Package 'tvm'

April 21, 2021
Type PackageTitle Time Value of Money FunctionsVersion 0.5.0
Author Juan Manuel Truppia
Maintainer Juan Manuel Truppia jmtruppia@gmail.com
Description Functions for managing cashflows and interest rate curves.
License MIT + file LICENSE
Depends R (>= 3.1.0)
Suggests testthat, knitr, markdown, rmarkdown
Imports ggplot2, reshape2, scales
VignetteBuilder knitr
RoxygenNote 7.1.1
Encoding UTF-8
URL https://bitbucket.org/juancentro/tvm
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-21 06:00:03 UTC
R topics documented:
adjust_disc 2
cashflow 2
cft 3
disc_cf 3
disc_value 4
find_rate 5
irr 5
loan 6
npv 6
plot.rate_curve 7
pmt 8
rate 8
rate_curve 9
rem 10
tvm 10
xirr 11
xnpv 11
[.rate_curve 12
Index 13
adjust_disc Adjusts the discount factors by a spread

Description

Adjusts the discount factors by a spread

Usage

adjust_disc(fd, spread)

Arguments

fd vector of discount factors used to discount cashflows in 1: length(fd) periods spread effective spread

Examples

adjust_disc(fd $=c(0.99,0.98)$, spread $=0.01)$

```
    cashflow Get the cashflow for a loan
```


Description

Returns the cashflow for the loan, excluding the initial inflow for the loan taker

Usage

cashflow(l)

Arguments

1
The loan

Examples

```
l <- loan(rate = 0.05, maturity = 10, amt = 100, type = "bullet")
```

cashflow(l)
cft Calculates the Total Financial Cost (CFT)

Description

This is the IRR of the loan's cashflow, after adding all the extra costs

Usage

cft(amt, maturity, rate, up_fee $=0$, per_fee = 0)

Arguments

amt The amount of the loan
maturity The maturity of the loan
rate The loan rate, in effective rate
up_fee The fee that the loan taker pays upfront
per_fee The fee that the loan payer pays every period

Details

It is assumed that the loan has monthly payments The CFT is returned as an effective rate of periodicity equal to that of the maturity and the rate The interest is calculated over amt + fee

Examples

```
cft(amt = 100, maturity = 10, rate = 0.05, up_fee = 1, per_fee = 0.1)
```

disc_cf Value of a discounted cashflow

Description

Value of a discounted cashflow

Usage

disc_cf(fd, cf)

Arguments

fd	The discount factor vector
cf	The cashflow

Examples

```
    disc_cf(fd = c(1, 0.99, 0.98, 0.97), cf = c(1, -0.3, -0.4, -0.6))
```

 disc_value Calculates the present value of a cashflow

Description

Calculates the present value of a cashflow

Usage

```
disc_value(r, cf, d = 1:length(cf))
```


Arguments

r
A rate curve
cf
The vector of values corresponding to the cashflow
d
The periods on which the cashflow occurs. If missing, it is assumed that cf[i] occurs on period i

Value

The present value of the cashflow

Examples

```
r <- rate_curve(rates = c(0.1, 0.2, 0.3), rate_type = "zero_eff")
disc_value(r, cf = c(-1, 1.10), d = c(0,1))
disc_value(r, cf = c(-1, 1.15*1.15), d = c(0,2))
```


Description

Thru a root finding process, this function finds the rate that corresponds to a given set of discount factors, as for the loan to have the same present value discounted with the discount factors or with that constant rate

Usage

find_rate(m, d, loan_type, interval $=c(1 e-06,2)$, tol $=1 e-08)$

Arguments

$m \quad$ The maturity of the loan
d The discount factor vector
loan_type One of the loan types
interval The interval for the root finding process
tol The tolerance for the root finding process

Examples

find_rate $(m=3, d=c(0.99,0.98,0.97)$, loan_type = "bullet")

irr \quad| The IRR is returned as an effective rate with periodicity equal to that |
| :--- |
| of the cashflow |

Description

Internal Rate of Return of a periodic cashflow (IRR)

Usage

$\operatorname{irr}(\mathrm{cf}, \mathrm{ts}=\operatorname{seq}(\mathrm{from}=0, \mathrm{by}=1$, along. with $=\mathrm{cf})$, interval $=c(-1,10), \ldots$)

Arguments

cf
ts The times on which the cashflow occurs. It is assumed that $c f[i d x]$ happens at moment ts[idx]
interval A length 2 vector that indicates the root finding algorithm where to search for the irr
... Other arguments to be passed on to uniroot

Examples

```
\(\operatorname{irr}(c f=c(-1,0.5,0.9)\), ts \(=c(0,1,3))\)
```

 loan Creates an instance of a loan class

Description

Creates an instance of a loan class

Usage

loan(rate, maturity, amt, type, grace_int = 0, grace_amort = grace_int)

Arguments

rate	The periodic effective rate of the loan
maturity	The maturity of the loan, measured in the same units as the periodicity of the rate
amt	The amount loaned
type	The type of loan. Available types are c("bullet", "french", "german")
grace_int	The number of periods that the loan doesn't pay interest and capitalizes it. Leave in 0 for zero loans
grace_amort	The number of periods that the loan doesn't amortize

Examples

loan(rate $=0.05$, maturity $=10$, amt $=100$, type = "bullet")

```
npv
```

Net Present Value of a periodic cashflow (NPV)

Description

Net Present Value of a periodic cashflow (NPV)

Usage

$\operatorname{npv}(\mathrm{i}, \mathrm{cf}, \mathrm{ts}=\operatorname{seq}(\mathrm{from}=0$, by $=1$, along. with $=c f))$

Arguments

i
cf The cashflow
ts The times on which the cashflow occurs. It is assumed that $c f[i d x]$ happens at moment $t s[i d x]$. If empty, assumes that $c f[i d x]$ happens at period idx -1

Value

The net present value at

Examples

$n p v(i=0.01, c f=c(-1,0.5,0.9), t s=c(0,1,3))$
plot.rate_curve Plots a rate curve

Description

Plots a rate curve

Usage

\#\# S3 method for class 'rate_curve'
plot(x, rate_type = NULL, y_labs_perc = TRUE, y_labs_acc = NULL, ...)

Arguments

x
rate_type The rate types to plot, in c("french", "fut", "german", "zero_eff", "zero_nom", "swap", "zero_cont")
y_labs_perc
y_labs_acc If y_labs_perc is TRUE, the accuracy for the percentages (i.e., 1 for $\mathrm{xx} \%, 0.1$ for $\mathrm{xx} . \mathrm{x} \%, 0.01$ for $\mathrm{xx} . \mathrm{xx} \%$, etc)
$\ldots \quad$ Other arguments (unused)

Examples

```
r<- rate_curve(rates = c(0.1, 0.2, 0.3), rate_type = "zero_eff")
plot(r)
## Not run:
plot(r, rate_type = "german")
plot(r, rate_type = c("french", "german"))
## End(Not run)
```

The value of the payment of a loan with constant payments (french type amortization)

Description

The value of the payment of a loan with constant payments (french type amortization)

Usage

pmt(amt, maturity, rate)

Arguments

amt	The amount of the loan
maturity	The maturity of the loan
rate	The rate of the loan

Details

The periodicity of the maturity and the rate must match, and this will be the periodicity of the payments

Examples

```
    pmt(amt = 100, maturity = 10, rate = 0.05)
```

 rate
 The rate of a loan with constant payments (french type amortization)

Description

The rate of a loan with constant payments (french type amortization)

Usage

rate(amt, maturity, pmt, extrema $=c(1 e-04,1 e+09)$, tol $=1 e-04)$

Arguments

amt	The amount of the loan
maturity	The maturity of the loan
pmt	The payments of the loan
extrema	Vector of length 2 that has the minimum and maximum value to search for the rate
tol	The tolerance to use in the root finding algorithm

Details

The periodicity of the maturity and the payment must match, and this will be the periodicity of the rate (which is returned as an effective rate)

Examples

```
rate(amt = 100, maturity = 10, pmt = 15)
```

```
rate_curve Creates a rate curve instance
```


Description

Creates a rate curve instance

Usage

```
rate_curve(
    rates = NULL,
    rate_type = "zero_eff",
    pers = 1:length(rates),
    rate_scale = 1,
    fun_d = NULL,
    fun_r = NULL,
    knots = seq.int(from = 1, to = max(pers), by = 1),
    functor = function(x, y) splinefun(x = x, y = y, method = "monoH.FC")
)
```


Arguments

rates	A rate vector
rate_type	The rate type. Must be on of c("fut", "zero_nom", "zero_eff", "swap", "zero_cont)
pers	The periods the rates correspond to
rate_scale	In how many periods is the rate expressed. For example, when measuring pe- riods in days, and using annual rates, you should use 365. When measuring periods in months, and using annual rates, you should use 12. If no scaling, use 1.
fun_d	A discount factor function. fun_d(x) returns the discount factor for time x, vec- torized on x
fun_r	A rate function. fun_r(x) returns the EPR for time x, vectorized on x
knots	The nodes used to bootstrap the rates. This is a mandatory argument if a rate function or discount function is provided
functor	A function with parameters x and y, that returns a function used to interpolate

Note

Currently a rate curve can only be built from one of the following sources

1. A discount factor function
2. A rate function and a rate type from the following types: "fut", "zero_nom", "zero_eff", "swap" or "zero_cont
3. A rate vector, a pers vector and a rate type as before

Examples

```
rate_curve(rates = c(0.1, 0.2, 0.3), rate_type = "zero_eff")
rate_curve(fun_r = function(x) rep_len(0.1, length(x)), rate_type = "swap", knots = 1:12)
rate_curve(fun_d = function(x) 1 / (1 + x), knots = 1:12)
```


rem

 Remaining capital in a loan
Description

The amount that has to be repayed at each moment in a loan, at the end of the period

Usage

rem(cf, amt, r)

Arguments

cf
The cashflow of the loan, not including the initial inflow for the loan taker
amt
The original amount of the loan
r
The periodic rate of the loan

Examples

```
    \(\operatorname{rem}\left(c f=r e p \_l e n(0.4,4), a m t=1, r=0.2\right)\)
```

| tvm $t v m$ |
| :--- | :--- |

Description

Functions for managing cashflows and interest rate curves.

Description

Internal Rate of Return of an irregular cashflow (IRR)

Usage

xirr(cf, d, tau $=$ NULL, comp_freq $=1$, interval $=c(-1,10), \ldots)$

Arguments

cf	The cashflow
d	The dates when each cashflow occurs. Same length as the cashflow. Only used if tau is NULL. Assumes act/365 fractions
tau	The year fractions when each cashflow occurs. Same length as the cashflow
comp_freq	The compounding frequency used. Most relevant cases are 1 for yearly, 2 twice a year, 4 quarterly, 12 monthly, 0 no compounding, Inf continuous
interval	A length 2 vector that indicates the root finding algorithm where to search for the irr
	Other arguments to be passed on to uniroot

Examples

$\operatorname{xirr}(\mathrm{cf}=\mathrm{c}(-1,1.5), \mathrm{d}=$ Sys.Date ()$+\mathrm{c}(0,365))$
xnpv Net Present Value of an irregular cashflow (NPV)

Description

Net Present Value of an irregular cashflow (NPV)

Usage

Arguments

i
cf
d The dates when each cashflow occurs. Same length as the cashflow. Only used if tau is NULL. Assumes act/365 fractions
tau The year fractions when each cashflow occurs. Same length as the cashflow
comp_freq The compounding frequency used. Most relevant cases are 1 for yearly, 2 twice a year, 4 quarterly, 12 monthly, 0 no compounding, Inf continuous

Examples

$\operatorname{xnpv}\left(i=0.01, c f=c(-1,0.5,0.9), d=a s . \operatorname{Date}\left(c\left(" 2015-01-01 ", " 2015-02-15 ",{ }^{2} 2015-04-10 "\right)\right)\right)$
[. rate_curve Returns a particular rate or rates from a curve

Description

Returns a particular rate or rates from a curve

Usage

\#\# S3 method for class 'rate_curve'
r[rate_type = "zero_eff", x = NULL]

Arguments

r	The rate_curve object
rate_type	The rate type
x	The points in time to return

Value

If x is NULL, then returns a rate function of rate_type type. Else, it returns the rates of rate_type type and corresponding to time x

Examples

$r<-$ rate_curve(rates $=c(0.1,0.2,0.3)$, rate_type = "zero_eff")
r["zero_eff"]
r["swap",c(1.5, 2)]

Index

[.rate_curve, 12
adjust_disc, 2
cashflow, 2
cft, 3
disc_cf, 3
disc_value, 4
find_rate, 5
irr, 5
loan, 6
$n p v, 6$
plot.rate_curve, 7
pmt, 8
rate, 8
rate_curve, 9
rem, 10
tvm, 10
xirr, 11
xnpv, 11

