Package 'tvm'

April 21, 2021

Type Package
Title Time Value of Money Functions
Version 0.5.0
Author Juan Manuel Truppia
Maintainer Juan Manuel Truppia < jmtruppia@gmail.com>
Description Functions for managing cashflows and interest rate curves.
License MIT + file LICENSE
Depends R (>= 3.1.0)
Suggests testthat, knitr, markdown, rmarkdown
Imports ggplot2, reshape2, scales
VignetteBuilder knitr
RoxygenNote 7.1.1
Encoding UTF-8
<pre>URL https://bitbucket.org/juancentro/tvm</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-21 06:00:03 UTC
R topics documented:
adjust_disc
cft
disc_cf
find rate
irr
loan
npv

2 cashflow

	pmt	
	rate	
	rate_curve	 9
	rem	 10
	tvm	 10
	xirr	
	xnpv	
	[.rate_curve	
Index		13

adjust_disc

Adjusts the discount factors by a spread

Description

Adjusts the discount factors by a spread

Usage

```
adjust_disc(fd, spread)
```

Arguments

fd vector of discount factors used to discount cashflows in 1:length(fd) periods spread effective spread

Examples

```
adjust_disc(fd = c(0.99, 0.98), spread = 0.01)
```

cashflow

Get the cashflow for a loan

Description

Returns the cashflow for the loan, excluding the initial inflow for the loan taker

Usage

```
cashflow(1)
```

Arguments

1 The loan

cft 3

Examples

```
1 \leftarrow loan(rate = 0.05, maturity = 10, amt = 100, type = "bullet") cashflow(1)
```

cft

Calculates the Total Financial Cost (CFT)

Description

This is the IRR of the loan's cashflow, after adding all the extra costs

Usage

```
cft(amt, maturity, rate, up_fee = 0, per_fee = 0)
```

Arguments

amt	The amount of the loan
maturity	The maturity of the loan
rate	The loan rate, in effective rate
up_fee	The fee that the loan taker pays upfront
per_fee	The fee that the loan payer pays every period

Details

It is assumed that the loan has monthly payments The CFT is returned as an effective rate of periodicity equal to that of the maturity and the rate The interest is calculated over amt + fee

Examples

```
cft(amt = 100, maturity = 10, rate = 0.05, up_fee = 1, per_fee = 0.1)
```

disc_cf

Value of a discounted cashflow

Description

Value of a discounted cashflow

Usage

```
disc_cf(fd, cf)
```

disc_value

Arguments

fd The discount factor vector

cf The cashflow

Examples

```
disc_cf(fd = c(1, 0.99, 0.98, 0.97), cf = c(1, -0.3, -0.4, -0.6))
```

disc_value

Calculates the present value of a cashflow

Description

Calculates the present value of a cashflow

Usage

```
disc_value(r, cf, d = 1:length(cf))
```

Arguments

r A rate curve

cf The vector of values corresponding to the cashflow

d The periods on which the cashflow occurs. If missing, it is assumed that cf[i]

occurs on period i

Value

The present value of the cashflow

Examples

```
r <- rate_curve(rates = c(0.1, 0.2, 0.3), rate_type = "zero_eff") disc_value(r, cf = c(-1, 1.10), d = c(0,1)) disc_value(r, cf = c(-1, 1.15*1.15), d = c(0,2))
```

find_rate 5

find_rate	Find the rate for a loan given the discount factors	
-----------	---	--

Description

Thru a root finding process, this function finds the rate that corresponds to a given set of discount factors, as for the loan to have the same present value discounted with the discount factors or with that constant rate

Usage

```
find_rate(m, d, loan_type, interval = c(1e-06, 2), tol = 1e-08)
```

Arguments

m	The maturity of the loan
d	The discount factor vector
loan type	One of the loan types

interval The interval for the root finding process
tol The tolerance for the root finding process

Examples

```
find_rate(m = 3, d = c(0.99, 0.98, 0.97), loan_type = "bullet")
```

irr

The IRR is returned as an effective rate with periodicity equal to that of the cashflow

Description

Internal Rate of Return of a periodic cashflow (IRR)

Usage

```
irr(cf, ts = seq(from = 0, by = 1, along.with = cf), interval = c(-1, 10), ...)
```

Arguments

cf	The cashflow
ts	The times on which the cashflow occurs. It is assumed that $cf[idx]$ happens at moment $ts[idx]$
interval	A length 2 vector that indicates the root finding algorithm where to search for the irr
	Other arguments to be passed on to uniroot

6 npv

Examples

```
irr(cf = c(-1, 0.5, 0.9), ts = c(0, 1, 3))
```

loan

Creates an instance of a loan class

Description

Creates an instance of a loan class

Usage

```
loan(rate, maturity, amt, type, grace_int = 0, grace_amort = grace_int)
```

Arguments

rate The periodic effective rate of the loan

maturity The maturity of the loan, measured in the same units as the periodicity of the

rate

amt The amount loaned

type The type of loan. Available types are c("bullet", "french", "german")

grace_int The number of periods that the loan doesn't pay interest and capitalizes it. Leave

in 0 for zero loans

grace_amort The number of periods that the loan doesn't amortize

Examples

```
loan(rate = 0.05, maturity = 10, amt = 100, type = "bullet")
```

npv

Net Present Value of a periodic cashflow (NPV)

Description

Net Present Value of a periodic cashflow (NPV)

Usage

```
npv(i, cf, ts = seq(from = 0, by = 1, along.with = cf))
```

plot.rate_curve 7

Arguments

i	The rate used to discount the cashflow. It must be effective and with a periodicity that matches that of the cashflow
cf	The cashflow
ts	The times on which the cashflow occurs. It is assumed that cf[idx] happens at moment ts[idx]. If empty, assumes that cf[idx] happens at period idx -1

Value

The net present value at

Examples

```
npv(i = 0.01, cf = c(-1, 0.5, 0.9), ts = c(0, 1, 3))
```

plot.rate_curve

Plots a rate curve

Description

Plots a rate curve

Usage

```
## S3 method for class 'rate_curve'
plot(x, rate_type = NULL, y_labs_perc = TRUE, y_labs_acc = NULL, ...)
```

Arguments

```
The rate curve

The rate types to plot, in c("french", "fut", "german", "zero_eff", "zero_nom",

"swap", "zero_cont")

y_labs_perc

If TRUE, the y axe is labeled with percentages

y_labs_acc

If y_labs_perc is TRUE, the accuracy for the percentages (i.e., 1 for xx%, 0.1 for xx.x%, 0.01 for xx.xx%, etc)

...

Other arguments (unused)
```

Examples

```
r <- rate_curve(rates = c(0.1, 0.2, 0.3), rate_type = "zero_eff")
plot(r)
## Not run:
plot(r, rate_type = "german")
plot(r, rate_type = c("french", "german"))
## End(Not run)</pre>
```

8 rate

pmt	The value of the payment of a loan with constant payments (french type amortization)

Description

The value of the payment of a loan with constant payments (french type amortization)

Usage

```
pmt(amt, maturity, rate)
```

Arguments

amt The amount of the loan maturity The maturity of the loan rate The rate of the loan

Details

The periodicity of the maturity and the rate must match, and this will be the periodicity of the payments

Examples

```
pmt(amt = 100, maturity = 10, rate = 0.05)
```

rate

The rate of a loan with constant payments (french type amortization)

Description

The rate of a loan with constant payments (french type amortization)

Usage

```
rate(amt, maturity, pmt, extrema = c(1e-04, 1e+09), tol = 1e-04)
```

Arguments

amt	The amount of the loan
maturity	The maturity of the loan
pmt	The payments of the loan

extrema Vector of length 2 that has the minimum and maximum value to search for the

rate

tol The tolerance to use in the root finding algorithm

rate_curve 9

Details

The periodicity of the maturity and the payment must match, and this will be the periodicity of the rate (which is returned as an effective rate)

Examples

```
rate(amt = 100, maturity = 10, pmt = 15)
```

rate_curve

Creates a rate curve instance

Description

Creates a rate curve instance

Usage

```
rate_curve(
  rates = NULL,
  rate_type = "zero_eff",
  pers = 1:length(rates),
  rate_scale = 1,
  fun_d = NULL,
  fun_r = NULL,
  knots = seq.int(from = 1, to = max(pers), by = 1),
  functor = function(x, y) splinefun(x = x, y = y, method = "monoH.FC")
)
```

Arguments

rates	A rate vector
rate_type	The rate type. Must be on of c("fut", "zero_nom", "zero_eff", "swap", "zero_cont)
pers	The periods the rates correspond to
rate_scale	In how many periods is the rate expressed. For example, when measuring periods in days, and using annual rates, you should use 365. When measuring periods in months, and using annual rates, you should use 12. If no scaling, use 1.
fun_d	A discount factor function. $fun_d(x)$ returns the discount factor for time x , vectorized on x
fun_r	A rate function. fun_r(x) returns the EPR for time x, vectorized on x
knots	The nodes used to bootstrap the rates. This is a mandatory argument if a rate function or discount function is provided
functor	A function with parameters x and y, that returns a function used to interpolate

10 tvm

Note

Currently a rate curve can only be built from one of the following sources

- 1. A discount factor function
- 2. A rate function and a rate type from the following types: "fut", "zero_nom", "zero_eff", "swap" or "zero_cont
- 3. A rate vector, a pers vector and a rate type as before

Examples

```
rate_curve(rates = c(0.1, 0.2, 0.3), rate_type = "zero_eff")
rate_curve(fun_r = function(x) rep_len(0.1, length(x)), rate_type = "swap", knots = 1:12)
rate_curve(fun_d = function(x) 1 / (1 + x), knots = 1:12)
```

rem

Remaining capital in a loan

Description

The amount that has to be repayed at each moment in a loan, at the end of the period

Usage

```
rem(cf, amt, r)
```

Arguments

cf The cashflow of the loan, not including the initial inflow for the loan taker
amt The original amount of the loan

r The periodic rate of the loan

Examples

```
rem(cf = rep_len(0.4, 4), amt = 1, r = 0.2)
```

tvm tvm

Description

Functions for managing cashflows and interest rate curves.

xirr 11

xirr

The IRR is returned as an effective annual rate

Description

Internal Rate of Return of an irregular cashflow (IRR)

Usage

```
xirr(cf, d, tau = NULL, comp_freq = 1, interval = c(-1, 10), ...)
```

Arguments

cf	The cashflow
d	The dates when each cashflow occurs. Same length as the cashflow. Only used if tau is NULL. Assumes act/365 fractions
tau	The year fractions when each cashflow occurs. Same length as the cashflow
comp_freq	The compounding frequency used. Most relevant cases are 1 for yearly, 2 twice a year, 4 quarterly, 12 monthly, 0 no compounding, Inf continuous
interval	A length 2 vector that indicates the root finding algorithm where to search for the irr
	Other arguments to be passed on to uniroot

Examples

```
xirr(cf = c(-1, 1.5), d = Sys.Date() + c(0, 365))
```

xnpv

Net Present Value of an irregular cashflow (NPV)

Description

Net Present Value of an irregular cashflow (NPV)

Usage

```
xnpv(i, cf, d, tau = NULL, comp_freq = 1)
```

Arguments

i	The rate used to discount the cashflow
cf	The cashflow
d	The dates when each cashflow occurs. Same length as the cashflow. Only used if tau is NULL. Assumes act/365 fractions
tau	The year fractions when each cashflow occurs. Same length as the cashflow
comp_freq	The compounding frequency used. Most relevant cases are 1 for yearly, 2 twice a year, 4 quarterly, 12 monthly, 0 no compounding, Inf continuous

12 [.rate_curve

Examples

```
xnpv(i = 0.01, cf = c(-1, 0.5, 0.9), d = as.Date(c("2015-01-01", "2015-02-15", "2015-04-10")))
```

[.rate_curve

Returns a particular rate or rates from a curve

Description

Returns a particular rate or rates from a curve

Usage

```
## S3 method for class 'rate_curve'
r[rate_type = "zero_eff", x = NULL]
```

Arguments

r The rate_curve object

rate_type The rate type

x The points in time to return

Value

If x is NULL, then returns a rate function of rate_type type. Else, it returns the rates of rate_type type and corresponding to time x

Examples

```
r <- rate_curve(rates = c(0.1, 0.2, 0.3), rate_type = "zero_eff")
r["zero_eff"]
r["swap",c(1.5, 2)]</pre>
```

Index

```
[.rate_curve, 12
adjust_disc, 2
cashflow, 2
cft, 3
disc_cf, 3
\verb|disc_value|, 4
find_rate, 5
irr,5
loan, 6
npv, 6
plot.rate_curve, 7
pmt, 8
rate, 8
rate_curve, 9
rem, 10
tvm, 10
xirr, 11
xnpv, 11
```