-indexed variables in two different tidy data frame formats, optionally recovering di-
mension types (e.g. factor levels) as it does so.

spread_draws and gather_draws return data frames already grouped by all dimensions used on
the variables you specify.

32 gather_draws

The difference between spread_draws is that names of variables in the model will be spread across
the data frame as column names, whereas gather_draws will gather variables into a single column
named ".variable" and place values of variables into a column named ".value". To use nam-
ing schemes from other packages (such as broom), consider passing results through functions like
to_broom_names() or to_ggmcmc_names().

For example, spread_draws(model,a[i],b[i,v]) might return a grouped data frame (grouped
by i and v), with:

• column ".chain": the chain number. NA if not applicable to the model type; this is typically
only applicable to MCMC algorithms.

• column ".iteration": the iteration number. Guaranteed to be unique within-chain only. NA
if not applicable to the model type; this is typically only applicable to MCMC algorithms.

• column ".draw": a unique number for each draw from the posterior. Order is not guaranteed
to be meaningful.

• column "i": value in 1:5

• column "v": value in 1:10

• column "a": value of "a[i]" for draw ".draw"

• column "b": value of "b[i,v]" for draw ".draw"

gather_draws(model,a[i],b[i,v]) on the same model would return a grouped data frame (grouped
by i and v), with:

• column ".chain": the chain number

• column ".iteration": the iteration number

• column ".draw": the draw number

• column "i": value in 1:5

• column "v": value in 1:10, or NA if ".variable" is "a".

• column ".variable": value in c("a","b").

• column ".value": value of "a[i]" (when ".variable" is "a") or "b[i,v]" (when ".variable"
is "b") for draw ".draw"

spread_draws and gather_draws can use type information applied to the model object by recover_types()
to convert columns back into their original types. This is particularly helpful if some of the dimen-
sions in your model were originally factors. For example, if the v dimension in the original data
frame data was a factor with levels c("a","b","c"), then we could use recover_types before
spread_draws:

model %>%
recover_types(data)
spread_draws(model, b[i,v])

Which would return the same data frame as above, except the "v" column would be a value in
c("a","b","c") instead of 1:3.

For variables that do not share the same subscripts (or share some but not all subscripts), we can
supply their specifications separately. For example, if we have a variable d[i] with the same i
subscript as b[i,v], and a variable x with no subscripts, we could do this:

gather_draws 33

spread_draws(model, x, d[i], b[i,v])

Which is roughly equivalent to this:

spread_draws(model, x) %>%
inner_join(spread_draws(model, d[i])) %>%
inner_join(spread_draws(model, b[i,v])) %>%
group_by(i,v)

Similarly, this:

gather_draws(model, x, d[i], b[i,v])

Is roughly equivalent to this:

bind_rows(
gather_draws(model, x),
gather_draws(model, d[i]),
gather_draws(model, b[i,v])

)

The c and cbind functions can be used to combine multiple variable names that have the same
dimensions. For example, if we have several variables with the same subscripts i and v, we could
do either of these:

spread_draws(model, c(w, x, y, z)[i,v])

spread_draws(model, cbind(w, x, y, z)[i,v]) # equivalent

Each of which is roughly equivalent to this:

spread_draws(model, w[i,v], x[i,v], y[i,v], z[i,v])

Besides being more compact, the c()-style syntax is currently also faster (though that may change).

Dimensions can be omitted from the resulting data frame by leaving their names blank; e.g. spread_draws(model,b[,v])
will omit the first dimension of b from the output. This is useful if a dimension is known to contain
all the same value in a given model.

The shorthand .. can be used to specify one column that should be put into a wide format and
whose names will be the base variable name, plus a dot ("."), plus the value of the dimension at ...
For example:

spread_draws(model,b[i,..]) would return a grouped data frame (grouped by i), with:

• column ".chain": the chain number

• column ".iteration": the iteration number

• column ".draw": the draw number

• column "i": value in 1:20

34 gather_draws

• column "b.1": value of "b[i,1]" for draw ".draw"

• column "b.2": value of "b[i,2]" for draw ".draw"

• column "b.3": value of "b[i,3]" for draw ".draw"

An optional clause in the form | wide_dimension can also be used to put the data frame into a wide
format based on wide_dimension. For example, this:

spread_draws(model, b[i,v] | v)

is roughly equivalent to this:

spread_draws(model, b[i,v]) %>% spread(v,b)

The main difference between using the | syntax instead of the .. syntax is that the | syntax respects
prototypes applied to dimensions with recover_types(), and thus can be used to get columns with
nicer names. For example:

model %>% recover_types(data) %>% spread_draws(b[i,v] | v)

would return a grouped data frame (grouped by i), with:

• column ".chain": the chain number

• column ".iteration": the iteration number

• column ".draw": the draw number

• column "i": value in 1:20

• column "a": value of "b[i,1]" for draw ".draw"

• column "b": value of "b[i,2]" for draw ".draw"

• column "c": value of "b[i,3]" for draw ".draw"

The shorthand . can be used to specify columns that should be nested into vectors, matrices, or
n-dimensional arrays (depending on how many dimensions are specified with .).

For example, spread_draws(model,a[.],b[.,.]) might return a data frame, with:

• column ".chain": the chain number.

• column ".iteration": the iteration number.

• column ".draw": a unique number for each draw from the posterior.

• column "a": a list column of vectors.

• column "b": a list column of matrices.

Ragged arrays are turned into non-ragged arrays with missing entries given the value NA.

Finally, variable names can be regular expressions by setting regex = TRUE; e.g.:

spread_draws(model, `b_.*`[i], regex = TRUE)

Would return a tidy data frame with variables starting with b_ and having one dimension.

gather_emmeans_draws 35

Value

A data frame.

Author(s)

Matthew Kay

See Also

spread_rvars(), recover_types(), compose_data().

Examples

library(dplyr)
library(ggplot2)

data(RankCorr, package = "ggdist")

RankCorr %>%
spread_draws(b[i, j])

RankCorr %>%
spread_draws(b[i, j], tau[i], u_tau[i])

RankCorr %>%
gather_draws(b[i, j], tau[i], u_tau[i])

RankCorr %>%
gather_draws(tau[i], typical_r) %>%
median_qi()

gather_emmeans_draws Extract a tidy data frame of draws of posterior distributions of "es-
timated marginal means" (emmeans/lsmeans) from a Bayesian model
fit.

Description

Extract draws from the result of a call to emmeans::emmeans() (formerly lsmeans) or emmeans::ref_grid()
applied to a Bayesian model.

36 gather_emmeans_draws

Usage

gather_emmeans_draws(object, value = ".value", ...)

Default S3 method:
gather_emmeans_draws(object, value = ".value", ...)

S3 method for class 'emm_list'
gather_emmeans_draws(object, value = ".value", grid = ".grid", ...)

Arguments

object An emmGrid object such as returned by emmeans::ref_grid() or emmeans::emmeans().

value The name of the output column to use to contain the values of draws. Defaults
to ".value".

... Additional arguments passed to the underlying method for the type of object
given.

grid If object is an emmeans::emm_list(), the name of the output column to use to
contain the name of the reference grid that a given row corresponds to. Defaults
to ".grid".

Details

emmeans::emmeans() provides a convenient syntax for generating draws from "estimated marginal
means" from a model, and can be applied to various Bayesian models, like rstanarm::stanreg-objects
and MCMCglmm::MCMCglmm(). Given a emmeans::ref_grid() object as returned by functions like
emmeans::ref_grid() or emmeans::emmeans() applied to a Bayesian model, gather_emmeans_draws
returns a tidy format data frame of draws from the marginal posterior distributions generated by
emmeans::emmeans().

Value

A tidy data frame of draws. The columns of the reference grid are returned as-is, with an additional
column called .value (by default) containing marginal draws. The resulting data frame is grouped
by the columns from the reference grid to make use of summary functions like point_interval()
straightforward.

If object is an emmeans::emm_list(), which contains estimates from different reference grids, an
additional column with the default name of ".grid" is added to indicate the reference grid for each
row in the output. The name of this column is controlled by the grid argument.

Author(s)

Matthew Kay

See Also

emmeans::emmeans()

gather_pairs 37

Examples

library(dplyr)
library(magrittr)
library(brms)
library(emmeans)

Here's an example dataset with a categorical predictor (`condition`) with several levels:
set.seed(5)
n = 10
n_condition = 5
ABC = tibble(

condition = rep(c("A","B","C","D","E"), n),
response = rnorm(n * 5, c(0,1,2,1,-1), 0.5)

)

m = brm(response ~ condition, data = ABC,
1 chain / few iterations just so example runs quickly
do not use in practice
chains = 1, iter = 500)

Once we've fit the model, we can use emmeans() (and functions
from that package) to get whatever marginal distributions we want.
For example, we can get marginal means by condition:
m %>%

emmeans(~ condition) %>%
gather_emmeans_draws() %>%
median_qi()

or we could get pairwise differences:
m %>%

emmeans(~ condition) %>%
contrast(method = "pairwise") %>%
gather_emmeans_draws() %>%
median_qi()

see the documentation of emmeans() for more examples of types of
contrasts supported by that packge.

gather_pairs Gather pairwise combinations of values from key/value columns in a
long-format data frame

38 gather_pairs

Description

Fast method for producing combinations of values in a value column for different levels of a key
column, assuming long-format (tidy) data with an equal number of values per key. Among other
things, this is useful for producing scatter-plot matrices.

Usage

gather_pairs(
data,
key,
value,
row = ".row",
col = ".col",
x = ".x",
y = ".y",
triangle = c("lower only", "upper only", "lower", "upper", "both only", "both")

)

Arguments

data Tidy data frame.

key Bare name of column in data containing the key .

value Bare name of column in data containing the value.

row Character vector giving the name of the output column identifying rows in the
matrix of pairs (takes values of key).

col Character vector giving the name of the output column identifying columns in
the matrix of pairs (takes values of key).

x Character vector giving the name of the output column with x values in the
matrix of pairs (takes values of value).

y Character vector giving the name of the output column with y values in the
matrix of pairs (takes values of value).

triangle Should the upper or lower triangle of the matrix of all possible combinations
be returned? The default, "lower only", returns the lower triangle without
the diagonal; "lower" returns the lower triangle with the diagonal ("upper"
and "upper only" operate analogously), "both" returns the full set of possible
combinations, and "both only" returns all combinations except the diagonal.
This method is particularly useful for constructing scatterplot matrices. See
examples below.

Value

A tidy data frame of combinations of values in key and value, with columns row and col (default
names ".row" and ".col") containing values from key, and columns y and x (default names ".y"
and ".x") containing values from value.

gather_pairs 39

Author(s)

Matthew Kay

See Also

emmeans::emmeans()

Examples

library(ggplot2)
library(dplyr)

t_a = rnorm(100)
t_b = rnorm(100, t_a * 2)
t_c = rnorm(100)

df = rbind(
data.frame(g = "a", t = t_a),
data.frame(g = "b", t = t_b),
data.frame(g = "c", t = t_c)

)

df %>%
gather_pairs(g, t, row = "g_row", col = "g_col", x = "t_x", y = "t_y") %>%
ggplot(aes(t_x, t_y)) +
geom_point() +
facet_grid(vars(g_row), vars(g_col))

df %>%
gather_pairs(g, t, triangle = "upper") %>%
ggplot(aes(.x, .y)) +
geom_point() +
facet_grid(vars(.row), vars(.col))

df %>%
gather_pairs(g, t, triangle = "both") %>%
ggplot(aes(.x, .y)) +
geom_point() +
facet_grid(vars(.row), vars(.col))

data(line, package = "coda")

line %>%
tidy_draws() %>%
gather_variables() %>%
gather_pairs(.variable, .value) %>%
ggplot(aes(.x, .y)) +
geom_point(alpha = .25) +
facet_grid(vars(.row), vars(.col))

40 gather_rvars

line %>%
tidy_draws() %>%
gather_variables() %>%
gather_pairs(.variable, .value) %>%
ggplot(aes(.x, .y, color = factor(.chain))) +
geom_density_2d(alpha = .5) +
facet_grid(vars(.row), vars(.col))

gather_rvars Extract draws from a Bayesian model into tidy data frames of random
variables

Description

Extract draws from a Bayesian model for one or more variables (possibly with named dimensions)
into one of two types of long-format data frames of posterior::rvar objects.

Usage

gather_rvars(model, ..., ndraws = NULL, seed = NULL)

spread_rvars(model, ..., ndraws = NULL, seed = NULL)

Arguments

model A supported Bayesian model fit. Tidybayes supports a variety of model objects;
for a full list of supported models, see tidybayes-models.

... Expressions in the form of variable_name[dimension_1,dimension_2,...].
See Details.

ndraws The number of draws to return, or NULL to return all draws.

seed A seed to use when subsampling draws (i.e. when ndraws is not NULL).

Details

Imagine a JAGS or Stan fit named model. The model may contain a variable named b[i,v] (in the
JAGS or Stan language) with dimension i in 1:100 and dimension v in 1:3. However, the default
format for draws returned from JAGS or Stan in R will not reflect this indexing structure, instead
they will have multiple columns with names like "b[1,1]", "b[2,1]", etc.

spread_rvars and gather_rvars provide a straightforward syntax to translate these columns back
into properly-indexed rvars in two different tidy data frame formats, optionally recovering dimen-
sion types (e.g. factor levels) as it does so.

spread_rvars will spread names of variables in the model across the data frame as column names,
whereas gather_rvars will gather variable names into a single column named ".variable" and
place values of variables into a column named ".value". To use naming schemes from other

gather_rvars 41

packages (such as broom), consider passing results through functions like to_broom_names() or
to_ggmcmc_names().

For example, spread_rvars(model,a[i],b[i,v]) might return a data frame with:

• column "i": value in 1:5

• column "v": value in 1:10

• column "a": rvar containing draws from "a[i]"

• column "b": rvar containing draws from "b[i,v]"

gather_rvars(model,a[i],b[i,v]) on the same model would return a data frame with:

• column "i": value in 1:5

• column "v": value in 1:10, or NA on rows where ".variable" is "a".

• column ".variable": value in c("a","b").

• column ".value": rvar containing draws from "a[i]" (when ".variable" is "a") or "b[i,v]"
(when ".variable" is "b")

spread_rvars and gather_rvars can use type information applied to the model object by recover_types()
to convert columns back into their original types. This is particularly helpful if some of the dimen-
sions in your model were originally factors. For example, if the v dimension in the original data
frame data was a factor with levels c("a","b","c"), then we could use recover_types before
spread_rvars:

model %>%
recover_types(data)
spread_rvars(model, b[i,v])

Which would return the same data frame as above, except the "v" column would be a value in
c("a","b","c") instead of 1:3.

For variables that do not share the same subscripts (or share some but not all subscripts), we can
supply their specifications separately. For example, if we have a variable d[i] with the same i
subscript as b[i,v], and a variable x with no subscripts, we could do this:

spread_rvars(model, x, d[i], b[i,v])

Which is roughly equivalent to this:

spread_rvars(model, x) %>%
inner_join(spread_rvars(model, d[i])) %>%
inner_join(spread_rvars(model, b[i,v]))

Similarly, this:

gather_rvars(model, x, d[i], b[i,v])

Is roughly equivalent to this:

42 gather_rvars

bind_rows(
gather_rvars(model, x),
gather_rvars(model, d[i]),
gather_rvars(model, b[i,v])

)

The c and cbind functions can be used to combine multiple variable names that have the same
dimensions. For example, if we have several variables with the same subscripts i and v, we could
do either of these:

spread_rvars(model, c(w, x, y, z)[i,v])

spread_rvars(model, cbind(w, x, y, z)[i,v]) # equivalent

Each of which is roughly equivalent to this:

spread_rvars(model, w[i,v], x[i,v], y[i,v], z[i,v])

Besides being more compact, the c()-style syntax is currently also slightly faster (though that may
change).

Dimensions can be left nested in the resulting rvar objects by leaving their names blank; e.g.
spread_rvars(model,b[i,]) will place the first index (i) into rows of the data frame but leave
the second index nested in the b column (see Examples below).

Value

A data frame.

Author(s)

Matthew Kay

See Also

spread_draws(), recover_types(), compose_data(). See also posterior::rvar() and posterior::as_draws_rvars(),
the functions that power spread_rvars and gather_rvars.

Examples

library(dplyr)

data(RankCorr, package = "ggdist")

RankCorr %>%
spread_rvars(b[i, j])

leaving an index out nests the index in the column containing the rvar
RankCorr %>%

gather_variables 43

spread_rvars(b[i,])

RankCorr %>%
spread_rvars(b[i, j], tau[i], u_tau[i])

gather_rvars places variables and values in a longer format data frame
RankCorr %>%

gather_rvars(b[i, j], tau[i], typical_r)

gather_variables Gather variables from a tidy data frame of draws from variables into
a single column

Description

Given a data frame such as might be returned by tidy_draws() or spread_draws(), gather vari-
ables and their values from that data frame into a ".variable" and ".value" column.

Usage

gather_variables(data, exclude = c(".chain", ".iteration", ".draw", ".row"))

Arguments

data A data frame with variable names spread across columns, such as one returned
by tidy_draws() or spread_draws().

exclude A character vector of names of columns to be excluded from the gather. Default
ignores several meta-data column names used in tidybayes.

Details

This function gathers every column except grouping columns and those matching the expression
exclude into key/value columns ".variable" and ".value".

Imagine a data frame data as returned by spread_draws(fit,a[i],b[i,v]), like this:

• column ".chain": the chain number

• column ".iteration": the iteration number

• column ".draw": the draw number

• column "i": value in 1:5

• column "v": value in 1:10

• column "a": value of "a[i]" for draw number ".draw"

• column "b": value of "b[i,v]" for draw number ".draw"

gather_variables(data) on that data frame would return a grouped data frame (grouped by i
and v), with:

44 gather_variables

• column ".chain": the chain number
• column ".iteration": the iteration number
• column ".draw": the draw number
• column "i": value in 1:5

• column "v": value in 1:10

• column ".variable": value in c("a","b").
• column ".value": value of "a[i]" (when ".variable" is "a"; repeated for every value of
"v") or "b[i,v]" (when ".variable" is "b") for draw number ".draw"

In this example, this call:

gather_variables(data)

Is roughly equivalent to:

data %>%
gather(.variable, .value, -c(.chain, .iteration, .draw, i, v)) %>%
group_by(.variable, .add = TRUE)

Value

A data frame.

Author(s)

Matthew Kay

See Also

spread_draws(), tidy_draws().

Examples

library(dplyr)

data(RankCorr, package = "ggdist")

RankCorr %>%
spread_draws(b[i,v], tau[i]) %>%
gather_variables() %>%
median_qi()

the first three lines below are roughly equivalent to ggmcmc::ggs(RankCorr)
RankCorr %>%

tidy_draws() %>%
gather_variables() %>%
median_qi()

get_variables 45

get_variables Get the names of the variables in a fitted Bayesian model

Description

Get a character vector of the names of the variables in a variety of fitted Bayesian model types. All
models supported by tidy_draws() are supported.

Usage

get_variables(model)

Default S3 method:
get_variables(model)

S3 method for class 'mcmc'
get_variables(model)

S3 method for class 'mcmc.list'
get_variables(model)

Arguments

model A supported Bayesian model fit. Tidybayes supports a variety of model objects;
for a full list of supported models, see tidybayes-models.

Details

This function is often useful for inspecting a model interactively in order to construct calls to
spread_draws() or gather_draws() in order to extract draws from models in a tidy format.

Value

A character vector of variable names in the fitted model.

Author(s)

Matthew Kay

See Also

spread_draws(), gather_draws().

46 nest_rvars

Examples

data(line, package = "coda")
get_variables(line)

data(RankCorr, package = "ggdist")
get_variables(RankCorr)

nest_rvars Nest and unnest rvar columns in data frames

Description

Converts between data-frame-of-rvars format and long-data-frame-of-draws formats by nesting or
unnesting all columns containing posterior::rvar objects.

Usage

nest_rvars(data)

unnest_rvars(data)

Arguments

data A data frame to nest or unnest.

• For nest_rvars(), the data frame should be in long-data-frame-of-draws
format; i.e. it should contain a .draw column (and optionally .chain and
.iteration columns) indexing draws. It should be a grouped by any
columns that are not intended to be nested.

• For unnest_rvars(), the data frame should have at least one column that
is an rvar; all rvar columns will be unnested.

Value

For nest_rvars(), returns a data frame without .chain, .iteration, and .draw columns, where
all non-grouped columns have been converted to rvars.

For unnest_rvars(), returns a data frame with .chain, .iteration, and .draw columns added,
where every rvar column in the input has been converted to (one or more) columns containing
draws from those rvars in long format. The result is grouped by all non-rvar columns in the input;
this ensures that nest_rvars(unnest_rvars(x)) returns x.

n_prefix 47

Examples

library(dplyr)

data(RankCorr, package = "ggdist")

here's a data frame with some rvars
rvar_df = RankCorr %>%

spread_rvars(b[i,], tau[i])
rvar_df

we can unnest it into long format.
note how the result is grouped by all non-rvar input columns,
and nested indices in `b` are converted into columns.
draws_df = rvar_df %>%

unnest_rvars()
draws_df

calling nest_rvars() again on the result of unnest_rvars()
recovers the original data frame
nest_rvars(draws_df)

n_prefix Prefix function generator for composing dimension index columns

Description

Generates a function for generating names of index columns for factors in compose_data() by
prefixing a character vector to the original column name.

Usage

n_prefix(prefix)

Arguments

prefix Character vector to be prepended to column names by compose_data() to cre-
ate index columns. Typically something like "n" (that is the default used in the
.n_name argument of compose_data()).
Returns a function. The function returned takes a character vector, name and
returns paste0(prefix,"_",name), unless name is empty, in which case it will
return prefix.
n_prefix("n") is the default method that compose_data() uses to generate
column names for variables storing the number of levels in a factor. Under
this method, given a data frame df with a factor column "foo" containing 5
levels, the results of compose_data(df) will include an element named "n"
(the result of n_prefix("n")("")) equal to the number of rows in df and an

48 predict_curve

element named "n_foo" (the result of n_prefix("n")("foo")) equal to the
number of levels in df$foo.

See Also

The .n_name argument of compose_data().

Examples

library(magrittr)

df = data.frame(
plot = factor(paste0("p", rep(1:8, times = 2))),
site = factor(paste0("s", rep(1:4, each = 2, times = 2)))

)

without changing `.n_name`, compose_data() will prefix indices
with "n" by default
df %>%

compose_data()

you can use n_prefix() to define a different prefix (e.g. "N"):
df %>%

compose_data(.n_name = n_prefix("N"))

predict_curve Deprecated: Prediction curves for arbitrary functions of posteriors

Description

Deprecated function for generating prediction curves (or a density for a prediction curve).

Usage

predict_curve(data, formula, summary = median, ...)

predict_curve_density(
data,
formula,
summary = function(...) density_bins(..., n = n),
n = 50,
...

)

predict_curve 49

Arguments

data A data.frame, tbl_df or grouped_df representing posteriors from a Bayesian
model as might be obtained through spread_draws(). Grouped data frames
as returned by group_by() are supported.

formula A formula specifying the prediction curve. The left-hand side of the formula
should be a name representing the name of the column that will hold the pre-
dicted response in the returned data frame. The right-hand side is an expression
that may include numeric columns from data and variables passed into this
function in

summary The function to apply to summarize each predicted response. Useful functions
(if you just want a curve) might be median(), mean(), or Mode(). If you
want predictive distribution at each point on the curve, try density_bins()
or histogram_bins().

... Variables defining the curve. The right-hand side of formula is evaluated for
every combination of values of variables in

n For predict_curve_density, the number of bins to use to represent the distri-
bution at each point on the curve.

Details

This function is deprecated. Use modelr::data_grid() combined with point_interval() or
dplyr::do() and density_bins() instead.

The function generates a predictive curve given posterior draws (data), an expression (formula),
and a set of variables defining the curve (...). For every group in data (if it is a grouped data
frame—see group_by(); otherwise the entire data frame is taken at once), and for each combination
of values in ..., the right-hand side of formula is evaluated and its results passed to the summary
function. This allows a predictive curve to be generated, given (e.g.) some samples of coefficients
in data and a set of predictors defining the space of the curve in

Given a summary function like median() or mean(), this function will produce the median (resp.
mean) prediction at each point on the curve.

Given a summary function like density_bins(), this function will produce a predictive distribu-
tion for each point on the curve. predict_curve_density is a shorthand for such a call, with a
convenient argument for adjusting the number of bins per point on the curve.

Value

If formula is in the form lhs ~ rhs and summary is a function that returns a single value, such as
median or mode, then predict_curve returns a data.frame with a column for each group in data
(if it was grouped), a column for each variable in ..., and a column named lhs with the value of
summary(rhs) evaluated for every group in data and combination of variables in

If summary is a function that returns a data.frame, such as density_bins(), predict_curve
has the same set of columns as above, except that in place of the lhs column is a set of columns
named lhs.x for every column named x returned by summary. For example, density_bins()
returns a data frame with the columns mid, lower, upper, and density, so the data frame re-
turned by predict_curve with summary = density_bins will have columns lhs.mid, lhs.lower,
lhs.upper, and lhs.density in place of lhs.

50 recover_types

Author(s)

Matthew Kay

See Also

See density_bins().

Examples

Deprecated; see examples for density_bins

recover_types Decorate a model fit or sample with data types recovered from the
input data

Description

Decorate a Bayesian model fit or a sample from it with types for variable and dimension data types.
Meant to be used before calling spread_draws() or gather_draws() so that the values returned
by those functions are translated back into useful data types.

Usage

recover_types(model, ...)

Arguments

model A supported Bayesian model fit. Tidybayes supports a variety of model objects;
for a full list of supported models, see tidybayes-models.

... Lists (or data frames) providing data prototypes used to convert columns re-
turned by spread_draws() and gather_draws() back into useful data types.
See Details.

Details

Each argument in ... specifies a list or data.frame. The model is decorated with a list of construc-
tors that can convert a numeric column into the data types in the lists in

Then, when spread_draws() or gather_draws() is called on the decorated model, each list entry
with the same name as the variable or a dimension in variable_spec is a used as a prototype
for that variable or dimension — i.e., its type is taken to be the expected type of that variable or
dimension. Those types are used to translate numeric values of variables back into useful values
(for example, levels of a factor).

The most common use of recover_types is to automatically translate dimensions of a variable that
correspond to levels of a factor in the original data back into levels of that factor. The simplest way
to do this is to pass in the data frame from which the original data came.

Supported types of prototypes are factor, ordered, and logical. For example:

recover_types 51

• if prototypes$v is a factor, the v column in the returned draws is translated into a factor using
factor(v,labels=levels(prototypes$v),ordered=is.ordered(prototypes$v)).

• if prototypes$v is a logical, the v column is translated into a logical using as.logical(v).

Additional data types can be supported by providing a custom implementation of the generic func-
tion as_constructor.

Value

A decorated version of model.

Author(s)

Matthew Kay

See Also

spread_draws(), gather_draws(), compose_data().

Examples

library(dplyr)
library(magrittr)
library(rstan)

Here's an example dataset with a categorical predictor (`condition`) with several levels:
set.seed(5)
n = 10
n_condition = 5
ABC = tibble(

condition = rep(c("A","B","C","D","E"), n),
response = rnorm(n * 5, c(0,1,2,1,-1), 0.5)

)

We'll fit the following model to it:
stan_code = "

data {
int<lower=1> n;
int<lower=1> n_condition;
int<lower=1, upper=n_condition> condition[n];
real response[n];

}
parameters {

real overall_mean;
vector[n_condition] condition_zoffset;
real<lower=0> response_sd;
real<lower=0> condition_mean_sd;

}
transformed parameters {

52 sample_draws

vector[n_condition] condition_mean;
condition_mean = overall_mean + condition_zoffset * condition_mean_sd;

}
model {

response_sd ~ cauchy(0, 1); // => half-cauchy(0, 1)
condition_mean_sd ~ cauchy(0, 1); // => half-cauchy(0, 1)
overall_mean ~ normal(0, 5);

//=> condition_mean ~ normal(overall_mean, condition_mean_sd)
condition_zoffset ~ normal(0, 1);

for (i in 1:n) {
response[i] ~ normal(condition_mean[condition[i]], response_sd);

}
}

"

m = stan(model_code = stan_code, data = compose_data(ABC), control = list(adapt_delta=0.99),
1 chain / few iterations just so example runs quickly
do not use in practice
chains = 1, iter = 500)

without using recover_types(), the `condition` column returned by spread_draws()
will be an integer:
m %>%

spread_draws(condition_mean[condition]) %>%
median_qi()

If we apply recover_types() first, subsequent calls to other tidybayes functions will
automatically back-convert factors so that they are labeled with their original levels
(assuming the same name is used)
m %<>% recover_types(ABC)

now the `condition` column with be a factor with levels "A", "B", "C", ...
m %>%

spread_draws(condition_mean[condition]) %>%
median_qi()

sample_draws Sample draws from a tidy-format data frame of draws

Description

Given a tidy-format data frame of draws with a column indexing each draw, subsample the data
frame to a given size based on a column indexing draws, ensuring that rows in sub-groups of a
grouped data frame are sampled from the same draws.

sample_draws 53

Usage

sample_draws(data, ndraws, draw = ".draw", seed = NULL)

Arguments

data Data frame to sample from

ndraws The number of draws to return, or NULL to return all draws.

draw The name of the column indexing the draws; default ".draw".

seed A seed to use when subsampling draws (i.e. when ndraws is not NULL).

Details

sample_draws() makes it easier to sub-sample a grouped, tidy-format data frame of draws. On a
grouped data frame, the naive approach of using filter with the .draw column will give incorrect
results as it will select a different sample within each group. sample_draws() ensures the same
sample is selected within each group.

Author(s)

Matthew Kay

Examples

library(ggplot2)
library(dplyr)
library(brms)
library(modelr)

theme_set(theme_light())

m_mpg = brm(mpg ~ hp * cyl, data = mtcars,
1 chain / few iterations just so example runs quickly
do not use in practice
chains = 1, iter = 500)

draw 100 fit lines from the posterior and overplot them
mtcars %>%

group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
add_epred_draws(m_mpg) %>%
NOTE: only use sample_draws here when making spaghetti plots; for
plotting intervals it is always best to use all draws
sample_draws(100) %>%
ggplot(aes(x = hp, y = mpg, color = ordered(cyl))) +
geom_line(aes(y = .epred, group = paste(cyl, .draw)), alpha = 0.25) +
geom_point(data = mtcars)

54 summarise_draws.grouped_df

summarise_draws.grouped_df

Summaries of draws in grouped_df objects

Description

An implementation of posterior::summarise_draws() for grouped data frames (dplyr::grouped_df
objects) such as returned by dplyr::group_by() and the various grouped-data-aware functions in
tidybayes, such as spread_draws(), gather_draws(), add_epred_draws(), and add_predicted_draws().
This function provides a quick way to get a variety of summary statistics and diagnostics on draws.

Usage

S3 method for class 'grouped_df'
summarise_draws(.x, ...)

Arguments

.x A grouped data frame (dplyr::grouped_df object) such as returned by dplyr::group_by()
where the data frame in each group (ignoring grouping columns) has the struc-
ture of a posterior::draws_df() object: ".chain", ".iteration", and ".draw"
columns, with the remaining (non-grouping) columns being draws from vari-
ables.

... Name-value pairs of summary or diagnostic functions. The provided names will
be used as the names of the columns in the result unless the function returns a
named vector, in which case the latter names are used. The functions can be
specified in any format supported by as_function(). See Examples.

Details

While posterior::summarise_draws() can operate on tidy data frames of draws in the posterior::draws_df()
format, that format does not support grouping columns. This provides an implementation of summarise_draws()
that does support grouped data tables, essentially applying posterior::summarise_draws() to
every sub-table of .x implied by the groups defined on the data frame.

See posterior::summarise_draws() for more details on the summary statistics and diagnostics
you can use with this function. If you just want point summaries and intervals (not diagnostics), par-
ticularly for plotting, see point_interval(), which returns long-format data tables more suitable
for that purpose (especially if you want to plot multiple uncertainty levels).

Value

A data frame (actually, a tibble) with all grouping columns from .x, a "variable" column con-
taining variable names from .x, and the remaining columns containing summary statistics and di-
agnostics.

tidybayes-deprecated 55

Author(s)

Matthew Kay

See Also

posterior::summarise_draws(), point_interval()

Examples

library(posterior)
library(dplyr)

d = posterior::example_draws()

The default posterior::summarise_draws() summarises all variables without
splitting out indices:
summarise_draws(d)

The grouped_df implementation of summarise_draws() in tidybayes can handle
output from spread_draws(), which is a grouped data table with the indices
(here, `i`) left as columns:
d %>%

spread_draws(theta[i]) %>%
summarise_draws()

Summary functions can also be provided, as in posterior::summarise_draws():
d %>%

spread_draws(theta[i]) %>%
summarise_draws(median, mad, rhat, ess_tail)

tidybayes-deprecated Deprecated functions, arguments, and column names in tidybayes

Description

Deprecated functions, arguments, and column names and their alternatives are listed below. Many
of the deprecations are due to a naming scheme overhaul in tidybayes version 1.0 (see Deprecated
Functions and Deprecated Arguments and Column Names below) or due to the deprecation of hor-
izontal shortcut geoms and stats in tidybayes 2.1 (see Deprecated Horizontal Shortcut Geoms and
Stats).

Deprecated Functions

Several deprecated versions of functions use slightly different output formats (e.g., they use names
like term and estimate where new functions use .variable and .value; or they set .iteration
even when iteration information is not available — new functions always set .draw but may not set

56 tidybayes-deprecated

.iteration), so be careful when upgrading to new function names. See Deprecated Arguments
and Column Names, below, for more information.

Functions deprecated in tidybayes 3.0:

• fitted_draws and add_fitted_draws are deprecated because their names were confusing:
it was unclear to many users if these functions returned draws from the posterior predictive,
the mean of the posterior predictive, or the linear predictor (and depending on model type it
might have been either of the latter). Use epred_draws()/add_epred_draws() if you want
the expectation of the posterior predictive and use linpred_draws()/add_linpred_draws()
if you want the linear predictor.

Functions deprecated in tidybayes 1.0:

• spread_samples, extract_samples, and tidy_samples are deprecated names for spread_draws().
The spread/gather terminology better distinguishes the resulting data frame format, and draws
is more correct terminology than samples for describing multiple realizations from a posterior
distribution.

• gather_samples is a deprecated name for gather_draws(), reflecting a package-wide move
to using draws instead of samples for describing multiple realizations from a distribution.

• unspread_samples is a deprecated name for unspread_draws(), reflecting a package-wide
move to using draws instead of samples for describing multiple realizations from a distribu-
tion.

• ungather_samples is a deprecated name for ungather_draws(), reflecting a package-wide
move to using draws instead of samples for describing multiple realizations from a distribu-
tion.

• fitted_samples / add_fitted_samples are deprecated names for fitted_draws / add_fitted_draws,
reflecting a package-wide move to using draws instead of samples for describing multiple real-
izations from a distribution. (though see the note above about the deprecation of fitted_draws
in favor of epred_draws() and linpred_draws()).

• predicted_samples / add_predicted_samples are deprecated names for predicted_draws()
/ add_predicted_draws(), reflecting a package-wide move to using draws instead of sam-
ples for describing multiple realizations from a distribution.

• gather_lsmeans_samples and gather_emmeans_samples are deprecated aliases for gather_emmeans_draws().
The new name (estimated marginal means) is more appropriate for Bayesian models than the
old name (least-squares means), and reflects the naming of the newer emmeans package. It
also reflects a package-wide move to using draws instead of samples for describing multiple
realizations from a distribution.

• as_sample_tibble and as_sample_data_frame are deprecated aliases for tidy_draws().
The original intent of as_sample_tibble was to be used primarily internally (hence its less
user-friendly name); however, increasingly I have come across use cases of tidy_draws that
warrant a more user-friendly name. It also reflects a package-wide move to using draws
instead of samples for describing multiple realizations from a distribution.

• ggeye is deprecated: for a package whose goal is flexible and customizable visualization,
monolithic functions are inflexible and do not sufficiently capitalize on users’ existing knowl-
edge of ggplot; instead, I think it is more flexible to design geoms and stats that can used
within a complete ggplot workflow. stat_eye() offers a horizontal eye plot geom that can be
used instead of ggeye.

tidybayes-deprecated 57

• See the sections below for additional deprecated functions, including horizontal geoms, stats,
and point_intervals

Deprecated Eye Geom Spellings

geom_eye, geom_eyeh, and geom_halfeyeh are deprecated spellings of stat_eye() and stat_halfeye()
from before name standardization of stats and geoms. Use those functions instead.

Deprecated Horizontal Shortcut Geoms and Stats

Due to the introduction of automatic orientation detection in tidybayes 2.1, shortcut geoms and
stats (which end in h) are no longer necessary, and are deprecated. In most cases, these can sim-
ply be replaced with the same geom without the h suffix and they will remain horizontal; e.g.
stat_halfeyeh(...) can simply be replaced with stat_halfeye(...). If automatic orientation
detection fails, override it with the orientation parameter; e.g. stat_halfeye(orientation =
"horizontal").

These deprecated stats and geoms include:

• stat_eyeh / stat_dist_eyeh

• stat_halfeyeh / stat_dist_halfeyeh

• geom_slabh / stat_slabh / stat_dist_slabh

• geom_intervalh / stat_intervalh / stat_dist_intervalh

• geom_pointintervalh / stat_pointintervalh / stat_dist_pointintervalh

• stat_gradientintervalh / stat_dist_gradientintervalh

• stat_cdfintervalh / stat_dist_cdfintervalh

• stat_ccdfintervalh / stat_dist_ccdfintervalh

• geom_dotsh / stat_dotsh / stat_dist_dotsh

• geom_dotsintervalh / stat_intervalh / stat_dist_intervalh

• stat_histintervalh

Deprecated Horizontal Point/Interval Functions

These functions ending in h (e.g., point_intervalh, median_qih) used to be needed for use with
ggstance::stat_summaryh, but are no longer necessary because ggplot2::stat_summary() sup-
ports automatic orientation detection, so they have been deprecated. They behave identically to the
corresponding function without the h, except that when passed a vector, they return a data frame
with x/xmin/xmax instead of y/ymin/ymax.

• point_intervalh

• mean_qih / median_qih / mode_qih

• mean_hdih / median_hdih / mode_hdih

• mean_hdcih / median_hdcih / mode_hdcih

58 tidybayes-deprecated

Deprecated Arguments and Column Names

Arguments deprecated in tidybayes 3.0 are:

• The n argument is now called ndraws in predicted_draws(), linpred_draws(), etc. This
prevents some bugs due to partial matching of argument names where n might be mistaken for
newdata.

• The value argument in linpred_draws() is now spelled linpred and defaults to ".linpred"
in the same way that the predicted_draws() and epred_draws() functions work.

• The scale argument in linpred_draws() is no longer allowed (use transform instead) as
this naming scheme only made sense when linpred_draws() was an alias for fitted_draws(),
which it no longer is (see note above about the deprecation of fitted_draws()).

Versions of tidybayes before version 1.0 used a different naming scheme for several arguments and
output columns.

Arguments and column names deprecated in tidybayes 1.0 are:

• term is now .variable

• estimate is now .value

• pred is now .prediction

• conf.low is now .lower

• conf.high is now .upper

• .prob is now .width

• The .draw column was added, and should be used instead of .chain and .iteration to
uniquely identify draws when you do not care about chains. (.chain and .iteration are still
provided for identifying draws within chains, if desired).

To translate to/from the old naming scheme in output, use to_broom_names() and from_broom_names().

Many of these names were updated in version 1.0 in order to make terminology more consistent
and in order to satisfy these criteria:

• Ignore compatibility with broom names on the assumption an adapter function can be created.

• Use names that could be compatible with frequentist approaches (hence .width instead of
.prob).

• Always precede with "." to avoid collisions with variable names in models.

• No abbreviations (remembering if something is abbreviated or not can be a pain).

• No two-word names (multi-word names can always be standardized on and used in documen-
tation, but I think data frame output should be succinct).

• Names should be nouns (I made an exception for lower/upper because they are common).

Author(s)

Matthew Kay

tidybayes-models 59

tidybayes-models Models supported by tidybayes

Description

Tidybayes supports two classes of models and sample formats: Models/formats that provide pre-
diction functions, and those that do not.

All Supported Models/Sample Formats

All supported models/formats support the base tidybayes sample extraction functions, such as
tidy_draws(), spread_draws(), gather_draws(), spread_rvars(), and gather_rvars(). These
models/formats include:

• rstan models

• cmdstanr models

• brms::brm() models

• rstanarm models

• runjags::runjags() models

• rjags::jags.model() models, if sampled using rjags::coda.samples()

• jagsUI::jags() models

• MCMCglmm::MCMCglmm() models

• coda::mcmc() and coda::mcmc.list() objects, which are output by several model types.

• posterior::draws objects

• Any object with an implementation of posterior::as_draws_df() or posterior::as_draws().
For a list of those available in your environment, run methods(as_draws_df) or methods(as_draws)

• Any object with an implementation of coda::as.mcmc.list(). For a list of those available
in your environment, run methods(as.mcmc.list)

If you install the tidybayes.rethinking package, models from the rethinking package are also sup-
ported.

Models Supporting Prediction

In addition, the following models support fit and prediction extraction functions, such as add_epred_draws(),
add_predicted_draws(), add_linpred_draws(), add_epred_rvars(), add_predicted_rvars(),
and add_linpred_rvars():

• brms::brm() models

• rstanarm models

• any package with implementations of rstantools::posterior_epred(), rstantools::posterior_predict(),
or rstantools::posterior_linpred() that include an argument called newdata which
takes a data frame of predictors.

https://mc-stan.org/cmdstanr/
https://mjskay.github.io/tidybayes.rethinking/
https://github.com/rmcelreath/rethinking

60 tidy_draws

If your model type is not in the above list, you may still be able to use the add_draws() function
to turn matrices of predictive draws (or fit draws) into tidy data frames. Or, you can wrap output
from a prediction function in posterior::rvar() and add it to a data frame so long as that output
is a matrix with draws as rows.

If you install the tidybayes.rethinking package, models from the rethinking package are also sup-
ported.

Extending tidybayes

To include basic support for new models, one need only implement the tidy_draws() generic func-
tion for that model. Alternatively, objects that support posterior::as_draws() or coda::as.mcmc.list()
will automatically be supported by tidy_draws().

To include support for estimation and prediction, one must either implement the epred_draws(),
predicted_draws(), and linpred_draws() functions or their correspond functions from rstan-
tools: rstantools::posterior_epred(), rstantools::posterior_predict(), and rstantools::posterior_linpred().
If you take the latter approach, you should include newdata and ndraws arguments that work as
documented in predicted_draws().

tidy_draws Get a sample of posterior draws from a model as a tibble

Description

Extract draws from a Bayesian fit into a wide-format data frame with a .chain, .iteration, and
.draw column, as well as all variables as columns. This function does not parse indices from
variable names (e.g. for variable names like "x[1]"); see spread_draws() or gather_draws()
for functions that parse variable indices.

Usage

tidy_draws(model, ...)

Default S3 method:
tidy_draws(model, ...)

S3 method for class 'draws'
tidy_draws(model, ...)

S3 method for class 'data.frame'
tidy_draws(model, ...)

S3 method for class 'mcmc.list'
tidy_draws(model, ...)

S3 method for class 'stanfit'
tidy_draws(model, ...)

https://mjskay.github.io/tidybayes.rethinking/
https://github.com/rmcelreath/rethinking

tidy_draws 61

S3 method for class 'stanreg'
tidy_draws(model, ...)

S3 method for class 'runjags'
tidy_draws(model, ...)

S3 method for class 'jagsUI'
tidy_draws(model, ...)

S3 method for class 'brmsfit'
tidy_draws(model, ...)

S3 method for class 'CmdStanFit'
tidy_draws(model, ...)

S3 method for class 'CmdStanMCMC'
tidy_draws(model, ...)

S3 method for class 'matrix'
tidy_draws(model, ...)

S3 method for class 'MCMCglmm'
tidy_draws(model, ...)

Arguments

model A supported Bayesian model fit. Tidybayes supports a variety of model objects;
for a full list of supported models, see tidybayes-models.

... Further arguments passed to other methods (mostly unused).

Details

This function can be useful for quick glances at models (especially combined with gather_variables()
and median_qi()), and for models with parameters without indices in their names (like "x[1]").
spread_draws() and gather_draws(), which do parse variable name indices, call this function
internally if their input is not already a tidy data frame.

To provide support for new models in tidybayes, you must provide an implementation of this func-
tion or an implementation of coda::as.mcmc.list() (tidy_draws should work on any model
with an implementation of coda::as.mcmc.list())

tidy_draws() can be applied to a data frame that is already a tidy-format data frame of draws,
provided it has one row per draw. In other words, it can be applied to data frames that have the same
format it returns, and it will return the same data frame back, while checking to ensure the .chain,
.iteration, and .draw columns are all integers (converting if possible) and that the .draw column
is unique. This allows you to pass already-tidy-format data frames into other tidybayes functions,
like spread_draws() or gather_draws(). This functionality can be useful if the tidying step is
expensive: you can tidy once, possibly subsetting to some particular variables of interest, then call

62 ungather_draws

spread_draws() or gather_draws() repeatedly to extract variables and indices from the already-
tidied data frame.

Value

A data frame (actually, a tibble) with a .chain column, .iteration column, .draw column, and
one column for every variable in model.

Author(s)

Matthew Kay

See Also

spread_draws() or gather_draws(), which use this function internally and provides a friendly
interface for extracting tidy data frames from model fits.

Examples

library(magrittr)

data(line, package = "coda")

line %>%
tidy_draws()

ungather_draws Turn tidy data frames of variables from a Bayesian model back into
untidy data

Description

Inverse operations of spread_draws() and gather_draws(), giving results that look like tidy_draws().

Usage

ungather_draws(
data,
...,
variable = ".variable",
value = ".value",
draw_indices = c(".chain", ".iteration", ".draw"),
drop_indices = FALSE

)

unspread_draws(

ungather_draws 63

data,
...,
draw_indices = c(".chain", ".iteration", ".draw"),
drop_indices = FALSE

)

Arguments

data A tidy data frame of draws, such as one output by spread_draws or gather_draws.

... Expressions in the form of variable_name[dimension_1,dimension_2,...].
See spread_draws().

variable The name of the column in data that contains the names of variables from the
model.

value The name of the column in data that contains draws from the variables.

draw_indices Character vector of column names in data that should be treated as indices
of draws. The default is c(".chain",".iteration",".draw"), which are the
same names used for chain, iteration, and draw indices returned by spread_draws()
or gather_draws().

drop_indices Drop the columns specified by draw_indices from the resulting data frame.
Default FALSE.

Details

These functions take symbolic specifications of variable names and dimensions in the same format
as spread_draws() and gather_draws() and invert the tidy data frame back into a data frame
whose column names are variables with dimensions in them.

Value

A data frame.

Author(s)

Matthew Kay

See Also

spread_draws(), gather_draws(), tidy_draws().

Examples

library(dplyr)

data(RankCorr, package = "ggdist")

We can use unspread_draws to allow us to manipulate draws with tidybayes
and then transform the draws into a form we can use with packages like bayesplot.
Here we subset b[i,j] to just values of i in 1:2 and j == 1, then plot with bayesplot

64 x_at_y

RankCorr %>%
spread_draws(b[i,j]) %>%
filter(i %in% 1:2, j == 1) %>%
unspread_draws(b[i,j], drop_indices = TRUE) %>%
bayesplot::mcmc_areas()

As another example, we could use compare_levels to plot all pairwise comparisons
of b[1,j] for j in 1:3
RankCorr %>%

spread_draws(b[i,j]) %>%
filter(i == 1, j %in% 1:3) %>%
compare_levels(b, by = j) %>%
unspread_draws(b[j], drop_indices = TRUE) %>%
bayesplot::mcmc_areas()

x_at_y Generate lookup vectors for composing nested indices

Description

Generates a lookup vector such that x_at_y(x,y)[y] == x. Particularly useful for generating
lookup tables for nested indices in conjunction with compose_data().

Usage

x_at_y(x, y, missing = NA)

Arguments

x Values in the resulting lookup vector. There should be only one unique value of
x for every corresponding value of y.

y Keys in the resulting lookup vector. Should be factors or integers.

missing Missing levels from y will be filled in with this value in the resulting lookup
vector. Default NA.

Details

x_at_y(x,y) returns a vector k such that k[y] == x. It also fills in missing values in y: if y is an
integer, k will contain entries for all values from 1 to max(y); if y is a factor, k will contain entries
for all values from 1 to nlevels(y). Missing values are replaced with missing (default NA).

Author(s)

Matthew Kay

See Also

compose_data().

x_at_y 65

Examples

library(magrittr)

df = data.frame(
plot = factor(paste0("p", rep(1:8, times = 2))),
site = factor(paste0("s", rep(1:4, each = 2, times = 2)))

)

turns site into a nested index: site[p] gives the site for plot p
df %>%

compose_data(site = x_at_y(site, plot))

Index

∗ datasets
tidybayes-deprecated, 55

∗ manip
add_draws, 4
add_epred_draws, 5
add_epred_rvars, 13
combine_chains, 19
compare_levels, 21
compose_data, 23
data_list, 25
density_bins, 27
gather_draws, 30
gather_emmeans_draws, 35
gather_pairs, 37
gather_rvars, 40
gather_variables, 43
get_variables, 45
predict_curve, 48
recover_types, 50
sample_draws, 52
summarise_draws.grouped_df, 54
tidy_draws, 60
ungather_draws, 62

add_draws, 4
add_draws(), 4, 12, 60
add_epred_draws, 5
add_epred_draws(), 22, 56, 59
add_epred_rvars, 13
add_epred_rvars(), 59
add_fitted_draws

(tidybayes-deprecated), 55
add_fitted_samples

(tidybayes-deprecated), 55
add_linpred_draws (add_epred_draws), 5
add_linpred_draws(), 56, 59
add_linpred_rvars (add_epred_rvars), 13
add_linpred_rvars(), 59
add_predicted_draws (add_epred_draws), 5
add_predicted_draws(), 4, 18, 28, 56, 59

add_predicted_rvars (add_epred_rvars),
13

add_predicted_rvars(), 59
add_predicted_samples

(tidybayes-deprecated), 55
add_residual_draws (add_epred_draws), 5
apply_prototypes (recover_types), 50
as.numeric(), 24, 26, 27
as_data_list (data_list), 25
as_data_list(), 24, 27
as_function(), 54
as_sample_data_frame

(tidybayes-deprecated), 55
as_sample_tibble

(tidybayes-deprecated), 55

brms::brm(), 11, 17, 59
brms::brmsfit, 10, 17
brms::posterior_epred(), 11, 18
brms::posterior_linpred(), 11, 18
brms::posterior_predict(), 11, 17, 18
brms::residuals.brmsfit(), 11

coda::as.mcmc.list(), 59–61
coda::mcmc(), 59
coda::mcmc.list(), 59
combine_chains, 19
compare_levels, 21
compare_levels(), 22, 29, 30
compose_data, 23
compose_data(), 25, 27, 35, 42, 47, 48, 51, 64

data.frame, 49
data_list, 25
density(), 28
density_bins, 27
density_bins(), 49, 50
diagnostic, 54
dplyr::do(), 49

emmeans contrast method, 29

66

INDEX 67

emmeans contrast methods, 29
emmeans::contrast-methods, 30
emmeans::emm_list(), 36
emmeans::emmeans(), 20, 35, 36, 39
emmeans::pairwise.emmc, 29
emmeans::ref_grid(), 35, 36
emmeans::trt.vs.ctrl.emmc, 29
emmeans_comparison, 29
emmeans_comparison(), 22
epred_draws (add_epred_draws), 5
epred_draws(), 56, 60
epred_rvars (add_epred_rvars), 13
extract_samples (tidybayes-deprecated),

55

fitted_draws (tidybayes-deprecated), 55
fitted_samples (tidybayes-deprecated),

55
from_broom_names(), 58

gather_draws, 30
gather_draws(), 21, 22, 25, 45, 50, 51, 56,

59–63
gather_emmeans_draws, 35
gather_emmeans_draws(), 30, 56
gather_emmeans_samples

(tidybayes-deprecated), 55
gather_lsmeans_samples

(tidybayes-deprecated), 55
gather_pairs, 37
gather_rvars, 40
gather_rvars(), 59
gather_samples (tidybayes-deprecated),

55
gather_terms (tidybayes-deprecated), 55
gather_variables, 43
gather_variables(), 61
geom_dotsh (tidybayes-deprecated), 55
geom_dotsintervalh

(tidybayes-deprecated), 55
geom_eye (tidybayes-deprecated), 55
geom_eyeh (tidybayes-deprecated), 55
geom_halfeyeh (tidybayes-deprecated), 55
geom_intervalh (tidybayes-deprecated),

55
geom_pointintervalh

(tidybayes-deprecated), 55
geom_slabh (tidybayes-deprecated), 55
GeomIntervalh (tidybayes-deprecated), 55

GeomPointintervalh
(tidybayes-deprecated), 55

get_variables, 45
ggeye (tidybayes-deprecated), 55
group_by(), 49
grouped_df, 49

hist(), 28
histogram_bins (density_bins), 27
histogram_bins(), 49

jagsUI::jags(), 59

linpred_draws (add_epred_draws), 5
linpred_draws(), 56, 60
linpred_rvars (add_epred_rvars), 13
list(), 26

MCMCglmm::MCMCglmm(), 36, 59
mean(), 49
mean_hdcih (tidybayes-deprecated), 55
mean_hdih (tidybayes-deprecated), 55
mean_qih (tidybayes-deprecated), 55
median(), 49
median_hdcih (tidybayes-deprecated), 55
median_hdih (tidybayes-deprecated), 55
median_qi(), 61
median_qih (tidybayes-deprecated), 55
Mode(), 49
mode_hdcih (tidybayes-deprecated), 55
mode_hdih (tidybayes-deprecated), 55
mode_qih (tidybayes-deprecated), 55
modelr::data_grid(), 49
mutate(), 24

n_prefix, 47
n_prefix(), 24
nest_rvars, 46

parameters (tidybayes-deprecated), 55
point_interval(), 36, 49, 55
point_intervalh (tidybayes-deprecated),

55
posterior::as_draws(), 59, 60
posterior::as_draws_df(), 59
posterior::as_draws_rvars(), 42
posterior::draws, 59
posterior::rvar, 21, 40, 46
posterior::rvar(), 42
posterior::summarise_draws(), 55

68 INDEX

predict_curve, 48
predict_curve(), 28
predict_curve_density (predict_curve),

48
predicted_draws (add_epred_draws), 5
predicted_draws(), 56, 60
predicted_rvars (add_epred_rvars), 13
predicted_samples

(tidybayes-deprecated), 55

recover_types, 50
recover_types(), 32, 34, 35, 41, 42
relevel(), 22
residual_draws (add_epred_draws), 5
rjags::coda.samples(), 59
rjags::jags.model(), 59
rstan, 59
rstanarm, 59
rstanarm::posterior_epred(), 11, 18
rstanarm::posterior_linpred(), 11, 18
rstanarm::posterior_predict(), 11, 18
rstanarm::stan_polr(), 11, 17
rstanarm::stanreg-objects, 10, 17, 36
rstantools::posterior_epred(), 59, 60
rstantools::posterior_linpred(), 59, 60
rstantools::posterior_predict(), 59, 60
runjags::runjags(), 59
rvar, 13, 18, 40–42, 46

sample_draws, 52
spread_draws (gather_draws), 30
spread_draws(), 10, 12, 21, 22, 25, 42–45,

49–51, 56, 59–63
spread_rvars (gather_rvars), 40
spread_rvars(), 17, 18, 35, 59
spread_samples (tidybayes-deprecated),

55
stat_ccdfintervalh

(tidybayes-deprecated), 55
stat_cdfintervalh

(tidybayes-deprecated), 55
stat_dist_ccdfintervalh

(tidybayes-deprecated), 55
stat_dist_cdfintervalh

(tidybayes-deprecated), 55
stat_dist_dotsh (tidybayes-deprecated),

55
stat_dist_dotsintervalh

(tidybayes-deprecated), 55

stat_dist_eyeh (tidybayes-deprecated),
55

stat_dist_gradientintervalh
(tidybayes-deprecated), 55

stat_dist_halfeyeh
(tidybayes-deprecated), 55

stat_dist_intervalh
(tidybayes-deprecated), 55

stat_dist_pointintervalh
(tidybayes-deprecated), 55

stat_dist_slabh (tidybayes-deprecated),
55

stat_dotsh (tidybayes-deprecated), 55
stat_dotsintervalh

(tidybayes-deprecated), 55
stat_eye(), 56, 57
stat_eyeh (tidybayes-deprecated), 55
stat_gradientintervalh

(tidybayes-deprecated), 55
stat_halfeye(), 57
stat_halfeyeh (tidybayes-deprecated), 55
stat_histintervalh

(tidybayes-deprecated), 55
stat_intervalh (tidybayes-deprecated),

55
stat_lineribbon(), 28
stat_pointintervalh

(tidybayes-deprecated), 55
stat_slabh (tidybayes-deprecated), 55
summarise_draws.grouped_df, 54

tbl_df, 49
tibble, 4, 12, 18, 54, 62
tidy_draws, 60
tidy_draws(), 43–45, 56, 59, 60, 62, 63
tidy_samples (tidybayes-deprecated), 55
tidybayes (tidybayes-package), 3
tidybayes-deprecated, 55
tidybayes-models, 3, 10, 17, 31, 40, 45, 50,

59, 61
tidybayes-package, 3
to_broom_names(), 32, 41, 58
to_ggmcmc_names(), 32, 41

ungather_draws, 62
ungather_draws(), 56
ungather_samples

(tidybayes-deprecated), 55
unnest_rvars (nest_rvars), 46

INDEX 69

unspread_draws (ungather_draws), 62
unspread_draws(), 56
unspread_samples

(tidybayes-deprecated), 55

x_at_y, 64
x_at_y(), 24, 25

	tidybayes-package
	add_draws
	add_epred_draws
	add_epred_rvars
	combine_chains
	compare_levels
	compose_data
	data_list
	density_bins
	emmeans_comparison
	gather_draws
	gather_emmeans_draws
	gather_pairs
	gather_rvars
	gather_variables
	get_variables
	nest_rvars
	n_prefix
	predict_curve
	recover_types
	sample_draws
	summarise_draws.grouped_df
	tidybayes-deprecated
	tidybayes-models
	tidy_draws
	ungather_draws
	x_at_y
	Index

