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autoplot.posterior Visualize the Posterior Distributions of Model Statistics

Description

For objects of classes posterior and perf_mod, autoplot() produces a simple plot of posterior
distributions. For workflow set objects, there are several types of plots that can be produced.

Usage

## S3 method for class 'posterior'
autoplot(object, ...)

## S3 method for class 'perf_mod'
autoplot(object, ...)

## S3 method for class 'perf_mod_workflow_set'
autoplot(object, type = "intervals", prob = 0.9, size = NULL, ...)

Arguments

object An object produced by perf_mod(), tidy.perf_mod(), or a workflow set with
computed results.

... Options passed to geom_line(stat = "density",...).

type A value of one of: "intervals" (for model rank versus posterior probabil-
ity using interval estimation), "posteriors" (density plots for each model), or
"ROPE" (for practical equivalence probabilities versus workflow rank).

prob A number p (0 < p < 1) indicating the desired probability mass to include in the
intervals.

size The size of an effective difference in the units of the chosen metric. For example,
a 5 percent increase in accuracy (size = 0.05) between two models might be
considered a "real" difference.
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Value

A ggplot2::ggplot() object.

Examples

data(ex_objects)
autoplot(posterior_samples)

autoplot.posterior_diff

Visualize the Posterior Distributions of Model Differences

Description

A density is created for each contrast in a faceted grid.

Usage

## S3 method for class 'posterior_diff'
autoplot(object, size = 0, ...)

Arguments

object An object produced by contrast_models().

size The size of an effective difference. For example, a 5\ "real" difference.

... Options passed to geom_line(stat = "density",...).

Value

A ggplot2::ggplot() object using geom_density faceted by the models being contrasted (when
there are 2 or more contrasts).

Examples

data(ex_objects)
library(ggplot2)
autoplot(contrast_samples)
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contrast_models Estimate the Difference Between Models

Description

The posterior distributions created by perf_mod() can be used to obtain the posterior distribution
of the difference(s) between models. One or more comparisons can be computed at the same time.

Usage

contrast_models(x, list_1 = NULL, list_2 = NULL, seed = sample.int(10000, 1))

Arguments

x An object produced by perf_mod().

list_1, list_2 Character vectors of equal length that specify the specific pairwise contrasts.
The contrast is parameterized as list_1[i] -list_2[i]. If the defaults are left
to NULL, all combinations are evaluated.

seed A single integer for sampling from the posterior.

Details

If a transformation was used when x was created, the inverse is applied before the difference is
computed.

Value

A data frame of the posterior distribution(s) of the difference(s). The object has an extra class of
"posterior_diff".

no_trans Simple Transformation Functions

Description

A set of objects are contained here to easily facilitate the use of outcome transformations for mod-
eling. For example, if there is a large amount of variability in the resampling results for the Kappa
statistics, which lies between -1 and 1, assuming normality may produce posterior estimates out-
side of the natural bound. One way to solve this is to use a link function or assume a prior that
is appropriately bounded. Another approach is to transform the outcome values prior to modeling
using a Gaussian prior and reverse-transforming the posterior estimates prior to visualization and
summarization. These object can help facilitate this last approach.
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Usage

no_trans

logit_trans

Fisher_trans

ln_trans

inv_trans

Format

An object of class list of length 2.

An object of class list of length 2.

An object of class list of length 2.

An object of class list of length 2.

An object of class list of length 2.

Details

The logit_trans object is useful for model performance statistics bounds in zero and one, such as
accuracy or the area under the ROC curve.

ln_trans and inv_trans can be useful when the statistics are right-skewed and strictly positive.

Fisher_trans was originally used for correlation statistics but can be used here for an metrics
falling between -1 and 1, such as Kappa.

Examples

logit_trans$func(.5)
logit_trans$inv(0)

perf_mod Bayesian Analysis of Resampling Statistics

Description

Bayesian analysis used here to answer the question: "when looking at resampling results, are the
differences between models ’real?’" To answer this, a model can be created were the outcome is
the resampling statistics (e.g. accuracy or RMSE). These values are explained by the model types.
In doing this, we can get parameter estimates for each model’s affect on performance and make
statistical (and practical) comparisons between models.
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Usage

perf_mod(object, ...)

## S3 method for class 'rset'
perf_mod(object, transform = no_trans, hetero_var = FALSE, formula = NULL, ...)

## S3 method for class 'resamples'
perf_mod(
object,
transform = no_trans,
hetero_var = FALSE,
metric = object$metrics[1],
...

)

## S3 method for class 'data.frame'
perf_mod(object, transform = no_trans, hetero_var = FALSE, formula = NULL, ...)

## S3 method for class 'tune_results'
perf_mod(
object,
metric = NULL,
transform = no_trans,
hetero_var = FALSE,
formula = NULL,
filter = NULL,
...

)

## S3 method for class 'workflow_set'
perf_mod(
object,
metric = NULL,
transform = no_trans,
hetero_var = FALSE,
formula = NULL,
...

)

Arguments

object Depending on the context (see Details below):

• A data frame with id columns for the resampling groupds and metric results
in all of the other columns..

• An rset object (such as rsample::vfold_cv()) containing the id col-
umn(s) and at least two numeric columns of model performance statistics
(e.g. accuracy).

• An object from caret::resamples.
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• An object with class tune_results, which could be produced by tune::tune_grid(),
tune::tune_bayes() or similar.

• A workflow set where all results contain the metric value given in the
metric argument value.

... Additional arguments to pass to rstanarm::stan_glmer() such as verbose,
prior, seed, refresh, family, etc.

transform An named list of transformation and inverse transformation functions. See
logit_trans() as an example.

hetero_var A logical; if TRUE, then different variances are estimated for each model group.
Otherwise, the same variance is used for each group. Estimating heterogeneous
variances may slow or prevent convergence.

formula An optional model formula to use for the Bayesian hierarchical model (see De-
tails below).

metric A single character value for the statistic from the resamples object that should
be analyzed.

filter A conditional logic statement that can be used to filter the statistics generated
by tune_results using the tuning parameter values or the .config column.

Details

These functions can be used to process and analyze matched resampling statistics from different
models using a Bayesian generalized linear model with effects for the model and the resamples.

Bayesian Model formula:
By default, a generalized linear model with Gaussian error and an identity link is fit to the data
and has terms for the predictive model grouping variable. In this way, the performance metrics
can be compared between models.
Additionally, random effect terms are also used. For most resampling methods (except repeated
V-fold cross-validation), a simple random intercept model its used with an exchangeable (i.e.
compound-symmetric) variance structure. In the case of repeated cross-validation, two random
intercept terms are used; one for the repeat and another for the fold within repeat. These also have
exchangeable correlation structures.
The above model specification assumes that the variance in the performance metrics is the same
across models. However, this is unlikely to be true in some cases. For example, for simple
binomial accuracy, it well know that the variance is highest when the accuracy is near 50 percent.
When the argument hetero_var = TRUE, the variance structure uses random intercepts for each
model term. This may produce more realistic posterior distributions but may take more time to
converge.
Examples of the default formulas are:

# One ID field and common variance:
statistic ~ model + (model | id)

# One ID field and heterogeneous variance:
statistic ~ model + (model + 0 | id)

# Repeated CV (id = repeat, id2 = fold within repeat)
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# with a common variance:
statistic ~ model + (model | id2/id)

# Repeated CV (id = repeat, id2 = fold within repeat)
# with a heterogeneous variance:
statistic ~ model + (model + 0| id2/id)

# Default for unknown resampling method and
# multiple ID fields:
statistic ~ model + (model | idN/../id)

Custom formulas should use statistic as the outcome variable and model as the factor variable
with the model names.
Also, as shown in the package vignettes, the Gaussian assumption make be unrealistic. In this
case, there are at least two approaches that can be used. First, the outcome statistics can be
transformed prior to fitting the model. For example, for accuracy, the logit transformation can be
used to convert the outcome values to be on the real line and a model is fit to these data. Once the
posterior distributions are computed, the inverse transformation can be used to put them back into
the original units. The transform argument can be used to do this.
The second approach would be to use a different error distribution from the exponential family.
For RMSE values, the Gamma distribution may produce better results at the expense of model
computational complexity. This can be achieved by passing the family argument to perf_mod as
one might with the glm function.

Input formats:
There are several ways to give resampling results to the perf_mod() function. To illustrate, here
are some example objects using 10-fold cross-validation for a simple two-class problem:

library(tidymodels)
library(tidyposterior)
library(workflowsets)

data(two_class_dat, package = "modeldata")

set.seed(100)
folds <- vfold_cv(two_class_dat)

We can define two different models (for simplicity, with no tuning parameters).

logistic_reg_glm_spec <-
logistic_reg() %>%
set_engine('glm')

mars_earth_spec <-
mars(prod_degree = 1) %>%
set_engine('earth') %>%
set_mode('classification')

For tidymodels, the tune::fit_resamples() function can be used to estimate performance for
each model/resample:
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rs_ctrl <- control_resamples(save_workflow = TRUE)

logistic_reg_glm_res <-
logistic_reg_glm_spec %>%
fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)

mars_earth_res <-
mars_earth_spec %>%
fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)

From these, there are several ways to pass the results to perf_mod().

Data Frame as Input:
The most general approach is to have a data frame with the resampling labels (i.e., one or more
id columns) as well as columns for each model that you would like to compare.
For the model results above, tune::collect_metrics() can be used along with some basic
data manipulation steps:

logistic_roc <-
collect_metrics(logistic_reg_glm_res, summarize = FALSE) %>%
dplyr::filter(.metric == "roc_auc") %>%
dplyr::select(id, logistic = .estimate)

mars_roc <-
collect_metrics(mars_earth_res, summarize = FALSE) %>%
dplyr::filter(.metric == "roc_auc") %>%
dplyr::select(id, mars = .estimate)

resamples_df <- full_join(logistic_roc, mars_roc, by = "id")
resamples_df

## # A tibble: 10 x 3
## id logistic mars
## <chr> <dbl> <dbl>
## 1 Fold01 0.908 0.875
## 2 Fold02 0.904 0.917
## 3 Fold03 0.924 0.938
## 4 Fold04 0.881 0.881
## 5 Fold05 0.863 0.864
## 6 Fold06 0.893 0.889
## # . . . with 4 more rows

We can then give this directly to perf_mod():
set.seed(101)
roc_model_via_df <- perf_mod(resamples_df, refresh = 0)
tidy(roc_model_via_df) %>% summary()

## # A tibble: 2 x 4
## model mean lower upper
## <chr> <dbl> <dbl> <dbl>
## 1 logistic 0.892 0.879 0.906
## 2 mars 0.888 0.875 0.902

rsample Object as Input:
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Alternatively, the result columns can be merged back into the original rsample object. The
up-side to using this method is that perf_mod() will know exactly which model formula to use
for the Bayesian model:

resamples_rset <-
full_join(folds, logistic_roc, by = "id") %>%
full_join(mars_roc, by = "id")

set.seed(101)
roc_model_via_rset <- perf_mod(resamples_rset, refresh = 0)
tidy(roc_model_via_rset) %>% summary()

## # A tibble: 2 x 4
## model mean lower upper
## <chr> <dbl> <dbl> <dbl>
## 1 logistic 0.892 0.879 0.906
## 2 mars 0.888 0.875 0.902

Workflow Set Object as Input:
Finally, for tidymodels, a workflow set object can be used. This is a collection of models/preprocessing
combinations in one object. We can emulate a workflow set using the existing example results
then pass that to perf_mod():

example_wset <-
as_workflow_set(logistic = logistic_reg_glm_res, mars = mars_earth_res)

set.seed(101)
roc_model_via_wflowset <- perf_mod(example_wset, refresh = 0)
tidy(roc_model_via_rset) %>% summary()

## # A tibble: 2 x 4
## model mean lower upper
## <chr> <dbl> <dbl> <dbl>
## 1 logistic 0.892 0.879 0.906
## 2 mars 0.888 0.875 0.902

caret resamples object:
The caret package can also be used. An equivalent set of models are created:

library(caret)

set.seed(102)
logistic_caret <- train(Class ~ ., data = two_class_dat, method = "glm",

trControl = trainControl(method = "cv"))

set.seed(102)
mars_caret <- train(Class ~ ., data = two_class_dat, method = "gcvEarth",

tuneGrid = data.frame(degree = 1),
trControl = trainControl(method = "cv"))

Note that these two models use the same resamples as one another due to setting the seed prior
to calling train(). However, these are different from the tidymodels results used above (so the
final results will be different).
caret has a resamples() function that can collect and collate the resamples. This can also be
given to perf_mod():
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caret_resamples <- resamples(list(logistic = logistic_caret, mars = mars_caret))

set.seed(101)
roc_model_via_caret <- perf_mod(caret_resamples, refresh = 0)
tidy(roc_model_via_caret) %>% summary()

## # A tibble: 2 x 4
## model mean lower upper
## <chr> <dbl> <dbl> <dbl>
## 1 logistic 0.821 0.801 0.842
## 2 mars 0.822 0.802 0.842

Value

An object of class perf_mod. If a workfkow set is given in object, there is an extra class of
"perf_mod_workflow_set".

References

Kuhn and Silge (2021) Tidy Models with R, Chapter 11, https://www.tmwr.org/compare.html

See Also

tidy.perf_mod(), contrast_models()

precise_example Example Data Sets

Description

Example Data Sets

Details

Several data sets are contained in the package as examples. Each simulates an rset object but the
splits columns are not included to save space.

• precise_example contains the results of the classification analysis of a real data set using 10-
fold CV. The holdout data sets contained thousands of examples and have precise performance
estimates. Three models were fit to the original data and several performance metrics are
included.

• noisy_example was also generated from a regression data simulation. The original data set
was small (50 samples) and 10-repeated of 10-fold CV were used with four models. There is
an excessive of variability in the results (probably more than the resample-to-resample vari-
ability). The RMSE distributions show fairly right-skewed distributions.

• concrete_example contains the results of the regression case study from the book Applied
Predictive Modeling. The original data set contained 745 samples in the training set. 10-
repeats of 10-fold CV was also used and 13 models were fit to the data.

https://www.tmwr.org/compare.html
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• ts_example is from a data set where rolling-origin forecast resampling was used. Each as-
sessment set is the summary of 14 observations (i.e. 2 weeks). The analysis set consisted of a
base of about 5,500 samples plus the previous assessment sets. Four regression models were
applied to these data.

• ex_object objects were generated from the two_class_dat data in the modeldata package.
Basic 10-fold cross validation was used to evaluate the models. The posterior_samples ob-
ject is samples of the posterior distribution of the model ROC values while contrast_samples
are posterior probabilities form the differences in ROC values.

Value

Tibbles with the additional class rset

Examples

data(precise_example)
precise_example

summary.posterior Summarize the Posterior Distributions of Model Statistics

Description

Numerical summaries are created for each model including the posterior mean and upper and lower
credible intervals (aka uncertainty intervals).

Usage

## S3 method for class 'posterior'
summary(object, prob = 0.9, seed = sample.int(10000, 1), ...)

Arguments

object An object produced by tidy.perf_mod().
prob A number p (0 < p < 1) indicating the desired probability mass to include in the

intervals.
seed A single integer for sampling from the posterior.
... Not currently used

Value

A data frame with summary statistics and a row for each model.

Examples

data("ex_objects")

summary(posterior_samples)
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summary.posterior_diff

Summarize Posterior Distributions of Model Differences

Description

Credible intervals are created for the differences. Also, region of practical equivalence (ROPE)
statistics are computed when the effective size of a difference is given.

Usage

## S3 method for class 'posterior_diff'
summary(object, prob = 0.9, size = 0, ...)

Arguments

object An object produced by contrast_models().

prob A number p (0 < p < 1) indicating the desired probability mass to include in the
intervals.

size The size of an effective difference in the units of the chosen metric. For example,
a 5 percent increase in accuracy (size = 0.05) between two models might be
considered a "real" difference.

... Not currently used

Details

The ROPE estimates included in the results are the columns pract_neg, pract_equiv, and pract_pos.
pract_neg integrates the portion of the posterior below -size (and pract_pos is the upper integral
starting at size). The interpretation depends on whether the metric being analyzed is better when
larger or smaller. pract_equiv integrates between [-size, size]. If this is close to one, the two
models are unlikely to be practically different relative to size.

Value

A data frame with interval and ROPE statistics for each comparison.

Examples

data("ex_objects")

summary(contrast_samples)
summary(contrast_samples, size = 0.025)
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tidy.perf_mod Extract Posterior Distributions for Models

Description

tidy can be used on an object produced by perf_mod() to create a data frame with a column for
the model name and the posterior predictive distribution values.

Usage

## S3 method for class 'perf_mod'
tidy(x, seed = sample.int(10000, 1), ...)

Arguments

x An object from perf_mod()

seed A single integer for sampling from the posterior.

... Not currently used

Details

Note that this posterior only reflects the variability of the groups (i.e. the fixed effects). This helps
answer the question of which model is best for this data set. If does not answer the question of
which model would be best on a new resample of the data (which would have greater variability).

Value

A data frame with the additional class "posterior"
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