Package ‘tropicalSparse’

July 1, 2018

Type Package

Title Sparse Tropical Algebra
Version 0.1.0

Date 2018-06-25

Description Some of the basic tropical algebra functionality is provided for sparse matrices by apply-
ing sparse matrix storage techniques. Some of these are addition and multiplication of vec-
tors and matrices, dot product of the vectors in tropical form and some general equa-
tions are also solved using tropical algebra.

License GPL (>= 3)
Depends R (>=3.0.0)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1

URL https://math.berkeley.edu/~bernd/mathmag.pdf
NeedsCompilation no

Author Hamza Farooq [aut],
Hafiz Zain Ul Hagq [aut, cre],
Muhammad Kashif Hanif [aut],
Shamsa Javaid [aut],
Karl-Heinz Zimmermann [aut]

Maintainer Hafiz Zain Ul Haq <zainalibajwa4u@yahoo.com>
Repository CRAN
Date/Publication 2018-07-01 13:30:03 UTC

R topics documented:

check.infinityM 2
check.infinityV 3
COUNEET . . v v v v e 4
row.colLNumber 4

https://math.berkeley.edu/~bernd/mathmag.pdf

2 check.infinityM
tropicalsparse.add L 5
tropicalSparse.axpyi - i i e e e e 7
tropicalsparse.doti e e e 8
tropicalsparse.mm L. Lo 9
tropicalsparse.mul L. L e e 10
tropicalSparse.mv L. e e e 12
tropicalSparse.storage a e e e e e e e e e e e e e e 14

Index 16

check.infinityM Check Infinity in Matrix

Description

check.infinityM checks infinite value in a matrix based on algebraType input.

Usage

check.infinityM(M, algebraType)

Arguments

M is matrix.

algebraType is string input that can be minplus or maxplus.
Details

The input of this function is a matrix and type of tropical algebra. A matrix may contain infinite
values that can be positive or negative. Both the positive and negative infinite values works differ-
ently on each algebra type. Due to the difference between minplus and maxplus tropical algebra, it
is important to manage them so they can work in their own bounderies. In minplus -Inf cannot be
used while in maxplus Inf cannot be used. So the main purpose of this funnction is to check such
possibilities that can cause errors. If this function finds a -Inf in the matrix and the type of algebra
is minplus then the function generates an error. Similarly, if the function finds a Inf in the matrix
and the type of algebra is maxplus then the function also generates an error.

Value

Returns nothing but generates an error if specific conditions met.

See Also

check.infinityV

check.infinityV

Examples

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf),
nrow = 3, ncol = 3, byrow = TRUE)
check.infinityM(a, 'minplus')

check.infinityV Check Infinity in Vector

Description

check.infinityV checks infinite value in a vector based on algebraType input.

Usage

check.infinityV(V, algebraType)

Arguments

\% is vector.

algebraType is string input that can be minplus or maxplus.
Details

The input of this function is a vector and type of tropical algebra. A vector may contain infinite val-
ues that can be positive or negative. Both the positive and negative infinite values works differently
on each algebra type. Due to the difference between minplus and maxplus tropical algebra, it is
important to manage them so they can work in their own bounderies. In minplus -Inf cannot be
used while in maxplus Inf cannot be used. So the main purpose of this funnction is to check such
possibilities that can cause errors. If this function finds a -Inf in the vector and the type of algebra
is minplus then the function generates an error. Similarly, if the function finds a Inf in the vector

and the type of algebra is maxplus then the function also generates an error.

Value

Returns nothing but generates an error if specific conditions met.

See Also

check.infinityM

Examples

a <- c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf)
check.infinityV(a, 'minplus')

4 row.col. Number

counter Count non-infinit values

Description

counter is used to get total number of non-infinit values in a matrix.

Usage

counter (M)

Arguments

M is a matrix.

Details

The input of this function is a matrix. This function returns the total number of non-infinite values
in the given matrix. In order to work properly, M must be a matrix otherwise this method generates
an error.

Value

Returns total number of non-infinit values.

Examples
a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf), nrow = 3, ncol = 3, byrow = TRUE)
counter(a)

#0113

row.col.Number Row/Column Number of a Value

Description

row.col.Number method is used to get the row or column number of a specific value in the matrix.

Usage

row.col.Number(i, x, arr)

tropicalsparse.add 5

Arguments
i is an index of array containing non-infinite values of the matrix.
X is total number of rows or columns of the matrix.
arr is an array containing row or column pointer of the matrix.
Details

The function row. col.Number recieves three parameters i, x and arr. As mentioned above i is an
index of array containing non-infinite values of the matrix. This array can only be obtained in the
CSR and CSC storage techniques and has zero sparsity. x is total number of rows in case of CSR or
total number of columns in case of CSC of the matrix. arr is an array containing row pointer in case
of CSR or column pointer in case of CSC of the matrix. From these inputs row.col.Number finds
row or column number of a specific value in the matrix. This function is used especially for CSR
and CSC storage techniques.

Value

Returns the row or column number of a specific value if succeded, otherwise NA.

See Also

tropicalsparse.add, tropicalsparse.mul.

Examples

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

List = tropicalsparse.storage(a, 'csr', 'minplus"')

i=2
row.col.Number (i, nrow(a), List[[11])
#0112
tropicalsparse.add Addition With or Without Storage Techniques
Description

tropicalsparse.add function adds the provided inputs in Tropical Algebra based on type of Trop-
ical Algebra.

Usage

tropicalsparse.add(A, B, store = NULL, algebraType)

6 tropicalsparse.add

Arguments

A is matrix or vector.

B is matrix or vector.

store is storage technique.

algebraType is string input that can be minplus or maxplus.
Details

The compulsory inputs of the function tropicalsparse.add are A, B and algebraType while the
remaining input is optional that is store. The inputs A and B can be matrix/matrix, matrix/vector,
vector/matrix and vector/vector otherwise the function generates an error. For A and B, the order of
the input does not matter. It can be in any of the following way: the first input of the function is ma-
trix and second input is a vector. Similarly, vise versa. store can be coo, csc and csr for applying
following storage techniques respectively: Coordinate-Wise, Compressed Sparse Row, Compressed
Sparse Column. This input is case sensitive. If the store input is other than the specified storage
techniques then the function generates an error. The input algebraType is used to specify type
of Tropical Algebra. This can be minplus or maxplus. For more details about algebraType, see
detail section of check.infinityMor check.infinityV. tropicalsparse.storage function is
used to apply storage technique depends upon the input given. If store input is not specified then
the functionality will be performed without using any storage technique.

Value

Addition of A and B in Tropical Algebra.

See Also

tropicalsparse.mul, tropicalsparse.storage

Examples

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

b <- matrix(data = c(Inf, Inf, 4, Inf, -0.3, Inf, Inf, 2, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

' 1

tropicalsparse.add(a, b, 'csr', 'minplus')
[,11 0,21 [,3]
#[1,] 2 Inf 4
[2,] 0 -0.3 Inf
[3,] Inf 2.0 Inf

also

a <- matrix(data = c(5, -Inf, -Inf, -Inf, -Inf

nrow = 3, ncol = 3, byrow = TRUE)

, -Inf, -Inf, 10, 2),

’

tropicalsparse.axpyi 7

b <- matrix(data = c(-Inf, -Inf, 3, -Inf, -0.5, -Inf, 1.1, -Inf, -Inf),
nrow = 3, ncol = 3, byrow = TRUE)

tropicalsparse.add(a, b, 'coo', 'maxplus')

[,11 0,21 [,3]

5.0 -Inf 3

#

01,1

[2,] -Inf -0.5 -Inf
[3,] 1.1 10.0 2

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 2, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

b <- c(Inf, 0, 10)

tropicalsparse.add(a, b, algebraType = 'minplus')

[,11 [,2] [,31]
[1,] 2 Inf Inf
[2,] 0 Q]
#03,1 10 2 10

tropicalsparse.axpyi tropicalsparse.axpyi()

Description
tropicalsparse.axpyi function multiplies the vector x by the constant alpha and adds the result
to the vector y.

Usage

tropicalsparse.axpyi(y, alpha, x, algebraType)

Arguments
y is a vector.
alpha is a constant.
X is a vector.

algebraType is string input that can be minplus or maxplus.

8 tropicalsparse.doti

Details

The input of the function tropicalsparse.axpyi is two vectors, a constant and type of Trop-
ical Algebra. algebraType is used to specify type of Tropical Algebra. This can be minplus
or maxplus. For more details about algebraType, see detail section of check.infinityM or
check.infinityV. All inputs of this method are compulsory. The operation is expressed as: y =y
+ alpha * x where x and y must be a vector while alpha must be a constant.

Value

Returns a vector.

See Also

tropicalsparse.doti

Examples

a <- c(2, Inf, 5, @, Inf, Inf, Inf, 10, Inf)
b <- c(@, 5, Inf, Inf, 12, 2, Inf, Inf, 3)
alpha <- 5

tropicalsparse.axpyi(a, alpha, b, 'minplus')

#011 2 10 5 @ 17 7 Inf 10 8

tropicalsparse.doti tropicalsparse.doti()

Description

tropicalsparse.doti function multiplies the vector y with the vector x.

Usage

tropicalsparse.doti(x, y, algebraType)

Arguments

X is a vector.

y is a vector.

algebraType is string input that can be minplus or maxplus.
Details

The input of this function is x, y and algebraType. If any of the input is missing then the function
generates an error. The operation is expressed as: result = yx where x and y must be a vector.
algebraType is used to specify type of Tropical Algebra. This can be minplus or maxplus. For
more details about algebraType, see detail section of check.infinityM or check.infinityV.

tropicalsparse.mm 9

Value

Returns a vector.

See Also

tropicalsparse.axpyi

Examples

a <- ¢c(2, Inf, 5, @, Inf, Inf, Inf, 10, Inf)
b <- c(@, 5, Inf, Inf, 12, 2, Inf, Inf, 3)

tropicalsparse.doti(a, b, 'minplus')

[1] 2 Inf Inf Inf Inf Inf Inf Inf Inf

tropicalsparse.mm tropicalsparse.mm()

Description
tropicalsparse.mm function performs the matrix-matrix operation on the equation: y = alpha *
op(A) * op(B) + beta * op(C).

Usage

tropicalsparse.mm(alpha = NULL, A, opA = FALSE, B, opB = FALSE,
beta = NULL, C, opC = FALSE, store = NULL, algebraType)

Arguments

alpha is a single real value.
A is a matrix.

opA is transpose of A.

B is a matrix.

opB is transpose of B.
beta is a single real value.
C is a matrix.

opC is transpose of C.
store is storage technique.

algebraType is string input that can be minplus or maxplus.

10 tropicalsparse.mul

Details

The input of this function is three matrices, two constants, operation on these matrices, storage
technique and type of Tropical Algebra. Matrices and algebraType inputs are compulsory while
all other inputs are optional. A, B and C must be the matrix of same dimensions and these matrices
must be sparse otherwise error occured. alpha and beta must be the single real value. opA, opB and
opC can be set to TRUE to take transpose of A, B and C matrices repectively. store input can be coo,
csc and csr for applying following storage techniques respectively: Coordinate-Wise, Compressed
Sparse Row, Compressed Sparse Column. If store is not specified then functionality is performed
without using any storage technique. algebraType is used to specify type of Tropical Algebra.
This can be minplus or maxplus. For more details about algebraType, see detail section of
check.infinityM or check.infinityV. First of all A is multiplied with B and if alpha is given
then the product of A and B will be multipied with alpha otherwise it remais the same. After this,
beta is multiplied with C only if beta is given. Finally, both result are added to each other and the
resultant matrix is obtained. Same functionailty is applied if any of the store technique is specified.

Value

Returns the resultant matrix.

Examples

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

b <- matrix(data = c(Inf, Inf, 4, Inf, -0.3, Inf, Inf, 2, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

c <- matrix(data = c(1, Inf, Inf, Inf, @, 6, Inf, Inf, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

tropicalsparse.mm(A = a, alpha = 5, opB = TRUE, B = b, C = ¢,

store = 'csr', algebraType = 'minplus')
[,11 0,21 [,3]
[1,] 1 Inf Inf
02,1 Inf 0.0 6
#[3,]1 Inf 14.7 17
tropicalsparse.mul Multiplication With or Without Storage Techniques
Description

tropicalsparse.mul function multiplies the provided inputs in Tropical Algebra based on type of
Tropical Algebra.

tropicalsparse.mul 11

Usage

tropicalsparse.mul(A, B, store = NULL, algebraType)

Arguments

A is matrix or vector.

B is matrix or vector.

store is storage technique.

algebraType is string input that can be minplus or maxplus.
Details

The compulsory inputs of the function tropicalsparse.mul are A, B and algebraType while the
remaining input is optional that is store. The inputs A and B can be matrix/matrix, matrix/vector,
vector/matrix and vector/vector otherwise the function generates an error. For A and B, the order of
the input does not matter. It can be in any of the following way: the first input of the function is ma-
trix and second input is a vector. Similarly, vise versa. store can be coo, csc and csr for applying
following storage techniques respectively: Coordinate-Wise, Compressed Sparse Row, Compressed
Sparse Column. This input is case sensitive. If the store input is other than the specified storage
techniques then the function generates an error. The input algebraType is used to specify type
of Tropical Algebra. This can be minplus or maxplus. For more details about algebraType, see
detail section of check.infinityMor check.infinityV. tropicalsparse.storage function is
used to apply storage technique depends upon the input given. If store input is not specified then
the functionality will be performed without using any storage technique.

Value

Multiplication of A and B in Tropical Algebra.

See Also

tropicalsparse.add, tropicalsparse.storage

Examples

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

b <- matrix(data = c(Inf, Inf, 4, Inf, -0.3, Inf, Inf, 2, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

' 1

tropicalsparse.mul(a, b, 'csr', 'minplus')

[,11[,2] [,3]

1,1 Inf Inf 6
2,1 Inf Inf 4
1 Inf 9.7 Inf

12

a <- matrix(data = c(5, -Inf, -Inf, -Inf,
nrow = 3, ncol = 3, byrow = TRUE)

b <- matrix(data =

nrow = 3, ncol = 3, byrow = TRUE)
tropicalsparse.mul(a, b, 'coo', 'maxplus')

(,11 0,21 [,3]
[1,] -Inf -Inf 8
[2,] -Inf -Inf -Inf
[3,] 3.1 10.5 -Inf
also

a <- matrix(data =
nrow = 3, ncol = 3

b <- c(Inf, @, 10)

tropicalsparse.mul(a, b, algebraType =

[,11 0,21 ¢C
Inf Inf
Inf
Inf 12

-Inf,

c(-Inf, -Inf, 3, -Inf, 0.5, -Inf, 1.1, -Inf,

-Inf, -Inf, 10, 2),

-Inf),

c(2, Inf, Inf, @, Inf, Inf, Inf, 2, Inf),

, byrow = TRUE)

, 31
Inf
Inf
Inf

'minplus’')

tropicalsparse.mv

tropicalsparse.mv

tropicalsparse.mv()

Description

tropicalsparse.mv function performs the matrix-vector operation on the equation: y = alpha *

op(A) * X + beta * y.

Usage

tropicalsparse.mv(alpha = NULL, A, opA = FALSE, x, beta = NULL, v,

store = NULL, algebraType)
Arguments
alpha is a single real value.
A is a matrix.
OpA is transpose of A.

X is a vector.

tropicalsparse.mv 13

beta is a single real value.

y is a vector.

store is storage technique.

algebraType is string input that can be minplus or maxplus.
Details

The input of this function is one matrix, transpose of that matrix, two vectors, two constants, stor-
age technique and type of Tropical Algebra. The inputs of the matrix, vectors and algebraType are
compulsory while all other inputs are optional. The matrix must be sparse otherwise error occured.
alpha and beta must be a single real value. opA can be set to TRUE to take transpose of A. store
input can be coo, csc and csr for applying following storage techniques respectively: Coordinate-
Wise, Compressed Sparse Row, Compressed Sparse Column. If store is not specified then func-
tionality is performed without using any storage technique. algebraType is used to specify type
of Tropical Algebra. This can be minplus or maxplus. For more details about algebraType, see
detail section of check.infinityM or check.infinityV. First of all A is multiplied with x and
if alpha is given then the product of A and x will be multipied with alpha otherwise it remais the
same. After this, beta is multiplied with y only if beta is given. Finally, both result are added to
each other and the resultant matrix is obtained. Same functionailty is applied if any of the store
technique is specified.

Value

Returns the resultant matrix.

Examples

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

b <- c(2, Inf, 5)
c <- c(Inf, 9, Inf)

tropicalsparse.mv(A = a, alpha = 5, opA = TRUE, x = b, y = c,

store = 'csr', algebraType = 'minplus')
(,11 0,21 [,3]
[1,] 9 Inf Inf
[2,] 9 9 9
[3,1 Inf 20 Inf

14 tropicalsparse.storage

tropicalsparse.storage
Storage Techniques

Description
tropicalsparse.storage function is used to apply coo, csr and csc storage techniques on the
sparse matrix in Tropical Algebra.

Usage

tropicalsparse.storage(M, store, algebraType)

Arguments

M is Matrix

store is storage technique.

algebraType is string input that can be minplus or maxplus.
Details

The function tropicalsparse.storage recieves a matrix as first input, storage technique as sec-
ond input and the type of Tropical Algebra as third input. All the inputs are compulsory. store can
be coo, csrand csc. algebraType is used to specify type of Tropical Algebra. This can be minplus
or maxplus. For more details about algebraType, see detail section of check.infinityM or
check.infinityV. If store is equal to coo then the function returns a list containing three arrays
that are row_Indices_C00, col_Indices_COO and values_COO. If store is equal to csc then the
function returns a list containing three arrays that are col_Pointer_CSC, row_Indices_CSC and
values_CSC. If store is equal to csr then the function returns a list containing three arrays that are
row_Pointer_CSR, col_Indices_CSR and values_CSR. These storage techniques are especially
designed for sparse matrices and are very helpful and time saving.

Value

Returns a list result that contains three arrays depends upon the store input.

See Also

tropicalsparse.add, tropicalsparse.mv.

Examples

a <- matrix(data = c(2, Inf, Inf, @, Inf, Inf, Inf, 10, Inf),
nrow = 3, ncol = 3, byrow = TRUE)

tropicalsparse.storage(a, 'coo', 'minplus')

$row_Indices_CO0

tropicalsparse.storage

#011123

$col_Indices_CO0
11112

$values_CO0
#[1] 2 010

15

Index

check.infinityM, 2, 3,6, 8, 10, 11, 13, 14
check.infinityV, 2,3,6,8, 10, 11, 13, 14
counter, 4

matrix, 4
row.col.Number, 4

tropicalsparse.add, 5,5, 11, 14
tropicalsparse.axpyi, 7, 9
tropicalsparse.doti, 8, 8
tropicalsparse.mm, 9
tropicalsparse.mul, 5, 6, 10
tropicalsparse.mv, 12, 14
tropicalsparse.storage, 6, 11, 14

16

	check.infinityM
	check.infinityV
	counter
	row.col.Number
	tropicalsparse.add
	tropicalsparse.axpyi
	tropicalsparse.doti
	tropicalsparse.mm
	tropicalsparse.mul
	tropicalsparse.mv
	tropicalsparse.storage
	Index

