Package 'tstools'

March 30, 2022

Type Package

Version 0.4.1

Title A Time Series Toolbox for Official Statistics

Description Plot official statistics' time series conveniently: automatic legends, highlight windows, stacked bar chars with positive and negative contributions, sum-as-line option, two y-axes with automatic horizontal grids that fit both axes and other popular chart types. 'tstools' comes with a plethora of defaults to let you plot without setting an abundance of parameters first, but gives you the flexibility to tweak the defaults. In addition to charts, 'tstools' provides a super fast, 'data.table' backed time series I/O that allows the user to export / import long format, wide format and transposed wide format data to various file types.

Depends R (>= 3.0.0), zoo (>= 1.7-12),

Imports xts, stats, graphics, jsonlite, data.table, yaml,

Suggests knitr, rmarkdown, testthat, reshape2, openxlsx

VignetteBuilder knitr

BugReports https://github.com/mbannert/tstools/issues/

URL https://github.com/mbannert/tstools/

Date 2022-03-29

License GPL-2

LazyData true

Maintainer Matthias Bannert

bannert@kof.ethz.ch>

NeedsCompilation no

Author Matthias Bannert [aut, cre],

Severin Thoeni [aut]

RoxygenNote 7.1.2

Repository CRAN

Date/Publication 2022-03-30 07:00:08 UTC

R topics documented:

.read_swissdata_meta_unknown_format	2
CHGDP	3
color_blind	3
compute_decimal_time	4
concat_ts	4
create_cross_sec_overview	5
create_dummy_ts	5
df_to_reg_ts	6
fill_year_with_nas	7
generate_random_ts	8
getCiLegendColors	9
8	10
	10
	18
8-1-11	18
	19
	19
1 = = -7=	20
read_swissdata	
read_swissdata_meta	
	22
	23
	23
set_month_to_NA	
start_ts_after_internal_nas	
F==== =	26
1	26
1	28
	29
wide_to_ts	
write_ts	30
	22
	32

 $. \verb|read_swissdata_meta_unknown_format| \\$

Read Meta Data File w/o File Extension

Description

Read a meta file without extension -> unknown format Tries to determine format (yaml, json) and return the metadata path must point to the file without extension e.g. swissdata_wd/set_id/set_id

Usage

Index

.read_swissdata_meta_unknown_format(path)

CHGDP 3

Arguments

path

character file path.

Value

Meta list if file could be located, empty list otherwise

CHGDP

CH GDP Growth Contributions

Description

A list of time series containing sector contributions to Swiss GDP over time.

Usage

CHGDP

Format

List list of six time series of class ts, containing contributions to Swiss GDP growth

manufacturing Growth contribution of manufacturing.

energy Growth contribution of energy, water sector

construction Growth contribution construction sector.

hotels Growth contribution of hotels.

fin_insur Growth contribution of financial services and insurances.

other Growth contribution of other sectors.

Source

https://www.seco.admin.ch/seco/en/home/wirtschaftslage---wirtschaftspolitik/Wirtschaftslage/bip-quartalsschaetzungen-/daten.html

color_blind

Provide Colorblind Compliant Colors

Description

8 Hex RGB color defintions suitable for charts for colorblind people.

Usage

color_blind()

4 concat_ts

Description

Standard ts object use a vector of length two to store a period. E.g. 2010,1 means first quarter of 2010, if the series was quarterly and first month if the series was monthly etc.

Usage

```
compute_decimal_time(v, f)
```

Arguments

v integer vector denoting a point in time

f frequency

concat_ts

Concatenate to Non-Overlapping Time Series

Description

Append one time series to another. This only works for non-overlapping time series of the same frequency. For overlapping time series please see resolveOverlap.

Usage

```
concat_ts(ts1, ts2)
```

Arguments

ts1 object of class ts1, typically the older of two time series.

ts2 object of class ts1, typically the younger of two time series.

```
create_cross_sec_overview
```

Create an Overview data.table of (last) observations

Description

Create a data.table that shows the i-th observation of several time series.

Usage

```
create_cross_sec_overview(list_of_rows, col_labels, tsl, selected_period)
```

Arguments

```
list_of_rows list of time series names

col_labels character list of column labels

tsl list of time series object to select from

selected_period

numeric date as in defining ts objects.
```

Examples

create_dummy_ts

Flexible Function to Create Time Series Dummy Variables

Description

Generate time series with a default value that is changed within a certain subperiod. The function allows for additional convenience when specifying single period dummies and dummies that go from a certain point in time to the end of the series.

df_to_reg_ts

Usage

```
create_dummy_ts(
  end_basic,
  dummy_start,
  dummy_end = NULL,
  sp = T,
  start_basic = c(1980, 1),
  basic_value = 0,
  dummy_value = 1,
  frequency = 4
)
```

Arguments

end_basic	numeric vector of form c(yyyy,p) defining the end of the time series.	
dummy_start	numeric vector of form $c(yyyy,p)$ defining the beginning of the period with different value.	
dummy_end	numeric vector of form c(yyyy,p) defining the end of the period with different value. Defaults to NULL, using the end_date of the series.	
sp	logical should NULL value for dummy_end lead to a single period dummy (TRUE) or to alternative values until the end.	
start_basic	numeric vector of form $c(yyyy,p)$ defining the start of the time series. Defaults to $c(1980,1)$	
basic_value	default value of the time series, defaults to 0.	
dummy_value	the alternative value, defaults to 1.	
frequency	integer frequency of the regular time series, defaults to 4 (quarterly).	

Author(s)

Matthias Bannert

df_to_reg_ts Turn data.frame to Regular Monthly or Quarterly Time Series

Description

Turn a data.frame with date columns to a regular time series object if possible. Design to work with quarterly and monthly data.

fill_year_with_nas 7

Usage

```
df_to_reg_ts(
   dframe,
   var_cols,
   year_col = "year",
   period_col = "month",
   freq = 12,
   return_ts = T,
   by = NULL
)
```

Arguments

dframe	data.frame input		
var_cols	columns that contain variables as opposed to date index.		
year_col	integer, logical or character vector indicating the year position within the data.frame.		
period_col	integer, logical or character vector indicating the period position within the data.frame.		
freq	integer indicating the frequency of new time series.		
return_ts	logical should a (list of) time series be returned? Defaults to TRUE. FALSE returns data.frame.		
by	character overwrite automatically detected (from freq) by parameter. e.g. '1 day'. Defaults to NULL.		

Examples

```
start_m <- as.Date("2017-01-01")
df_missing <- data.frame(
  date = seq(start_m, by='2 months', length=6),
  value = 1:6,
another_value = letters[1:6],
yet_another_col = letters[6:1]
)
df_to_reg_ts(df_missing,c("value","another_value"))
df_to_reg_ts(df_missing, c("value","another_value"), return_ts = FALSE)</pre>
```

fill_year_with_nas Fill Up a Time Series with NAs

Description

When plotting a time series you might want set the range of the plot a little wider than just the start and end date of the original series. This function add fills up the current period (typically year) with NA.

8 generate_random_ts

Usage

```
fill_year_with_nas(x, add_periods = 1, fill_up_start = FALSE)
```

Arguments

```
x object of class tsadd_periods integer periods to add.fill_up_start logical should start year be filled up? Defaults to FALSE.
```

generate_random_ts Gen

Generate a list of random time series

Description

Useful for development or generating easily reproducible examples

Usage

```
generate_random_ts(
  n = 1,
  lengths = 36,
  starts = 1988,
  frequencies = 12,
  ranges_min = -1,
  ranges_max = 1,
  shifts = 0,
  ts_names = sprintf("ts%d", 1:n),
  seed = 30042018,
  random_NAs = FALSE,
  random_NA_proportions = 0.1,
  normally_distributed = FALSE,
  normal_means = 0,
  normal_sds = 1,
  frequency_shifts = FALSE,
  frequency_shift_after = 0.5
)
```

Arguments

The number of ts objects to generate

lengths The lengths of the time series

starts The start points of the time series in single number notation (e.g. 1990.5)

frequencies The frequencies of the time series

ranges_min The minimum values of the time series (if normally_distributed == FALSE)

ranges_max The maximum values of the time series (if normally_distributed == FALSE)

getCiLegendColors 9

shifts The shifts of time series values per series ts_names The names of the ts objects in the resulting list

seed The random seed to be used

random_NAs Whether or not to introcude NA values at random positions in the ts

random_NA_proportions

The fraction of values to be replaced with NAs if random_NAs is TRUE for the

series

normally_distributed

Use normal distribution instead of uniform

normal_means The means to use for normal distribution. Ignored unless normally_distributed

is set to TRUE.

normal_sds The sds to use for normal distribution. Ignored unless normally_distributed is

set to TRUE.

frequency_shifts

Introduce frequency shifts (from 4 to 12) in the ts

frequency_shift_after

After what fraction of the ts to shift frequencies

Details

Except for n and ts_names, all parameters accept either a single value or a vector of values. If a single value is supplied, that value is used for all time series being generated. If a vector is supplied, its values will be used for the corresponding series (e.g. starts[1] is used for the first series, starts[2] for the second and so on). Vectors are recycled if n is larger than their length.

If a ts_names vector is supplied, it must have length n and must not contain duplicates.

Value

A list of ts objects

Examples

```
generate_random_ts()
generate_random_ts(n = 3, ranges_min = c(-10, 0, 10), ranges_max = 20, starts = 2011)
```

getCiLegendColors

Helper to calculate ci colors for legends

Description

Helper to calculate ci colors for legends

```
getCiLegendColors(color, n = 1, alpha = NULL)
```

Arguments

n The color of the ci band
The number if ci bands

alpha The alpha/transparency of the ci band

Details

Color may be specified as either a named color or a hex value Transparency may be specified as a hex value, number 0-255 or number 0-1

Value

A vector of non-transparent colors that result from oberlaying color over pure white 1:n times

get_date_vector

Compute the Period Vector representation of a Decimal Time value

Description

The period value will be rounded down to the nearest integer. This function is not vectorized so only a single value can be converted at a time.

Usage

```
get_date_vector(dtime, frq)
```

Arguments

dtime numeric decimal time value denoting a point in time

frq integer frequency

Description

The tsplot methods provide a theme argument which is used to pass on a plethora of useful defaults. These defaults are essentially stored in a list. Sometimes the user may want to tweak some of these defaults while keeping most of them. Hence the init_tsplot_theme function create a fresh list object containing default values for lot of different layout parameters etc. By replacing single elements of the list and passing the entire list to the plot function, single aspects can be tweaked while keeping most defaults. Init defaultTheme does not need any parameters.

This function provides sensible defaults for margins, font size, line width etc. scaled to the dimensions of the output file.

```
init_tsplot_theme(
  auto_bottom_margin = FALSE,
 band_fill_color = c(ETH8 = "#007A92", ETH8_60 = "#66b0c2", ETH8_30 = "#b3d7e0",
  ETH8_20 = "#cce5eb", ETH5 = "#91056a", ETH5_60 = "#cc67a7", ETH5_30 = "#e6b3d3"),
  bar_border = "#000000",
  bar_border_lwd = 1,
 bar_fill_color = c(ETH8 = "#007A92", ETH8_60 = "#66b0c2", ETH8_30 = "#b3d7e0",
  ETH8_20 = "#cce5eb", ETH5 = "#91056a", ETH5_60 = "#cc67a7", ETH5_30 = "#e6b3d3"),
  bar_gap = 15,
  bar_group_gap = 30,
  ci_alpha = "44",
  ci_colors = line_colors,
  ci_legend_label = "%ci_value%% ci for %series%",
  default_bottom_margin = 15,
  fill_up_start = FALSE,
  fill_year_with_nas = TRUE,
  highlight_color = "#e9e9e9",
  highlight_window = FALSE,
  highlight_window_end = NA,
  highlight_window_freq = 4,
  highlight_window_start = NA,
  highlight_y_values = NA,
  highlight_y_lwd = 2,
  highlight_y_color = "#000000",
  label_pos = "mid",
  legend_all_left = FALSE,
  legend_box_size = 2,
  legend_col = 1,
  legend_font_size = 1,
  legend_intersp_x = 1,
  legend_intersp_y = 1,
  legend_margin_bottom = 5,
  legend_margin_top = 12,
  legend_seg.len = 2,
 line_colors = c(ETH_8_100 = "#a9af66", ETH_4_100 = "#72791c", ETH_8_20 = "#cce5eb",
   ETH_5_60 = "#cc67a7", ETH_8_60 = "#66b0c2", ETH_5_100 = "#91056a", ETH_4_60 =
    "#007a92"),
  line_to_middle = TRUE,
  lty = 1,
  1wd = c(2, 3, 1, 4, 2, 4),
  lwd_box = 1.5,
  lwd_quarterly_ticks = 1,
  lwd_x_axis = 1.5,
  lwd_y_axis = 1.5,
  lwd_y_ticks = 1.5,
  lwd_yearly_ticks = 1.5,
  margins = c(NA, 7, 12, 7),
```

```
NA_continue_line = FALSE,
 output_wide = FALSE,
  point_symbol = 1:18,
 pointsize = 12,
  preferred_y_gap_sizes = c(25, 20, 15, 10, 5, 2.5, 1, 0.5),
  quarterly_ticks = TRUE,
  range_must_not_cross_zero = TRUE,
  show_left_y_axis = TRUE,
  show_points = FALSE,
  show_right_y_axis = TRUE,
  show_x_axis = TRUE,
  show_y_grids = TRUE,
  subtitle_adj = 0,
  subtitle_adj_r = 0.9,
  subtitle\_cex = 1,
  subtitle_margin = 2,
  subtitle_outer = FALSE,
  subtitle_transform = "toupper",
  sum_as_line = FALSE,
 sum_legend = "sum",
  sum_line_color = c(ETH_8_100 = "#007a92"),
  sum_line_lty = 1,
  sum_line_lwd = 3,
  tcl_quarterly_ticks = -0.4,
  tcl_y_ticks = -0.75,
  tcl\_yearly\_ticks = -0.75,
  title_adj = 0,
  title_cex.main = 1,
  title_margin = 5,
  title_outer = FALSE,
  title_transform = NA,
  total_bar_margin_pct = 0.2,
  use_bar_gap_in_groups = FALSE,
  use_box = FALSE,
  x_{tick_dt} = 1,
 xaxs = "i",
 y_grid_color = "#CCCCCC",
 y_{grid_{count}} = c(5, 6, 8, 10),
 y_grid_count_strict = FALSE,
 y_{las} = 2,
 y_range_min_size = NULL,
 y_tick_force_integers = FALSE,
 y_{tick_margin} = 0.15,
 yaxs = "i",
 yearly_ticks = TRUE
init_tsplot_print_theme(
```

```
output_wide = FALSE,
 margins = c(NA, 10/if (output_wide) 1 + 1/3 else 1, 10, 7/if (output_wide) 1 + 1/3
    else 1),
 lwd = scale_theme_param_for_print(c(2, 3, 1, 4, 2, 4), if (output_wide) c(10 + 2/3, 4)
    6) else c(8, 6),
 sum_line_lwd = scale_theme_param_for_print(3, if (output_wide) c(10 + 2/3, 6) else
    c(8, 6)),
 lwd_box = scale_theme_param_for_print(1.5, if (output_wide) c(10 + 2/3, 6) else c(8,
    6)),
 lwd_x_axis = scale_theme_param_for_print(1.5, if (output_wide) c(10 + 2/3, 6) else
    c(8, 6)),
 lwd_yearly_ticks = scale_theme_param_for_print(1.5, if (output_wide) c(10 + 2/3, 6)
    else c(8, 6),
 lwd_quarterly_ticks = scale_theme_param_for_print(1, if (output_wide) c(10 + 2/3, 6)
    else c(8, 6),
 lwd_y_axis = scale_theme_param_for_print(1.5, if (output_wide) c(10 + 2/3, 6) else
    c(8, 6)),
 lwd_y_ticks = scale_theme_param_for_print(1.5, if (output_wide) c(10 + 2/3, 6) else
    c(8, 6)),
 legend_intersp_y = scale_theme_param_for_print(1, if (output_wide) c(10 + 2/3, 6)
    else c(8, 6),
 legend_box_size = scale_theme_param_for_print(2, if (output_wide) c(10 + 2/3, 6) else
    c(8, 6)),
  legend_margin_top = 8,
  legend_margin_bottom = 3,
 legend_seg.len = scale_theme_param_for_print(2, if (output_wide) c(10 + 2/3, 6) else
 pointsize = scale_theme_param_for_print(12, if (output_wide) c(10 + 2/3, 6) else c(8,
    6)),
)
```

Arguments

auto_bottom_margin

logical Should the bottom margin be automatically calculated? This will be overridden if margins[1] is not NA. Default FALSE

band_fill_color

character vector of hex colors for the bands if left_as_band == TRUE.

bar_border character hex colors for the border around bars in bar charts.

bar_border_lwd numeric The line width of the borders of bars in barplots. Default 1

bar_fill_color character vector of hex colors for the bars if left_as_bar == TRUE

bar_gap numeric The width of the gap between bars, in % of space alloted to the bar.

bar_group_gap numeric The width of the gap between groups of bars if group_bar_chart is

TRUE.

ci_alpha Numeric 0-255, numeric 0-1 or hey 00-FF, transparency of the confidence inter-

val bands

character A formatting template for how the ci bands should be labelled. May contain the placeholders. '%ci_value%' will be replaced with the ci label. '%series%' (will be replaced with the series name) exactly once. Defaults to '%ci value% ci for %series%'

default_bottom_margin

numeric The bottom margin to use when margins[1] is NA but neither auto_legend nor auto_bottom_margin are true. Default 3

fill_up_start logical shoule the start of the year also be filled? Has no effect if fill_year_with_nas == FALSE. Default FALSE

fill_year_with_nas

logical should year be filled up with missing in order to plot the entire year on the axis. Defaults to TRUE,

highlight_color

character hex color code of highlight background, defaults to "#e9e9e9".

highlight_window

logical should a particular time span be highlighted by different background color. Defaults to FALSE.

highlight_window_end

integer vector highlight window start position, defaults to NA.,

highlight_window_freq

integer frequency of the higlight window defintion, defaults to 4.

highlight_window_start

integer vector highlight window start position, defaults to NA.

highlight_y_values

numeric Vector of y values to highlight with a bold line

highlight_y_lwd

integer Line width of the lines to highlight y values

highlight_y_color

character Color of the lines to highlight y values

label_pos character, denotes where the x-axis label is at. defaults to "mid", alternative value: "start".

legend_all_left

logical Should all legend entries be drawn on the left side of the plot? Default FALSE

legend_box_size

numeric The size of the squares denoting bar colors in the legend. Default 2

legend_col integer number of columns for the legend, defaults to 3.

legend_font_size

numeric passed on to the cex parameter of legend, defaults to 1

legend_intersp_x

numeric same as base legend parameter, defaults to 1

legend_intersp_y

numeric same as base legend parameter, defaults to 1

legend_margin_bottom

numeric Distance between bottom of legend and bottom of graphic in % of device height, default 5

legend_margin_top

numeric Distance between bottom of plot and top of legends % of device height, defaults to 12

legend_seg.len numeric Length of the line segments in the legend. Default 2

line_colors character vector of hex colors for 6 lines.

line_to_middle logical try to put a line into the middle of the plot. defaults to TRUE.

1ty integer vector line type defaults to 1.

lwd integer vector line width, defaults to c(2,3,1,4,2,4).

lwd_box numeric Line width of the box around the plot. Default 1.5

lwd_quarterly_ticks

numeric, width of yearly ticks, defaults to 1.

lwd_x_axis
 numeric The line width of the x axis. Default 1.5
 lwd_y_axis
 numeric The line width of the y axis. Default 1.5
 lwd_y_ticks
 numeric Line width of the y ticks. Default 1.5

lwd_yearly_ticks

numeric, width of yearly ticks, defaults to 1.5.

margins integer vector defaults to c(NA, 4, 3, 3) + 0.1. Set margins[1] to NA to automati-

cally determine the bottom margin such that the legend fits (if either auto_legend

or auto_bottom_margin are TRUE)

NA_continue_line

boolean If true, NA values in time series are ignored and a contonuous line is drawn. Multiple values to turn this behavior on/off for indivitual series are

supported. Default FALSE

output_wide logical Should the output file be in a wide format (16:9) or (4:3)? Only if out-

put_format is not "plot". Default FALSE

point_symbol integer or character The symbol to use for marking data points. Multiple values

can be supplied to set the symbol for each individual series See pch in ?par.

Default 1:18

pointsize Numeric Point size of text, in 1/72 of an inch

preferred_y_gap_sizes

numeric c(25, 20, 15, 10, 5, 2.5, 1, 0.5),

quarterly_ticks

logical, should quarterly ticks be shown. Defaults to TRUE.

range_must_not_cross_zero

logical automatic range finders are forced to do not find ranges below zero. Defaults to TRUE.

show_left_y_axis

logical: should left y axis be shown, defaults to TRUE.

show_points boolean Whether to draw the symbol specified by point_symbol at the data

points. Multiple values can be supplied to enable/disable showing points for

each individual series Default FALSE

show_right_y_axis logical: should left y axis be shown, defaults to TRUE. show_x_axis locigal: should x axis be shown, defaults to TRUE show_y_grids logical should y_grids by shown at all, defaults to TRUE. subtitle_adj numeric same as base plot parameter, defaults to 0. subtitle_adj_r numeric same as base plot parameter, defaults to .9 subtitle cex numeric same as base plot parameter, defaults to 1. subtitle_margin numeric How far above the plot the title is placed in % of the device height. Defaults to 2. subtitle_outer logical same as base plot parameter, defaults to TRUE subtitle_transform function to transform the subtitle, defaults to "toupper", logical should the sum of stacked time series be displayed as a line on top of sum_as_line stacked bar charts. Defaults to FALSE, character Label for the sum line, defaults to "sum". Set to NULL to not label the sum_legend line at all. sum_line_color character hex color of of sum_as_line, defaults "#91056a". sum_line_lty integer line type of sum as line, defaults to 1. sum_line_lwd integer line width of sum_as_line, defaults to 3. tcl_quarterly_ticks numeric, length of quarterly ticks. See tcl_yearly_ticks, defaults to -0.4 numeric Length of y ticks, see tcl_yearly_ticks. Default -0.75 tcl_y_ticks tcl_yearly_ticks numeric, length of yearly ticks. Analogous to cex for axis. defaults to -0.75. numeric, same as base plot parameter, defaults to 0. title_adj title_cex.main numeric, same as base plot parameter defaults to 1 title_margin numeric How far above the plot the title is placed in % of the device height. Default 8 title outer logical, currently undocumented. Defaults to TRUE. title_transform function to transform the title, defaults to NA. total_bar_margin_pct numeric defintion as in base plot, defaults to "i", defaults to .2, use_bar_gap_in_groups logical Should there be gaps of size bar_gap between the bars in a group if group bar chart = TRUE? Default FALSE use_box logical use a box around the plot. x_tick_dt numeric The distance between ticks on the x axis in years. The first tick will always be at the start of the plotted time series. Defaults to 1. character axis defintion as in base plot, defaults to "i". xaxs

```
character hex color of grids. Defaults to gray "#CCCCCC".
y_grid_color
y_grid_count
                  integer vector preferred y grid counts c(5,6,8,10).
y_grid_count_strict
                  logical should we strictly stick to preferred y grid count? Defaults to FALSE.
                  integer, same as base plot parameter defaults to 2.
y_las
y_range_min_size
                  = NULL,
y_tick_force_integers
                  logical Should y ticks be forced (rounded down) to whole numbers? Default
                  FALSE
                  numeric, minimal percentage of horizontal grid that needs to be clean, i.e., with-
y_tick_margin
                  out lines or bars. Defaults to 0.15 (15 percent).
                  character axis defintion as in base plot, defaults to "i".
yaxs
yearly_ticks
                  logical, should yearly ticks be shown. Defaults to TRUE.
                  All the other arguments to init_tsplot_thene
```

Details

Themes are essentially list that contain par parameters. Below all items are listed, some of them with comments. The per-line parameters (line_colors,lwd,lty,show_points,point_symbol) are recycled if more time series than elements on the corresponding theme vectors are supplied. e.g. if four time series are plotted but only two line_colors are supplied, the first and third series have the first color, while the second and fourth series have the second color. The list contains the following elements:

Author(s)

Matthias Bannert

Examples

```
## Not run: # create a list
data(KOF)
tt <- init_tsplot_theme()
# adjust a single element
tt$highlight_window <- TRUE
# pass the list to tsplot
tsplot(KOF$kofbarometer,theme = tt)
# for more theme examples check the vignette
vignette("tstools")
## End(Not run)</pre>
```

long_to_ts

KOF

KOF Barometer - Swiss Business Cycle Indicator

Description

A list of time series containing two time series the KOF Barometer and the growth of Swiss GDP over time. KOF Barometer is a monthly business cycle indicator computed by the KOF Swiss Economic Institute. The GDP growth rate is used as a reference series to the Barometer.

Usage

KOF

Format

A list of two time series of class ts

kofbarometer KOF Barometer Indicator'

reference Reference series to KOF Barometer, change in Swiss GDP compared to previous month

baro_point_fc Auto Arima point forecast of the KOF Barometer

baro_lo_80 Auto Arima 80 percent CI lower bound of the KOF Barometer forecast

baro_hi_80 Auto Arima 80 percent CI upper bound of the KOF Barometer forecast

baro_lo_95 Auto Arima 95 percent CI lower bound of the KOF Barometer forecast

baro_hi_95 Auto Arima 95 percent CI upper bound of the KOF Barometer forecast ...

Source

 $\label{lem:https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-economic-barometer. \\ html$

 $long_to_ts$

Transform a long format data.frame of time series to a tslist

Description

The data.frame must have three columns "date", "value" and "series" (identifying the time series)

```
long_to_ts(
  data,
  keep_last_freq_only = FALSE,
  force_xts = FALSE,
  strip_nas = TRUE
)
```

 m_to_q

Arguments

data data.frame The data.frame to be transformed

keep_last_freq_only

in case there is a frequency change in a time series, should only the part of the series be returned that has the same frequency as the last observation. This is

useful when data start out crappy and then stabilize

force_xts logical

strip_nas logical should NAs be stripped (no leading and trailing nas)?

 m_to_q

Turn monthly series with regular NAs to quarter

Description

Monthly series with NAs in non-quarter months are turned to quarterly series. Series without NAs are just returned.

Usage

```
m_to_q(series)
```

Arguments

series

an object of class ts with monthly frequency

```
overlap_sorted_ts_lists
```

Concat Time Series list wise

Description

Concat overlapping time series list wise. List needs to be of same length. Takes names of list B.

Usage

```
overlap_sorted_ts_lists(listA, listB)
```

Arguments

listA list of time series
listB list of time series

20 read_swissdata

```
overlap_ts_lists_by_name
```

Resolve Overlap Listwise, helpful with SA

Description

Resolve Overlap Listwise, helpful with SA

Usage

```
overlap_ts_lists_by_name(listA, listB, chunkA = "_f4", chunkB = "_f12")
```

Arguments

list A list of time series often of lower frequency
listB list of time series often of higher frequency

chunkA character chunk representing frequencies, defaults to _f4.
chunkB character chunk representing frequences, defaults to _f12.

read_swissdata

Read data generated by the Swissdata project

Description

Read data from swissdata compliant .csv files and turn them into a list of time series.

Usage

```
read_swissdata(
  path,
  key_columns = NULL,
  filter = NULL,
  aggregates = NULL,
  keep_last_freq_only = FALSE
)
```

Arguments

path character full path to dataset.

key_columns character vector specifying all columns that should be part of the key. Defaults

to the dim.order specified by swissdata.

filter function A function that is applied to the raw data.data table after it is read.

Useful for filtering out undesired data.

read_swissdata_meta 21

aggregates

list A list of dimensions over which to aggregate data. The names of this list determing which function is used to calculate the aggregate (e.g. sum, mean etc.). Defaults to sum.

keep_last_freq_only

in case there is a frequency change in a time series, should only the part of the series be returned that has the same frequency as the last observation. This is useful when data start out crappy and then stabilize

Details

The order of dimensions in key_columns determines their order in the key The resulting ts_key will be of the form <swissdata-set-name>.<instance of key_columns[1]>...

Examples

```
ds_location <- system.file("example_data/ch.seco.css.csv",package = "tstools")
tslist <- read_swissdata(ds_location,"idx_type")
tsplot(tslist[1])</pre>
```

read_swissdata_meta

Read swissdata style yaml timeseries metadata

Description

read_swissdata_meta reads the given .yaml file and converts it into a per-timeseries format.

Usage

```
read_swissdata_meta(path, locale = "de", as_list = FALSE)
```

Arguments

path	Path to the yaml file to be read
locale	Locale in which to read the data (supported are "de", "fr", "it" and "en")
as_list	Should the output be converted to a list?

Details

If as_list is set to TRUE, the function returns a nested list with one element per timeseries, otherwise a data.table with one row per series.

22 read_ts

read_ts

Import time series data from a file.

Description

If importing from a zip file, the archive should contain a single file with the extension .csv, .xlsx or .ison.

Usage

```
read_ts(
    file,
    format = c("csv", "xlsx", "json", "zip"),
    sep = ",",
    skip = 0,
    column_names = c("date", "value", "series"),
    keep_last_freq_only = FALSE,
    force_xts = FALSE
)
```

Arguments

file Path to the file to be read

format Which file format is the data stored in? If no format is supplied, read_ts will

attempt to guess from the file extension.

sep character seperator for csv files. defaults to ','.

skip numeric See data.table's fread.

column_names character vector denoting column names, defaults to c("date","value", "series).

keep_last_freq_only

in case there is a frequency change in a time series, should only the part of the series be returned that has the same frequency as the last observation. This is useful when data start out crappy and then stabilize after a while. Defaults to

FALSE. Hence only the last part of the series is returned.

force_xts If set to true, the time series will be returned as xts objects regargless of regular-

ity. Setting this to TRUE means keep_last_freq_only is ignored.

Value

A named list of ts objects

regularize 23

regularize

Turn an Irregular Time Series to a Regular, ts-Based Series

Description

Adds missing values to turn an irregular time series into a regular one. This function is currently experimental. Only works or target frequencies 1,2,4,12.

Usage

```
regularize(x)
```

Arguments

Χ

an irregular time series object of class zoo or xts.

Examples

```
ts1 <- rnorm(5)
dv <- c(seq(as.Date("2010-01-01"), length = 3, by="3 years"),
seq(as.Date("2018-01-01"), length = 2, by="2 years"))
library(zoo)
xx <- zoo(ts1,dv)
regularize(xx)

dv2 <- c(seq(as.Date("2010-01-01"), length = 20, by = "1 months"))
dv2 <- dv2[c(1:10, 14:20)]
xx2 <- zoo(rnorm(length(dv2)), dv2)
regularize(xx2)</pre>
```

resolve_ts_overlap

Concatenate Time Series and Resolve Overlap Automatically

Description

Append time series to each other. Resolve overlap determines which of two ts class time series is reaching further and arranges the two series into first and second series accordingly. Both time series are concatenated to one if both series had the same frequency. Typically this function is used concatenate two series that have a certain overlap, but one series clearly starts earlier while the other lasts longer. If one series starts earlier and stops later, all elements of the shorter series will be inserted into the larger series, i.e. elements of the smaller series will replace the elements of the longer series. Usually ts2 is kept.

```
resolve_ts_overlap(ts1, ts2, keep_ts2 = T, tolerance = 0.001)
```

24 set_month_to_NA

Arguments

ts time series, typically the older series

ts time series, typically the younger series

keep_ts2 logical should ts2 be kept? Defaults to TRUE.

tolerance numeric when comparing min and max values with a index vector of a time series R runs in to trouble with precision handling, thus a tolerance needs to be set. Typically this does not need to be adjusted. E.g. 2010 != 2010.000. With

the help of the tolerance parameter these two are equal.

Examples

```
ts1 <- ts(rnorm(100), start = c(1990,1), frequency = 4)
ts2 <- ts(1:18, start = c(2000, 1), frequency = 4)
resolve_ts_overlap(ts1,ts2)
# automatical detection of correction sequence!
ts1 <- ts(rnorm(90), start = c(1990, 1), frequency = 4)
ts2 \leftarrow ts(1:60, start = c(2000, 1), frequency = 4)
resolve_ts_overlap(ts1,ts2)
# both series are of the same length use sequence of arguments.
ts1 < -ts(rnorm(100), start = c(1990, 1), frequency = 4)
ts2 <- ts(1:48, start = c(2003, 1), frequency = 4)
resolve_ts_overlap(ts1,ts2)
ts1 <- ts(rnorm(101), start = c(1990, 1), frequency = 4)
ts2 \leftarrow ts(1:61, start = c(2000, 1), frequency = 4)
resolve_ts_overlap(ts1,ts2)
#' clearly dominatn ts2 series
ts1 < -ts(rnorm(50), start = c(1990, 1), frequency = 4)
ts2 <- ts(1:100, start = c(1990, 1), frequency = 4)
resolve_ts_overlap(ts1,ts2)
```

set_month_to_NA

Set Periods to NA

Description

This function is typically used to discard information in non-quarter month. I.e., data is only kept in January, April, July and December and otherwise set to NA. In combination with m_to_q this function is useful to turn monthly series into quarterly series by letting the quarter month values represent the entire quarter. This can be useful when data was interpolated because of mixing data of different frequencies and needs to be converted back to a regular, quarterly time series.

```
set_month_to_NA(series, keep_month = c(1, 4, 7, 10))
```

Arguments

series ts object

keep_month integer vector denoting the months that not be set to NA. Defaults to c(1,4,7,10)

Examples

```
tsq <- ts(1:20,start=c(1990,1),frequency = 4)
aa <- tsqm(tsq)
m_to_q(set_month_to_NA(aa))</pre>
```

```
start_ts_after_internal_nas
```

Start a Time Series after the Last Internal NA

Description

Internal NAs can cause trouble for time series operations such as X-13-ARIMA SEATS seasonal adjustment. Often, internal NAs only occur at at the beginning of a time series. Thus an easy solution to the problem is to discard the initial part of the data which contains the NA values. This way only a small part of the information is lost as opposed to not being able to seasonally adjust an entire series.

Usage

```
start_ts_after_internal_nas(series)
```

Arguments

series on object of class ts

See Also

```
{\it stripLeadingNAsFromTs}, {\it stripTrailingNAsFromTs}
```

Examples

```
ts1 <- 1:30
ts1[c(3,6)] <- NA
ts1 <- ts(ts1,start=c(2000,1),frequency = 4)
start_ts_after_internal_nas(ts1)</pre>
```

26 tsplot

```
strip_ts_of_leading_nas
```

Strip Leading / Trailing NAs from a Time Series Object

Description

Removes NAs to begin with and starts time series index at the first non-NA value.

Usage

```
strip_ts_of_leading_nas(s)
strip_ts_of_trailing_nas(s)
```

Arguments

s

an object of class ts.

tsplot

Plot Time Series

Description

Conveniently plot time series.

```
tsplot(
  ...,
  tsr = NULL,
 ci = NULL,
 left_as_bar = FALSE,
  group_bar_chart = FALSE,
  relative_bar_chart = FALSE,
  left_as_band = FALSE,
  plot_title = NULL,
  plot_subtitle = NULL,
  plot_subtitle_r = NULL,
  find_ticks_function = "findTicks",
  overall_xlim = NULL,
  overall_ylim = NULL,
 manual_date_ticks = NULL,
 manual_value_ticks_1 = NULL,
 manual_value_ticks_r = NULL,
 manual_ticks_x = NULL,
```

tsplot 27

```
theme = NULL,
quiet = TRUE,
auto_legend = TRUE,
output_format = "plot",
filename = "tsplot",
close_graphics_device = TRUE)
```

Arguments

... multiple objects of class ts or a list of time series. All objects passed through the

... parameter relate to the standard left y-axis.

tsr list of time series objects of class ts.
ci list of confidence intervals for time series

left_as_bar logical should the series that relate to the left bar be drawn as (stacked) bar

charts?

group_bar_chart

logical should a bar chart be grouped instead of stacked?

relative_bar_chart

logical Should time series be normalized such that bars range from 0 to 1? Defaults to FALSE. That way every sub bar (time series) is related to the global max. Hence do not expect every single bar to reach 1. This works for stacked and grouped charts and does not change anything but the scale of the chart.

left_as_band logical Should the time series assigned to the left axis be displayed as stacked

area charts?

plot_title character title to be added to the plot plot_subtitle character subtitle to be added to the plot plot_subtitle_r

character second subtitle to be added at the top right

find_ticks_function

function to compute ticks.

overall_xlim integer overall x-axis limits, defaults to NULL.
overall_ylim integer overall y-axis limits, defaults to NULL.

manual_date_ticks

character vector of manual date ticks.

manual_value_ticks_l

numeric vector, forcing ticks to the left y-axis

manual_value_ticks_r

numeric vector, forcing ticks to the right y-axis

manual_ticks_x numeric vector, forcing ticks on the x axis

theme list of default plot output parameters. Defaults to NULL, which leads to init_tsplot_theme

being called. Please see the vignette for details about tweaking themes.

quiet logical suppress output, defaults to TRUE.

auto_legend logical should legends be printed automatically, defaults to TRUE.

28 tsqm

output_format character Should the plot be drawn on screen or written to a file? Possible values

are "plot" for screen output and "pdf". Default "plot"

filename character Path to the file to be written if output_format is "pdf". Default

"tsplot.pdf"

close_graphics_device

logical Should the graphics device of the output file be closed after tsplot? Set this to FALSE to be able to make modifications to the plot after tsplot finishes.

Default TRUE

Details

The ci parameter is a 3-level list of the form list(ts1 = list(ci_value_1 = list(ub = upper_bound_ts_object, lb = lower_bound_ts_object), ...), ...)

See vignette("tstools") for details.

tsqm

Interpolate quarterly time series into monthly

Description

Repeat quarterly variables two times to generate a monthly variable.

Usage

```
tsqm(qts)
```

Arguments

qts

quarterly time series

Examples

```
tsq \leftarrow ts(1:20, start=c(1990, 1), frequency = 4)

tsqm(tsq)
```

wide_to_ts 29

tstools-deprecated

Deprecated function(s) in tstools

Description

These functions are provided for compatibility with older version of the tstools package. They may eventually be completely removed.

Arguments

... Parameters to be passed to the modern version of the function

Details

```
concatTs
                      now a synonym for concat_ts
    fillupYearWitnNAs
                      now a synonym for fill_year_with_nas
     importTimeSeries
                      now a synonym for read_ts
    init_tsplot_theme
                      now a synonym for init_tsplot_theme
   overlapSortedLists
                      now a synonym for overlap_sorted_ts_lists
     overlapTslByName
                      now a synonym for overlap_ts_lists_by_name
                      now a synonym for resolve_ts_overlap
       resolveOverlap
stripLeadingNAsFromTs
                      now a synonym for strip_ts_of_leading_nas
stripTrailingNAsFromTs
                      now a synonym for strip_ts_of_trailing_nas
      writeTimeSeries
                      now a synonym for write_ts
```

wide_to_ts

Transform a wide format data.frame into a tslist

Description

The time series in the data.frame may be stored either rowwise or columnswise. The identifying column must be called date (for columnwise) or series (for rowwise)

```
wide_to_ts(data, keep_last_freq_only = FALSE, force_xts = FALSE)
```

30 write_ts

Arguments

data data.frame The data.frame to be transformed keep_last_freq_only

in case there is a frequency change in a time series, should only the part of the series be returned that has the same frequency as the last observation. This is useful when data start out crappy and then stabilize after a while. Defaults to

FALSE. Hence only the last part of the series is returned.

force_xts boolean force xts format? Defaults to FALSE.

write_ts

Export a list of time series to a file.

Description

Export a list of time series to a file.

Usage

```
write_ts(
   tl,
   fname = NULL,
   format = "csv",
   date_format = NULL,
   timestamp_to_fn = FALSE,
   round_digits = NULL,
   rdata_varname = "tslist",
   ...
)
```

Arguments

tl list of time series

fname character file name. Defaults to NULL, displaying output on console. Set a file

name without file extension in order to store a file. Default file names / location

are not CRAN compliant which is why the file name defaults to NULL.

format character denotes export formats. Defaults to .csv. "csv", "xlsx", "json", "rdata"

are available. Spreadsheet formats like csv allow for further optional parameters.

date_format character denotes the date format. Defaults to NULL. If set to null the default is

used: Jan 2010.

timestamp_to_fn

If TRUE, the current date will be appended to the file name. Defaults to FALSE.

round_digits integer, precision in digits.

rdata_varname character name of the list of time series within the store RData. Defaults to

"tslist".

... additional arguments used by spedific formats.

write_ts 31

Details

Additional arguments covered by ...

Name	Effect	Format(s)
wide	Export data in a wide format (one column per series)	CSV, XLSX
transpose	Transpose exported data (one row per series)	CSV, XLSX, only if wide = TRUE
zip	If set to TRUE, the file is compressed into a zip archive after export	any

Index

overlap_sorted_ts_lists, 19, 29		
overlap_ts_lists_by_name, 20, 29		
overlapSortedLists		
(tstools-deprecated), 29		
<pre>overlapTslByName (tstools-deprecated),</pre>		
29		
par, 17		
plot, <i>16</i> , <i>17</i>		
and acted to 20		
read_swissdata, 20		
read_swissdata_meta, 21		
read_ts, 22, 29		
regularize, 23		
resolve_ts_overlap, 23, 29		
resolveOverlap,4		
resolveOverlap (tstools-deprecated), 29		
set_month_to_NA, 24		
start_ts_after_internal_nas, 25		
strip_ts_of_leading_nas, 26, 29		
strip_ts_of_trailing_nas,29		
strip_ts_of_trailing_nas		
<pre>(strip_ts_of_leading_nas), 26</pre>		
stripLeadingNAsFromTs, 25		
stripLeadingNAsFromTs		
(tstools-deprecated), 29		
stripTrailingNAsFromTs, 25		
stripTrailingNAsFromTs		
(tstools-deprecated), 29		
tsplot, <i>10</i> , 26		
tsqm, 28		
tstools-deprecated, 29		
wide_to_ts, 29		
write_ts, 29, 30		
writeTimeSeries (tstools-deprecated), 29		
will certificate ites (tatoots deprecated), 29		