Package 'varian'

August 29, 2016

Type Package
Version 0.2.2
Title Variability Analysis in R
Description Uses a Bayesian model to estimate the variability in a repeated measure outcome and use that as an outcome or a predictor in a second stage model.
Date 2016-2-28
Author Joshua F. Wiley [aut, cre], Elkhart Group Limited [cph]
Maintainer Joshua F. Wiley <josh@elkhartgroup.com></josh@elkhartgroup.com>
<pre>URL https://github.com/ElkhartGroup/varian</pre>
<pre>BugReports https://github.com/ElkhartGroup/varian/issues</pre>
Depends R ($>= 3.1.1$), rstan ($>= 2.7.0$), ggplot2
Imports stats, MASS, Formula, grid, gridExtra
Suggests testthat
LazyLoad yes
License MIT + file LICENSE
NeedsCompilation no
Repository CRAN
Date/Publication 2016-02-28 12:57:15
R topics documented:
empirical_pvalue gamma_params parallel_stan param_summary pval_smartformat res_gamma

2 empirical_pvalue

Index		16
	vm_stan	14
	vm_diagnostics	13
	vmp_plot	12
	varian	10
	Variability_Measures	9
	stan_inits	8
	simulate_gvm	7

empirical_pvalue

Calculates an empirical p-value based on the data

Description

This function takes a vector of statistics and calculates the empirical p-value, that is, how many fall on the other side of zero. It calculates a two-tailed p-value.

Usage

```
empirical_pvalue(x, na.rm = TRUE)
```

Arguments

x a data vector to operate on

na.rm Logical whether to remove NA values. Defaults to TRUE

Value

a named vector with the number of values falling at or below zero, above zero, and the empirical p-value.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

```
empirical_pvalue(rnorm(100))
```

gamma_params 3

gamma_params

Estimate the parameters for a Gamma distribution

Description

This is a simple function to estimate what the parameters for a Gamma distribution would be from a data vector. It is used internally to generate start values.

Usage

```
gamma_params(x)
```

Arguments

Χ

a data vector to operate on

Value

a list of the shape (alpha) and rate (beta) parameters and the mean and variance

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

parallel_stan

Wrapper for the stan function to parallelize chains

Description

This function takes Stan model code, compiles the Stan model, and then runs multiple chains in parallel.

Usage

```
parallel_stan(model_code, standata, totaliter, warmup, thin = 1, chains, cl,
  cores, seeds, modelfit, verbose = FALSE, pars = NA, sample_file = NA,
  diagnostic_file = NA, init = "random", ...)
```

4 parallel_stan

Arguments

model_code A character string of Stan code

standata A data list suitable for Stan for the model given

totaliter The total number of iterations for inference. Note that the total number of itera-

tions is automatically distributed across chains.

warmup How many warmup iterations should be used? Note that every chain will use the

same number of warmups and these will be added on top of the total iterations

for each chain.

thin The thin used, default to 1 indicating that all samples be saved.

chains The number of independent chains to run.

cl (optional) The name of a cluster to use to run the chains. If not specified, the

function will make a new cluster.

cores (optional) If the c1 argument is not used, this specifies the number of cores to

make on the new cluster. If both cl and cores are missing, defaults to the minimum of the number of chains specified or the number of cores available on

the machine.

seeds (optional) A vector of random seeds the same length as the number of indepen-

dent chains being run, to make results replicable. If missing, random seeds will

be generated and stored for reference in the output.

modelfit (optional) A compiled Stan model, if available, saves compiling model_code.

verbose A logical whether to print verbose output (defaults to FALSE)

pars Parameter names from Stan to store

sample_file The sample file for Stan

diagnostic_file

The diagnostic file for Stan

init A character string ("random") or a named list of starting values.

... Additional arguments, not currently used.

Value

a named list with three elements, the results, compiled Stan model, and the random seeds

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

Make me!

param_summary 5

param_summary	Calculates summaries for a parameter	

Description

This function takes a vector of statistics and calculates several summaries: mean, median, 95 the empirical p-value, that is, how many fall on the other side of zero.

Usage

```
param_summary(x, digits = 2, pretty = FALSE, ..., na.rm = TRUE)
```

Arguments

Х	a data vector to operate on
digits	Number of digits to round to for printing
pretty	Logical value whether prettified values should be returned. Defaults to FALSE.
na.rm	Logical whether to remove NA values. Defaults to TRUE
	Additional arguments passed to pval_smartformat to control p-value printing.

Value

.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

```
param_summary(rnorm(100))
param_summary(rnorm(100), pretty = TRUE)
```

 ${\tt pval_smartformat}$

nice formatting for p-values

Description

```
nice formatting for p-values
```

Usage

```
pval\_smartformat(p, d = 3, sd = 5)
```

6 res_gamma

Arguments

		1
р	a numeric	pvalue

d the digits less than which should be displayed as less than

sd scientific digits for round

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

```
varian:::pval_smartformat(c(1, .15346, .085463, .05673, .04837, .015353462, .0089, .00164, .0006589, .0000000053326), 3, 5)
```

res_gamma

Estimates the parameters of a Gamma distribution from SDs

Description

This function calcualtes the parameters of a Gamma distribution from the residuals from an individuals' own mean. That is, the distribution of (standard) deviations from individuals' own mean are calculated and then an estimate of the parameters of a Gamma distribution are calculated.

Usage

```
res_gamma(x, ID)
```

Arguments

x A data vector to operate on

ID an ID variable of the same length as x

Value

a list of the shape (alpha) and rate (beta) parameters and the mean and variance

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

```
set.seed(1234)
y <- rgamma(100, 3, 2)
x <- rnorm(100 * 10, mean = 0, sd = rep(y, each = 10))
ID <- rep(1:100, each = 10)
res_gamma(x, ID)</pre>
```

simulate_gvm 7

simulate_gvm

Simulate a Gamma Variability Model

Description

This function facilitates simulation of a Gamma Variability Model and allows the number of units and repeated measures to be varied as well as the degree of variability.

Usage

```
simulate_gvm(n, k, mu, mu.sigma, sigma.shape, sigma.rate, seed = 5346)
```

Arguments

n	The number of repeated measures on each unit
k	The number of units
mu	The grand mean of the variable
mu.sigma	The standard deviation of the random mean of the variable
sigma.shape	the shape (alpha) parameter of the Gamma distribution controlling the residual variability
sigma.rate	the rate (beta) parameter of the Gamma distribution controlling the residual variability
seed	the random seed, used to make simulations reproductible. Defaults to 5346 (arbitrarily).

Value

a list of the data, IDs, and the parameters used for the simulation

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

```
raw.sim <- simulate_gvm(12, 140, 0, 1, 4, .1, 94367)
sim.data <- with(raw.sim, {
    set.seed(265393)
    x2 <- MASS::mvrnorm(k, c(0, 0), matrix(c(1, .3, .3, 1), 2))
    y2 <- rnorm(k, cbind(Int = 1, x2) %*% matrix(c(3, .5, .7)) + sigma, sd = 3)
    data.frame(
        y = Data$y,
        y2 = y2[Data$ID2],
        x1 = x2[Data$ID2, 1],
        x2 = x2[Data$ID2, 2],
        ID = Data$ID2)
})</pre>
```

8 stan_inits

stan	ir	١i	ts

Calculate Initial Values for Stan VM Model

Description

Internal function used to get rough starting values for a variability model in Stan. Uses inidivudal standard deviations, means, and linear regressions.

Usage

```
stan_inits(stan.data, design = c("V \rightarrow Y", "V \rightarrow M \rightarrow Y", "V", "X \rightarrow V", "X \rightarrow V \rightarrow Y", "X \rightarrow M \rightarrow V"), useU, ...)
```

Arguments

atan data	A 1ict	containing	the dota	to h	- massad	+-	Cton
stan.data	A IISt	containing	the data	to b	e bassed	เบ	Stan

design A character string indicating the type of model to be run. One of "V -> Y" for

variability predicting an outcome, "V -> M -> Y" for mediation of variability on an outcome, "V" to take posterior samples of individual variability estimates

alone.

useU whether to include the random intercepts

... Additional arguments (not currently used)

Value

A named list containing the initial values for Stan.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

make me!

Variability_Measures 9

Variability_Measures Variability Measures

Description

Variability Measures

by_id - Internal function to allow a simple statistic (e.g., SD) to be calculated individually by an ID variable and returned either as per ID (i.e., wide form) or for every observation of an ID (i.e., long form).

sd_id - Calculates the standard deviation of observations by ID.

rmssd - Calculates the root mean square of successive differences (RMSSD). Note that missing values are removed.

rmssd_id - Calculates the RMSSD by ID.

rolling_diff - Calculates the average rolling difference of the data. Within each window, the difference between the maximum and minimum value is computed and these are averaged across all windows. The equation is:

$$\frac{\sum_{t=1}^{N-k} max(x_t, \dots, x_{t+k}) - min(x_t, \dots, x_{t+k})}{N-k}$$

rolling_diff_id - Calculates the average rolling difference by ID

Usage

```
by_id(x, ID, fun, long = TRUE, ...)
sd_id(x, ID, long = TRUE)

rmssd(x)

rmssd_id(x, ID, long = TRUE)

rolling_diff(x, window = 4)

rolling_diff_id(x, ID, long = TRUE, window = 4)
```

Arguments

X	A data vector to operate on. Should be a numeric or integer vector, or coercible to such (e.g., logical).
ID	an ID variable indicating how to split up the x vector. Should be the same length as x.
fun	The function to calculate by ID
long	A logical indicating whether to return results in "long" form (the default) or wide (if FALSE).

10 varian

window An integer indicating the size of the rolling window. Must be at least the length of x.

... Additional arguments passed on to fun

Value

```
by_id - A vector the same length as x if long=TRUE, or the length of unique IDs if long=FALSE.

sd_id - A vector of the standard deviations by ID

rmssd - The RMSSD for the data.

rmssd_id - A vector of the RMSSDs by ID

rolling_diff - The average of the rolling differences between maximum and minimum.

rolling_diff_id - A vector of the average rolling differences by ID
```

Note

These are a set of functions designed to calculate various measures of variability either on a single data vector, or calculate them by an ID.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

```
sd_id(mtcars$mpg, mtcars$cyl, long=TRUE)
sd_id(mtcars$mpg, mtcars$cyl, long=FALSE)
rmssd(1:4)
rmssd(c(1, 3, 2, 4))
rmssd_id(mtcars$mpg, mtcars$cyl)
rmssd_id(mtcars$mpg, mtcars$cyl, long=FALSE)
rolling_diff(1:7, window = 4)
rolling_diff(c(1, 4, 3, 4, 5))
rolling_diff_id(mtcars$mpg, mtcars$cyl, window = 3)
```

varian

Variability Analysis using a Bayesian Variability Model (VM)

Description

This function uses a linear mixed effects model that assumes the level 1 residual variance varies by Level 2 units. That is rather than assuming a homogenous residual variance, it assumes the residual standard deviations come from a Gamma distribution. In the first stage of this model, each Level 2's residual standard deviation is estimated, and in the second stage, these standard deviations are used to predict another Level 2 outcome. The interface uses an intuitive formula interface, but the underlying model is implemented in Stan, with minimally informative priors for all parameters.

The Variability Analysis in R Package

varian 11

Usage

```
varian(y.formula, v.formula, m.formula, data, design = c("V \rightarrow Y", "V \rightarrow M \rightarrow Y", "V", "X \rightarrow V", "X \rightarrow V \rightarrow Y", "X \rightarrow M \rightarrow V"), useU = TRUE, totaliter = 2000, warmup = 1000, chains = 1, inits = NULL, modelfit, opts = list(SD_Tol = 0.01, pars = NULL), ...)
```

Arguments

y.formula	A formula describing a model for the outcome. At present, this must be a continuous, normally distributed variable.
v.formula	A formula describing a model for the variability. Note this must end with ID, where ID is the name of the ID variable in the dataset. At present, this must be a continuous, normally distributed variable.
m.formula	An optional formula decribing a model for a mediatior variable. At present, this must be a continuous normally distributed variable.
data	A long data frame containing an both the Level 2 and Level 1 outcomes, as well as all covariates and an ID variable.
design	A character string indicating the type of model to be run. One of "V -> Y" for variability predicting an outcome, "V -> M -> Y" for mediation of variability on an outcome, "V" to take posterior samples of individual variability estimates alone.
useU	A logical value whether the latent intercept estimated in Stage 1 should also be used as a predictor. Defaults to TRUE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
totaliter	The total number of iterations to be used (not including the warmup iterations), these are distributed equally across multiple independent chains.
warmup	The number of warmup iterations. Each independent chain has the same number of warmup iterations, before it starts the iterations that will be used for inference.
chains	The number of independent chains to run (default to 1).
inits	Initial values passed on to stan. If NULL, the default, initial values are estimated means, standard deviations, and coefficients from a single level linear regression.
modelfit	A compiled Stan model (e.g., from a previous run).
opts	A list giving options. Currently only SD_To1 which controls the tolerance for how small a variables standard deviation may be without stopping estimation (this ensures that duplicate variables, or variables without any variability are included as predictors). Additional arguments passed to stan.
• • •	Additional arguments passed to Stan.

Value

A named list containing the model results, the model, the variable.names, the data, the random seeds, and the initial function .call.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

12 vmp_plot

Examples

```
## Not run:
 sim.data <- with(simulate_gvm(4, 60, 0, 1, 3, 2, 94367), {
    set.seed(265393)
   x2 \leftarrow MASS::mvrnorm(k, c(0, 0), matrix(c(1, .3, .3, 1), 2))
   y2 <- rnorm(k, cbind(Int = 1, x2) %*% matrix(c(3, .5, .7)) + sigma, sd = 3)
    data.frame(
      y = Data$y,
      y2 = y2[Data$ID2],
      x1 = x2[Data$ID2, 1],
      x2 = x2[Data$ID2, 2],
      ID = Data ID2)
 })
 m \leftarrow varian(y2 \sim x1 + x2, y \sim 1 \mid ID, data = sim.data, design = "V -> Y",
    totaliter = 10000, warmup = 1500, thin = 10, chains = 4, verbose=TRUE)
 # check diagnostics
 vm_diagnostics(m)
 sim.data2 <- with(simulate_gvm(21, 250, 0, 1, 3, 2, 94367), {
    set.seed(265393)
    x2 \leftarrow MASS::mvrnorm(k, c(0, 0), matrix(c(1, .3, .3, 1), 2))
   y2 \leftarrow rnorm(k, cbind(Int = 1, x2) %*% matrix(c(3, .5, .7)) + sigma, sd = 3)
    data.frame(
      y = Data$y,
      y2 = y2[Data$ID2],
      x1 = x2[Data$ID2, 1],
      x2 = x2[Data$ID2, 2],
      ID = Data$ID2)
 })
 # warning: may take several minutes
 m2 \leftarrow varian(y2 \sim x1 + x2, y \sim 1 \mid ID, data = sim.data2, design = "V -> Y",
    totaliter = 10000, warmup = 1500, thin = 10, chains = 4, verbose=TRUE)
 # check diagnostics
 vm_diagnostics(m2)
## End(Not run)
```

vmp_plot

Plot the posterior distributions of the focal parameters from a VM model

Description

This function plots the univariate and bivariate (if applicable) distributions of the focal (alpha) parameters from a Variability Model where the variability is used as a predictor in a second-stage model. The latent variability estimates are referred to as "Sigma" and, if used, the latent intercepts are referred to as "U".

vm_diagnostics 13

Usage

```
vmp_plot(alpha, useU = TRUE, plot = TRUE, digits = 3, ...)
```

Arguments

alpha	Results from running varian and extracting the results.
useU	Logical indicating whether to plot the latent intercepts (defaults to TRUE). Must set to FALSE if not available.
plot	Logical whether to plot the results or just return the grob for the plots. Defaults to TRUE.
digits	Integer indicating how many digits should be used for displaying p-values
	Additional arguments (not currently used)

Value

A list containing the Combined and the Individual plot objects.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

```
# Using made up data because the real models take a long time to run
set.seed(1234) # make reproducible
vmp_plot(matrix(rnorm(1000), ncol = 2))
```

vm_diagnostics

Plot diagnostics from a VM model

Description

This function plots a variety of diagnostics from a Variability Model. These include a histogram of the Rhat values (so-called percent scale reduction factors). An Rhat value of 1 indicates that no reduction in the variability of the estimates is possible from running the chain longer. Values below 1.10 or 1.05 are typically considered indicative of convergence, with higher values indicating the model did not converge and should be changed or run longer. A histogram of the effective sample size indicates for every parameter estimated how many effective posterior samples are available for inference. Low values may indicate high autocorrelation in the samples and may be a sign of failure to converge. The maximum possible will be the total iterations available. Histograms of the posterior medians for the latent variability and intercept estimates are also shown.

Usage

```
vm_diagnostics(object, plot = TRUE, ...)
```

14 vm_stan

Arguments

object Results from running varian.

plot Logical whether to plot the results or just return the grob for the plots. Defaults

to TRUE.

. . . Additional arguments not currently used

Value

A graphical object

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

Make Me!

vm_stan

Create a Stan class VM object

Description

Internal function to create and compile a Stan model.

Usage

```
vm_stan(design = c("V -> Y", "V -> M -> Y", "V", "X -> V", "X -> V", "X -> Y", "X -> M -> V"), useU = TRUE, ...)
```

Arguments

design A character string indicating the type of model to be run. One of "V -> Y" for

variability predicting an outcome, " $V \rightarrow M \rightarrow Y$ " for mediation of variability on an outcome, "V" to take posterior samples of individual variability estimates

alone.

useU A logical value whether the latent intercept estimated in Stage 1 should also be

used as a predictor. Defaults to TRUE.

... Additional arguments passed to stan_model.

Value

A compiled Stan model.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

vm_stan 15

```
# Make Me!
## Not run:
    test1 <- vm_stan("V -> Y", useU=TRUE)
    test2 <- vm_stan("V -> Y", useU=FALSE)
    test3 <- vm_stan("V -> M -> Y", useU=TRUE)
    test4 <- vm_stan("V -> M -> Y", useU=FALSE)
    test5 <- vm_stan("V")
## End(Not run)</pre>
```

Index

```
*Topic hplot
                                                vm_diagnostics, 13
    vm_diagnostics, 13
                                                vm_stan, 14
    vmp_plot, 12
                                                vmp\_plot, 12
*Topic models
    stan_inits, 8
    varian, 10
    vm_stan, 14
*Topic utilities
    empirical_pvalue, 2
    gamma_params, 3
    parallel_stan, 3
    param_summary, 5
    pval_smartformat, 5
    res_gamma, 6
    simulate_gvm, 7
    Variability_Measures, 9
by_id (Variability_Measures), 9
empirical_pvalue, 2
gamma_params, 3
parallel_stan, 3
param_summary, 5
pval_smartformat, 5
res_gamma, 6
rmssd (Variability_Measures), 9
rmssd_id (Variability_Measures), 9
rolling_diff(Variability_Measures), 9
rolling_diff_id (Variability_Measures),
sd_id (Variability_Measures), 9
simulate_gvm, 7
stan_inits, 8
Variability_Measures, 9
varian, 10
varian-package (varian), 10
```