
Package ‘tidycensus’
April 21, 2022

Type Package

Title Load US Census Boundary and Attribute Data as 'tidyverse' and
'sf'-Ready Data Frames

Version 1.2.1

Date 2022-04-21

URL https://walker-data.com/tidycensus/

BugReports https://github.com/walkerke/tidycensus/issues

Description An integrated R interface to several United States Census Bureau
APIs (<https:
//www.census.gov/data/developers/data-sets.html>) and the US Census Bureau's
geographic boundary files. Allows R users to return Census and ACS data as
tidyverse-ready data frames, and optionally returns a list-
column with feature geometry for mapping
and spatial analysis.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.3.0)

Imports httr, sf, dplyr (>= 1.0.0), tigris, stringr, jsonlite (>=
1.5.0), purrr, rvest, tidyr (>= 1.0.0), rappdirs, readr, xml2,
units, utils, rlang, crayon, tidyselect

Suggests ggplot2, survey, srvyr, terra

RoxygenNote 7.1.2

NeedsCompilation no

Author Kyle Walker [aut, cre],
Matt Herman [aut],
Kris Eberwein [ctb]

Maintainer Kyle Walker <kyle@walker-data.com>

Repository CRAN

Date/Publication 2022-04-21 11:40:02 UTC

1

https://walker-data.com/tidycensus/
https://github.com/walkerke/tidycensus/issues
https://www.census.gov/data/developers/data-sets.html
https://www.census.gov/data/developers/data-sets.html

2 acs5_geography

R topics documented:
acs5_geography . 2
as_dot_density . 3
census_api_key . 5
county_laea . 6
fips_codes . 7
get_acs . 8
get_decennial . 10
get_estimates . 12
get_flows . 14
get_pums . 17
interpolate_pw . 18
load_variables . 21
mig_recodes . 22
moe_product . 22
moe_prop . 23
moe_ratio . 23
moe_sum . 24
pums_variables . 24
significance . 25
state_laea . 26
tidycensus . 26
to_survey . 27

Index 28

acs5_geography Dataset used to identify geography availability in the 5-year ACS De-
tailed Tables

Description

Built-in dataset for use by load_variables() to identify the smallest geography at which 5-year
ACS data are available

• table: The ACS Table ID

• geography: The smallest geography at which a given table is available for a given year

• year: The endyear of the 5-year ACS dataset

Usage

data(acs5_geography)

Format

An object of class tbl_df (inherits from tbl, data.frame) with 10033 rows and 3 columns.

as_dot_density 3

Details

Dataset used to identify geography availability in the 5-year ACS Detailed Tables

Built-in dataset that includes information on the smallest geography at which 5-year ACS Detailed
Tables data are available, by table, since 2011. This dataset is used internally by load_variables()
to add a geography column when variables are retrieved for a 5-year ACS Detailed Tables dataset.

as_dot_density Convert polygon geometry to dots for dot-density mapping

Description

Dot-density maps are a compelling alternative to choropleth maps for cartographic visualization
of demographic data as they allow for representation of the internal heterogeneity of geographic
units. This function helps users generate dots from an input polygon dataset intended for dot-
density mapping. Dots are placed randomly within polygons according to a given data:dots ratio;
for example, a ratio of 100:1 for an input population value column will place approximately 1 dot
in the polygon for every 100 people in the geographic unit. Users can then map the dots using tools
like ggplot2::geom_sf() or tmap::tm_dots().

Usage

as_dot_density(
input_data,
value,
values_per_dot,
group = NULL,
erase_water = FALSE,
area_threshold = NULL

)

Arguments

input_data An input sf object of geometry type POLYGON or MULTIPOLYGON that includes
some information that can be converted to dots. While the function is designed
for use with data acquired with the tidycensus package, it will work for arbitrary
polygon datasets.

value The value column to be used to determine the number of dots to generate. For
tidycensus users, this will typically be the "value" column for decennial Census
data or the "estimate" column for American Community Survey estimates.

values_per_dot The number of values per dot; used to determine the output data:dots ratio. A
value of 100 means that each dot will represent approximately 100 values in the
value column.

group A column in the dataset that identifies salient groups within which dots should
be generated. For a long-form tidycensus dataset, this will typically be the
"variable" column or some derivative of it. The output dataset will be ran-
domly shuffled to prevent "stacking" of groups in downstream dot-density maps.

4 as_dot_density

erase_water If TRUE, calls tigris::erase_water() to remove water areas from the poly-
gons prior to generating dots, allowing for dasymetric dot placement. This
option is recommended if your location includes significant water area. If us-
ing this option, it is recommended that you first transform your data to a pro-
jected coordinate reference system using sf::st_transform() to improve per-
formance. This argument only works for data in the United States.

area_threshold The area percentile threshold to be used when erasing water; ranges from 0 (all
water area included) to 1 (no water area included)

Details

as_dot_density() uses terra::dots() internally for fast creation of dots. As terra is not a hard
dependency of the tidycensus package, users must first install terra before using this function.

The erase_water parameter will internally call tigris::erase_water() to fetch water area for
a given location in the United States and remove that water area from the polygons before placing
dots in polygons. This will slow down performance of the function, but can improve cartographic
accuracy in locations with significant water area. It is recommended that users transform their data
into a projected coordinate reference system with sf::st_transform() prior to using this option
in order to improve performance.

Value

The original dataset but of geometry type POINT, with the number of point features corresponding
to the given value:dot ratio for a given group.

Examples

Not run:

library(tidycensus)
library(ggplot2)

Identify variables for mapping
race_vars <- c(

Hispanic = "P2_002N",
White = "P2_005N",
Black = "P2_006N",
Asian = "P2_008N"

)

Get data from tidycensus
baltimore_race <- get_decennial(

geography = "tract",
variables = race_vars,
state = "MD",
county = "Baltimore city",
geometry = TRUE,
year = 2020

)

Convert data to dots

census_api_key 5

baltimore_dots <- as_dot_density(
baltimore_race,
value = "value",
values_per_dot = 100,
group = "variable"

)

Use one set of polygon geometries as a base layer
baltimore_base <- baltimore_race[baltimore_race$variable == "Hispanic",]

Map with ggplot2
ggplot() +

geom_sf(data = baltimore_base,
fill = "white",
color = "grey") +

geom_sf(data = baltimore_dots,
aes(color = variable),
size = 0.01) +

theme_void()

End(Not run)

census_api_key Install a CENSUS API Key in Your .Renviron File for Repeated Use

Description

This function will add your CENSUS API key to your .Renviron file so it can be called securely
without being stored in your code. After you have installed your key, it can be called any time by
typing Sys.getenv("CENSUS_API_KEY") and can be used in package functions by simply typing
CENSUS_API_KEY If you do not have an .Renviron file, the function will create on for you. If
you already have an .Renviron file, the function will append the key to your existing file, while
making a backup of your original file for disaster recovery purposes.

Usage

census_api_key(key, overwrite = FALSE, install = FALSE)

Arguments

key The API key provided to you from the Census formated in quotes. A key can be
acquired at http://api.census.gov/data/key_signup.html

overwrite If this is set to TRUE, it will overwrite an existing CENSUS_API_KEY that you
already have in your .Renviron file.

install if TRUE, will install the key in your .Renviron file for use in future sessions.
Defaults to FALSE.

http://api.census.gov/data/key_signup.html

6 county_laea

Examples

Not run:
census_api_key("111111abc", install = TRUE)
First time, reload your environment so you can use the key without restarting R.
readRenviron("~/.Renviron")
You can check it with:
Sys.getenv("CENSUS_API_KEY")

End(Not run)

Not run:
If you need to overwrite an existing key:
census_api_key("111111abc", overwrite = TRUE, install = TRUE)
First time, relead your environment so you can use the key without restarting R.
readRenviron("~/.Renviron")
You can check it with:
Sys.getenv("CENSUS_API_KEY")

End(Not run)

county_laea County geometry with Alaska and Hawaii shifted and re-scaled

Description

Built-in dataset for use with shift_geo = TRUE

Dataset of US counties with Alaska and Hawaii shifted and re-scaled

Usage

data(county_laea)

data(county_laea)

Format

An object of class sf (inherits from data.frame) with 3143 rows and 2 columns.

Details

Dataset with county geometry for use when shifting Alaska and Hawaii

Built-in dataset for use with the shift_geo parameter, with the continental United States in a Lam-
bert azimuthal equal area projection and Alaska and Hawaii counties and Census areas shifted and
re-scaled. The data were originally obtained from the albersusa R package (https://github.com/
hrbrmstr/albersusa).

https://github.com/hrbrmstr/albersusa
https://github.com/hrbrmstr/albersusa

fips_codes 7

fips_codes Dataset with FIPS codes for US states and counties

Description

Built-in dataset for smart state and county lookup. To access the data directly, issue the command
data(fips_codes).

• county: County name, title-case

• county_code: County code. (3-digit, 0-padded, character)

• state: Upper-case abbreviation of state

• state_code: State FIPS code (2-digit, 0-padded, character)

• state_name: Title-case name of state

Usage

data(fips_codes)

Format

An object of class data.frame with 3247 rows and 5 columns.

Details

Dataset with FIPS codes for US states and counties

Built-in dataset for use with the lookup_code function. To access the data directly, issue the com-
mand data(fips_codes).

Note: this dataset includes FIPS codes for all counties that have appeared in the decennial Census
or American Community Survey from 2010 to the present. This means that counties that have been
renamed or absorbed into other geographic entities since 2010 remain in this dataset along with
newly added or renamed counties.

If you need the FIPS codes and names for counties for a particular Census year, you can use the
counties function from the tigris package and set the year parameter as required.

8 get_acs

get_acs Obtain data and feature geometry for the American Community Survey

Description

Obtain data and feature geometry for the American Community Survey

Usage

get_acs(
geography,
variables = NULL,
table = NULL,
cache_table = FALSE,
year = 2020,
endyear = NULL,
output = "tidy",
state = NULL,
county = NULL,
zcta = NULL,
geometry = FALSE,
keep_geo_vars = FALSE,
shift_geo = FALSE,
summary_var = NULL,
key = NULL,
moe_level = 90,
survey = "acs5",
show_call = FALSE,
...

)

Arguments

geography The geography of your data.

variables Character string or vector of character strings of variable IDs. tidycensus auto-
matically returns the estimate and the margin of error associated with the vari-
able.

table The ACS table for which you would like to request all variables. Uses lookup
tables to identify the variables; performs faster when variable table already exists
through load_variables(cache = TRUE). Only one table may be requested per
call.

cache_table Whether or not to cache table names for faster future access. Defaults to FALSE;
if TRUE, only needs to be called once per dataset. If variables dataset is already
cached via the load_variables function, this can be bypassed.

get_acs 9

year The year, or endyear, of the ACS sample. 5-year ACS data is available from
2009 through 2020; 1-year ACS data is available from 2005 through 2019. De-
faults to 2020; 1-year ACS users should supply a different year directly.

endyear Deprecated and will be removed in a future release.

output One of "tidy" (the default) in which each row represents an enumeration unit-
variable combination, or "wide" in which each row represents an enumeration
unit and the variables are in the columns.

state An optional vector of states for which you are requesting data. State names,
postal codes, and FIPS codes are accepted. Defaults to NULL.

county The county for which you are requesting data. County names and FIPS codes
are accepted. Must be combined with a value supplied to ‘state‘. Defaults to
NULL.

zcta The zip code tabulation area(s) for which you are requesting data. Specify a
single value or a vector of values to get data for more than one ZCTA. Numeric
or character ZCTA GEOIDs are accepted. When specifying ZCTAs, geogra-
phy must be set to ‘"zcta"‘ and ‘state‘ must be specified with ‘county‘ left as
‘NULL‘. Defaults to NULL.

geometry if FALSE (the default), return a regular tibble of ACS data. if TRUE, uses
the tigris package to return an sf tibble with simple feature geometry in the
‘geometry‘ column.

keep_geo_vars if TRUE, keeps all the variables from the Census shapefile obtained by tigris.
Defaults to FALSE.

shift_geo (deprecated) if TRUE, returns geometry with Alaska and Hawaii shifted for the-
matic mapping of the entire US. Geometry was originally obtained from the al-
bersusa R package. As of May 2021, we recommend using tigris::shift_geometry()
instead.

summary_var Character string of a "summary variable" from the ACS to be included in your
output. Usually a variable (e.g. total population) that you’ll want to use as a
denominator or comparison.

key Your Census API key. Obtain one at https://api.census.gov/data/key_
signup.html

moe_level The confidence level of the returned margin of error. One of 90 (the default), 95,
or 99.

survey The ACS contains one-year, three-year, and five-year surveys expressed as "acs1",
"acs3", and "acs5". The default selection is "acs5."

show_call if TRUE, display call made to Census API. This can be very useful in debugging
and determining if error messages returned are due to tidycensus or the Census
API. Copy to the API call into a browser and see what is returned by the API
directly. Defaults to FALSE.

... Other keyword arguments

Value

A tibble or sf tibble of ACS data

https://api.census.gov/data/key_signup.html
https://api.census.gov/data/key_signup.html

10 get_decennial

Examples

Not run:
library(tidycensus)
library(tidyverse)
library(viridis)
census_api_key("YOUR KEY GOES HERE")

tarr <- get_acs(geography = "tract", variables = "B19013_001",
state = "TX", county = "Tarrant", geometry = TRUE, year = 2020)

ggplot(tarr, aes(fill = estimate, color = estimate)) +
geom_sf() +
coord_sf(crs = 26914) +
scale_fill_viridis(option = "magma") +
scale_color_viridis(option = "magma")

vt <- get_acs(geography = "county", variables = "B19013_001", state = "VT", year = 2019)

vt %>%
mutate(NAME = gsub(" County, Vermont", "", NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
geom_errorbar(aes(xmin = estimate - moe, xmax = estimate + moe), width = 0.3, size = 0.5) +
geom_point(color = "red", size = 3) +
labs(title = "Household income by county in Vermont",

subtitle = "2015-2019 American Community Survey",
y = "",
x = "ACS estimate (bars represent margin of error)")

End(Not run)

get_decennial Obtain data and feature geometry for the decennial US Census

Description

Obtain data and feature geometry for the decennial US Census

Usage

get_decennial(
geography,
variables = NULL,
table = NULL,
cache_table = FALSE,
year = 2010,
sumfile = "sf1",
state = NULL,

get_decennial 11

county = NULL,
geometry = FALSE,
output = "tidy",
keep_geo_vars = FALSE,
shift_geo = FALSE,
summary_var = NULL,
key = NULL,
show_call = FALSE,
...

)

Arguments

geography The geography of your data.

variables Character string or vector of character strings of variable IDs.

table The Census table for which you would like to request all variables. Uses lookup
tables to identify the variables; performs faster when variable table already exists
through load_variables(cache = TRUE). Only one table may be requested per
call.

cache_table Whether or not to cache table names for faster future access. Defaults to FALSE;
if TRUE, only needs to be called once per dataset. If variables dataset is already
cached via the load_variables function, this can be bypassed.

year The year for which you are requesting data. Defaults to 2010; 2000, 2010, and
2020 are available.

sumfile The Census summary file. Defaults to sf1; the function will look in sf3 if it
cannot find a variable in sf1.

state The state for which you are requesting data. State names, postal codes, and FIPS
codes are accepted. Defaults to NULL.

county The county for which you are requesting data. County names and FIPS codes
are accepted. Must be combined with a value supplied to ‘state‘. Defaults to
NULL.

geometry if FALSE (the default), return a regular tibble of ACS data. if TRUE, uses
the tigris package to return an sf tibble with simple feature geometry in the
‘geometry‘ column. state, county, tract, and block group are supported for 2000
through 2020; block and ZCTA geometry are supported for 2000 and 2010.

output One of "tidy" (the default) in which each row represents an enumeration unit-
variable combination, or "wide" in which each row represents an enumeration
unit and the variables are in the columns.

keep_geo_vars if TRUE, keeps all the variables from the Census shapefile obtained by tigris.
Defaults to FALSE.

shift_geo (deprecated) if TRUE, returns geometry with Alaska and Hawaii shifted for the-
matic mapping of the entire US. Geometry was originally obtained from the al-
bersusa R package. As of May 2021, we recommend using tigris::shift_geometry()
instead.

12 get_estimates

summary_var Character string of a "summary variable" from the decennial Census to be in-
cluded in your output. Usually a variable (e.g. total population) that you’ll want
to use as a denominator or comparison.

key Your Census API key. Obtain one at https://api.census.gov/data/key_
signup.html

show_call if TRUE, display call made to Census API. This can be very useful in debugging
and determining if error messages returned are due to tidycensus or the Census
API. Copy to the API call into a browser and see what is returned by the API
directly. Defaults to FALSE.

... Other keyword arguments

Value

a tibble or sf tibble of decennial Census data

Examples

Not run:
Plot of race/ethnicity by county in Illinois for 2010
library(tidycensus)
library(tidyverse)
library(viridis)
census_api_key("YOUR KEY GOES HERE")
vars10 <- c("P005003", "P005004", "P005006", "P004003")

il <- get_decennial(geography = "county", variables = vars10, year = 2010,
summary_var = "P001001", state = "IL", geometry = TRUE) %>%

mutate(pct = 100 * (value / summary_value))

ggplot(il, aes(fill = pct, color = pct)) +
geom_sf() +
facet_wrap(~variable)

End(Not run)

get_estimates Get data from the US Census Bureau Population Estimates APIs

Description

Get data from the US Census Bureau Population Estimates APIs

https://api.census.gov/data/key_signup.html
https://api.census.gov/data/key_signup.html

get_estimates 13

Usage

get_estimates(
geography,
product = NULL,
variables = NULL,
breakdown = NULL,
breakdown_labels = FALSE,
year = 2019,
state = NULL,
county = NULL,
time_series = FALSE,
output = "tidy",
geometry = FALSE,
keep_geo_vars = FALSE,
shift_geo = FALSE,
key = NULL,
show_call = FALSE,
...

)

Arguments

geography The geography of your data.

product The data product (optional). "population", "components" "housing", and
"characteristics" are supported.

variables A character string or vector of character strings of requested variables to get
from either the population, components, or housing API.

breakdown The population breakdown used when product = "characteristics". Ac-
ceptable values are "AGEGROUP", "RACE", "SEX", and "HISP", for Hispanic/Not
Hispanic. These values can be combined in a vector, returning population esti-
mates in the value column for all combinations of these breakdowns.

breakdown_labels

Whether or not to label breakdown elements returned when product = "characteristics".
Defaults to FALSE.

year The data year (defaults to 2019)

state The state for which you are requesting data. State names, postal codes, and FIPS
codes are accepted. Defaults to NULL.

county The county for which you are requesting data. County names and FIPS codes
are accepted. Must be combined with a value supplied to ‘state‘. Defaults to
NULL.

time_series If TRUE, the function will return a time series of observations back to the de-
cennial Census of 2010. The returned column is either "DATE", representing a
particular estimate date, or "PERIOD", representing a time period (e.g. births
between 2016 and 2017), and contains integers representing those values. Inte-
ger to date or period mapping is available at https://www.census.gov/data/
developers/data-sets/popest-popproj/popest/popest-vars/2019.html.

https://www.census.gov/data/developers/data-sets/popest-popproj/popest/popest-vars/2019.html
https://www.census.gov/data/developers/data-sets/popest-popproj/popest/popest-vars/2019.html

14 get_flows

output One of "tidy" (the default) in which each row represents an enumeration unit-
variable combination, or "wide" in which each row represents an enumeration
unit and the variables are in the columns.

geometry if FALSE (the default), return a regular tibble of ACS data. if TRUE, uses
the tigris package to return an sf tibble with simple feature geometry in the
‘geometry‘ column.

keep_geo_vars if TRUE, keeps all the variables from the Census shapefile obtained by tigris.
Defaults to FALSE.

shift_geo (deprecated) if TRUE, returns geometry with Alaska and Hawaii shifted for
thematic mapping of the entire US. As of May 2021, we recommend using
tigris::shift_geometry() instead.

key Your Census API key. Obtain one at https://api.census.gov/data/key_
signup.html. Can be stored in your .Renviron with census_api_key("YOUR
KEY",install = TRUE)

show_call if TRUE, display call made to Census API. This can be very useful in debugging
and determining if error messages returned are due to tidycensus or the Census
API. Copy to the API call into a browser and see what is returned by the API
directly. Defaults to FALSE.

... other keyword arguments

Value

A tibble, or sf tibble, of population estimates data

get_flows Obtain data and feature geometry for American Community Survey
Migration Flows

Description

Obtain data and feature geometry for American Community Survey Migration Flows

Usage

get_flows(
geography,
variables = NULL,
breakdown = NULL,
breakdown_labels = FALSE,
year = 2018,
output = "tidy",
state = NULL,
county = NULL,
msa = NULL,
geometry = FALSE,

https://api.census.gov/data/key_signup.html
https://api.census.gov/data/key_signup.html

get_flows 15

key = NULL,
moe_level = 90,
show_call = FALSE

)

Arguments

geography The geography of your requested data. Possible values are "county", "county
subdivision", and "metropolitan statistical area". MSA data is only
available beginning with the 2009-2013 5-year ACS.

variables Character string or vector of character strings of variable names. By default,
get_flows() returns the GEOID and names of the geographies as well as the
number of people who moved in, out, and net movers of each geography ("MOVEDIN",
"MOVEDOUT", "MOVEDNET"). If additional variables are specified, they are pulled
in addition to the default variables. The names of additional variables can be
found in the Census Migration Flows API documentation at https://api.
census.gov/data/2018/acs/flows/variables.html.

breakdown A character vector of the population breakdown characteristics to be crossed
with migration flows data. For datasets between 2006-2010 and 2011-2015, se-
lected demographic characteristics such as age, race, employment status, etc.
are available. Possible values are "AGE", "SEX", "RACE", "HSGP", "REL",
"HHT", "TEN", "ENG", "POB", "YEARS", "ESR", "OCC", "WKS", "SCHL",
"AHINC", "APINC", and "HISP_ORIGIN". For more information and to see
which characteristics are available in each year, visit the Census Migration Flows
documentation at https://www.census.gov/data/developers/data-sets/
acs-migration-flows.html. Note: not all characteristics are available in all
years.

breakdown_labels

Whether or not to add columns with labels for the breakdown characteristic
codes. Defaults to FALSE.

year The year, or endyear, of the ACS sample. The Migration Flows API is available
for 5-year ACS samples from 2010 to 2018. Defaults to 2018.

output One of "tidy" (the default) in which each row represents an enumeration unit-
variable combination, or "wide" in which each row represents an enumeration
unit and the variables are in the columns.

state An optional vector of states for which you are requesting data. State names,
postal codes, and FIPS codes are accepted. When requesting county subdivision
data, you must specify at least one state.

county The county for which you are requesting data. County names and FIPS codes
are accepted. Must be combined with a value supplied to ‘state‘.

msa The metropolitan statistical area for which you are requesting data. Specify a
single value or a vector of values to get data for more than one MSA. Numeric or
character MSA GEOIDs are accepted. When specifying MSAs, geography must
be set to "metropolitan statistical area" and state and county must be
NULL.

https://api.census.gov/data/2018/acs/flows/variables.html
https://api.census.gov/data/2018/acs/flows/variables.html
https://www.census.gov/data/developers/data-sets/acs-migration-flows.html
https://www.census.gov/data/developers/data-sets/acs-migration-flows.html

16 get_flows

geometry if FALSE (the default), return a tibble of ACS Migration Flows data. If TRUE,
return an sf object with the centroids of both origin and destination as sfc_POINT
columns. The origin point feature is returned in a column named centroid1 and
is the active geometry column in the sf object. The destination point feature is
returned in the centroid2 column.

key Your Census API key. Obtain one at https://api.census.gov/data/key_
signup.html

moe_level The confidence level of the returned margin of error. One of 90 (the default), 95,
or 99.

show_call if TRUE, display call made to Census API. This can be very useful in debugging
and determining if error messages returned are due to tidycensus or the Census
API. Copy to the API call into a browser and see what is returned by the API
directly. Defaults to FALSE.

Value

A tibble or sf tibble of ACS Migration Flows data

Examples

Not run:
get_flows(

geography = "county",
state = "VT",
county = c("Washington", "Chittenden")
)

get_flows(
geography = "county subdivision",
breakdown = "RACE",
breakdown_labels = TRUE,
state = "NY",
county = "Westchester",
output = "wide",
year = 2015
)

get_flows(
geography = "metropolitan statistical area",
variables = c("POP1YR", "POP1YRAGO"),
geometry = TRUE,
output = "wide",
show_call = TRUE
)

End(Not run)

https://api.census.gov/data/key_signup.html
https://api.census.gov/data/key_signup.html

get_pums 17

get_pums Load data from the American Community Survey Public Use Micro-
data Series API

Description

Load data from the American Community Survey Public Use Microdata Series API

Usage

get_pums(
variables = NULL,
state = NULL,
puma = NULL,
year = 2020,
survey = "acs5",
variables_filter = NULL,
rep_weights = NULL,
recode = FALSE,
return_vacant = FALSE,
show_call = FALSE,
key = NULL

)

Arguments

variables A vector of variables from the PUMS API. Use View(pums_variables) to
browse variable options.

state A state, or vector of states, for which you would like to request data. The en-
tire US can be requested with state = "all" - though be patient with the data
download!

puma A vector of PUMAs from a single state, for which you would like to request
data. To get data from PUMAs in more than one state, specify a named vector
of state/PUMA pairs and set state = "multiple".

year The data year of the 1-year ACS sample or the endyear of the 5-year sample. De-
faults to 2020. Please note that 1-year data for 2020 is not available in tidycen-
sus, so users requesting 1-year data should supply a different year.

survey The ACS survey; one of either "acs1" or "acs5" (the default).
variables_filter

A named list of filters you’d like to return from the PUMS API. For example,
passing list(AGE = 25:50,SEX = 1) will return only males aged 25 to 50 in
your output dataset. Defaults to NULL, which returns all records. If a housing-
only dataset is required, use list(SPORDER = 1) to only return householder
records (taking care in your analysis to use the household weight WGTP).

18 interpolate_pw

rep_weights Whether or not to return housing unit, person, or both housing and person-
level replicate weights for calculation of standard errors; one of "person",
"housing", or "both".

recode If TRUE, recodes variable values using Census data dictionary and creates a
new *_label column for each variable that is recoded. Available for 2017 -
2020 data. Defaults to FALSE.

return_vacant If TRUE, makes a separate request to the Census API to retrieve microdata
for vacant housing units, which are handled differently in the API as they do
not have person-level characteristics. All person-level columns in the returned
dataset will be populated with NA for vacant housing units. Defaults to FALSE.

show_call If TRUE, display call made to Census API. This can be very useful in debugging
and determining if error messages returned are due to tidycensus or the Census
API. Copy to the API call into a browser and see what is returned by the API
directly. Defaults to FALSE.

key Your Census API key. Obtain one at https://api.census.gov/data/key_
signup.html

Value

A tibble of microdata from the ACS PUMS API.

Examples

Not run:
get_pums(variables = "AGEP", state = "VT")
get_pums(variables = "AGEP", state = "multiple", puma = c("UT" = 35008, "NV" = 00403))
get_pums(variables = c("AGEP", "ANC1P"), state = "VT", recode = TRUE)
get_pums(variables = "AGEP", state = "VT", survey = "acs1", rep_weights = "person")

End(Not run)

interpolate_pw Use population-weighted interpolation to transfer information from
one set of shapes to another

Description

A common use-case when working with time-series small-area Census data is to transfer data from
one set of shapes (e.g. 2010 Census tracts) to another set of shapes (e.g. 2020 Census tracts).
Population-weighted interpolation is one such solution to this problem that takes into account the
distribution of the population within a Census unit to intelligently transfer data between incongruent
units.

https://api.census.gov/data/key_signup.html
https://api.census.gov/data/key_signup.html

interpolate_pw 19

Usage

interpolate_pw(
from,
to,
to_id = NULL,
extensive,
weights,
weight_column = NULL,
weight_placement = c("surface", "centroid"),
crs = NULL

)

Arguments

from The spatial dataset from which numeric attributes will be interpolated to target
zones. By default, all numeric columns in this dataset will be interpolated.

to The target geometries (zones) to which numeric attributes will be interpolated.

to_id (optional) An ID column in the target dataset to be retained in the output. For
data obtained with tidycensus, this will be "GEOID" by convention. If NULL, the
output dataset will include a column id that uniquely identifies each row.

extensive if TRUE, return weighted sums; if FALSE, return weighted means.

weights An input spatial dataset to be used as weights. If the dataset is not of geometry
type POINT, it will be converted to points by the function with sf::st_point_on_surface().
For US-based applications, this will commonly be a Census block dataset ob-
tained with the tigris or tidycensus packages.

weight_column (optional) a column in weights used for weighting in the interpolation process.
Typically this will be a column representing the population (or other weighting
metric, like housing units) of the input weights dataset. If NULL (the default),
each feature in weights is given an equal weight of 1.

weight_placement

(optional) One of "surface", where weight polygons are converted to points on
polygon surfaces with sf::st_point_on_surface(), or "centroid", where
polygon centroids are used instead with sf::st_centroid(). Defaults to "surface".
This argument is not necessary if weights are already of geometry type POINT.

crs (optional) The EPSG code of the output projected coordinate reference system
(CRS). Useful as all input layers (from, to, and weights) must share the same
CRS for the function to run correctly.

Details

The approach implemented here is based on Esri’s data apportionment algorithm, in which an "ap-
portionment layer" of points (referred to here as the weights) is used to determine how to weight
areas of overlap between origin and target zones. Users must supply a "from" dataset as an sf object
(the dataset from which numeric columns will be interpolated) and a "to" dataset, also of class sf,
that contains the target zones. A third sf object, the "weights", may be an object of geometry type
POINT or polygons from which points will be derived using sf::st_point_on_surface().

20 interpolate_pw

An intersection is computed between from and to, and a spatial join is computed between the
intersection layer and the weights layer, represented as points. A specified weight_column in
weights will be used to determine the relative influence of each point on the allocation of values
between from and to; if no weight column is specified, all points will be weighted equally.

The extensive parameter (logical) should reflect the values being interpolated correctly. If TRUE,
the function returns a weighted sum for each zone. If FALSE, a weighted mean will be returned. For
Census data, extensive = TRUE should be used for transferring counts / estimated counts between
zones. Derived metrics (e.g. population density, percentages, etc.) should use extensive = FALSE.
Margins of error in the ACS will not be transferred correctly with this function, so please use with
caution.

Value

A dataset of class sf with the geometries and an ID column from to (the target shapes) but with
numeric attributes of from interpolated to those shapes.

Examples

Not run:
Example: interpolating work-from-home from 2011-2015 ACS
to 2020 shapes
library(tidycensus)
library(tidyverse)
library(tigris)
options(tigris_use_cache = TRUE)

wfh_15 <- get_acs(
geography = "tract",
variables = "B08006_017",
year = 2015,
state = "AZ",
county = "Maricopa",
geometry = TRUE

) %>%
select(estimate)

wfh_20 <- get_acs(
geography = "tract",
variables = "B08006_017",
year = 2020,
state = "AZ",
county = "Maricopa",
geometry = TRUE
)

maricopa_blocks <- blocks(
"AZ",
"Maricopa",
year = 2020

)

load_variables 21

wfh_15_to_20 <- interpolate_pw(
from = wfh_15,
to = wfh_20,
to_id = "GEOID",
weights = maricopa_blocks,
weight_column = "POP20",
crs = 26949,
extensive = TRUE

)

End(Not run)

load_variables Load variables from a decennial Census or American Community Sur-
vey dataset to search in R

Description

Load variables from a decennial Census or American Community Survey dataset to search in R

Usage

load_variables(year, dataset, cache = FALSE)

Arguments

year The year for which you are requesting variables. Either the year or endyear of
the decennial Census or ACS sample. 5-year ACS data is available from 2009
through 2018. 1-year ACS data is available from 2005 through 2019.

dataset One of "sf1", "sf2", "sf3", "sf4", "pl", "as", "gu", "mp", "vi", "acs1", "acs3",
"acs5", "acs1/profile", "acs3/profile, "acs5/profile", "acs1/subject", "acs3/subject",
or "acs5/subject".

cache Whether you would like to cache the dataset for future access, or load the dataset
from an existing cache. Defaults to FALSE.

Value

A tibble of variables from the requested dataset.

Examples

Not run:
v15 <- load_variables(2015, "acs5", cache = TRUE)
View(v15)

End(Not run)

22 moe_product

mig_recodes Dataset with Migration Flows characteristic recodes

Description

Built-in dataset for Migration Flows code label lookup.

• characteristic: Characteristic variable name

• code: Characteristic calue code

• desc: Characteristic calue label

• ordered: Whether or not recoded value should be ordered factor

Usage

data(mig_recodes)

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 120 rows and 4
columns.

Details

Dataset with Migration Flows characteristic recodes

Built-in dataset that is created from the Migration Flows API documentation. This dataset contains
labels for the coded values returned by the Census API and is used when breakdown_labels =
TRUE in get_flows.

moe_product Calculate the margin of error for a derived product

Description

Calculate the margin of error for a derived product

Usage

moe_product(est1, est2, moe1, moe2)

Arguments

est1 The first factor in the multiplication equation (an estimate)

est2 The second factor in the multiplication equation (an estimate)

moe1 The margin of error of the first factor

moe2 The margin of error of the second factor

https://www.census.gov/data/developers/data-sets/acs-migration-flows.html

moe_prop 23

Value

A margin of error for a derived product

moe_prop Calculate the margin of error for a derived proportion

Description

Calculate the margin of error for a derived proportion

Usage

moe_prop(num, denom, moe_num, moe_denom)

Arguments

num The numerator involved in the proportion calculation (an estimate)
denom The denominator involved in the proportion calculation (an estimate)
moe_num The margin of error of the numerator
moe_denom The margin of error of the denominator

Value

A margin of error for a derived proportion

moe_ratio Calculate the margin of error for a derived ratio

Description

Calculate the margin of error for a derived ratio

Usage

moe_ratio(num, denom, moe_num, moe_denom)

Arguments

num The numerator involved in the ratio calculation (an estimate)
denom The denominator involved in the ratio calculation (an estimate)
moe_num The margin of error of the numerator
moe_denom The margin of error of the denominator

Value

A margin of error for a derived ratio

24 pums_variables

moe_sum Calculate the margin of error for a derived sum

Description

Generates a margin of error for a derived sum. The function requires a vector of margins of error
involved in a sum calculation, and optionally a vector of estimates associated with the margins of
error. If the associated estimates are not specified, the user risks inflating the derived margin of
error in the event of multiple zero estimates. It is recommended to inspect your data for multiple
zero estimates before using this function and setting the inputs accordingly.

Usage

moe_sum(moe, estimate = NULL, na.rm = FALSE)

Arguments

moe A vector of margins of error involved in the sum calculation

estimate A vector of estimates, the same length as moe, associated with the margins of
error

na.rm A logical value indicating whether missing values (including NaN) should be
removed

Value

A margin of error for a derived sum

See Also

https://www2.census.gov/programs-surveys/acs/tech_docs/accuracy/MultiyearACSAccuracyofData2015.
pdf

pums_variables Dataset with PUMS variables and codes

Description

Built-in dataset for variable name and code label lookup. To access the data directly, issue the
command data(pums_variables).

• survey: acs1 or acs5

• year: Year of data. For 5-year data, last year in range.

• var_code: Variable name

• var_label: Variable label

https://www2.census.gov/programs-surveys/acs/tech_docs/accuracy/MultiyearACSAccuracyofData2015.pdf
https://www2.census.gov/programs-surveys/acs/tech_docs/accuracy/MultiyearACSAccuracyofData2015.pdf

significance 25

• data_type: chr or num

• level: housing or person

• val_min: For numeric variables, the minimum value

• val_max: For numeric variables, the maximum value

• val_label: Value label

• recode: Use labels to recode values

• val_length: Length of value returned

• val_na: Value of NA value returned by API (if known)

Usage

data(pums_variables)

Format

An object of class tbl_df (inherits from tbl, data.frame) with 37021 rows and 12 columns.

Details

Dataset with PUMS variables and codes

Built-in dataset that is created from the Census PUMS data dictionaries. Use this dataset to lookup
the names of variables to use in get_pums. This dataset also contains labels for the coded values
returned by the Census API and is used when recode = TRUE in get_pums.

Because variable names and codes change from year to year, you should filter this dataset for the
survey and year of interest. NOTE: 2017 - 2019 acs1 and 2017 - 2020 acs5 variables are available.

significance Evaluate whether the difference in two estimates is statistically signif-
icant.

Description

Evaluate whether the difference in two estimates is statistically significant.

Usage

significance(est1, est2, moe1, moe2, clevel = 0.9)

Arguments

est1 The first estimate.

est2 The second estimate

moe1 The margin of error of the first estimate

moe2 The margin of error of the second estimate

clevel The confidence level. May by 0.9, 0.95, or 0.99

https://www.census.gov/programs-surveys/acs/microdata/documentation.html

26 tidycensus

Value

TRUE if the difference is statistically signifiant, FALSE otherwise.

See Also

https://www.census.gov/content/dam/Census/library/publications/2018/acs/acs_general_handbook_2018_ch07.pdf

state_laea State geometry with Alaska and Hawaii shifted and re-scaled

Description

Built-in dataset for use with shift_geo = TRUE

Dataset of US states with Alaska and Hawaii shifted and re-scaled

Usage

data(state_laea)

data(state_laea)

Format

An object of class sf (inherits from data.frame) with 51 rows and 2 columns.

Details

Dataset with state geometry for use when shifting Alaska and Hawaii

Built-in dataset for use with the shift_geo parameter, with the continental United States in a Lam-
bert azimuthal equal area projection and Alaska and Hawaii shifted and re-scaled. The data were
originally obtained from the albersusa R package (https://github.com/hrbrmstr/albersusa).

tidycensus Return tidy data frames from the US Census Bureau API

Description

This packages uses US Census Bureau data but is neither endorsed nor supported by the US Census
Bureau.

Author(s)

Kyle Walker

https://github.com/hrbrmstr/albersusa

to_survey 27

to_survey Convert a data frame returned by get_pums() to a survey object

Description

This helper function takes a data frame returned by get_pums and converts it to a tbl_svy from
the srvyr as_survey package or a svyrep.design object from the svrepdesign package. You can
then use functions from the srvyr or survey to calculate weighted estimates with replicate weights
included to provide accurate standard errors.

Usage

to_survey(
df,
type = c("person", "housing"),
class = c("srvyr", "survey"),
design = "rep_weights"

)

Arguments

df A data frame with PUMS person or housing weight variables, most likely re-
turned by get_pums.

type Whether to use person or housing-level weights; either "housing" or "person"
(the default).

class Whether to convert to a srvyr or survey object; either "survey" or "srvyr" (the
default).

design The survey design to use when creating a survey object. Currently the only
option is code"rep_weights"/.

Value

A tbl_svy or svyrep.design object.

Examples

Not run:
pums <- get_pums(variables = "AGEP", state = "VT", rep_weights = "person")
pums_design <- to_survey(pums, type = "person", class = "srvyr")
survey::svymean(~AGEP, pums_design)

End(Not run)

Index

∗ datasets
acs5_geography, 2
county_laea, 6
fips_codes, 7
mig_recodes, 22
pums_variables, 24
state_laea, 26

acs5_geography, 2
as_dot_density, 3
as_survey, 27

census_api_key, 5
counties, 7
county_laea, 6

fips_codes, 7

get_acs, 8
get_decennial, 10
get_estimates, 12
get_flows, 14, 22
get_pums, 17, 25, 27

interpolate_pw, 18

load_variables, 21

mig_recodes, 22
moe_product, 22
moe_prop, 23
moe_ratio, 23
moe_sum, 24

pums_variables, 24

significance, 25
state_laea, 26
svrepdesign, 27

tidycensus, 26
to_survey, 27

28

	acs5_geography
	as_dot_density
	census_api_key
	county_laea
	fips_codes
	get_acs
	get_decennial
	get_estimates
	get_flows
	get_pums
	interpolate_pw
	load_variables
	mig_recodes
	moe_product
	moe_prop
	moe_ratio
	moe_sum
	pums_variables
	significance
	state_laea
	tidycensus
	to_survey
	Index

