
How to use the vegclust package (ver. 1.6.5)
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1 Introduction

1.1 What is this tutorial about?

Classification of vegetation plot records involves different activities, includ-
ing the design of an appropriate vegetation survey, the use of a classification
method to group vegetation observations and the characterization, valida-
tion and naming of the resulting vegetation groups. In this tutorial we focus
on only one of this steps, namely to group vegetation observations, and we
show how to conduct it with the help of the R package vegclust. Before
starting our examples we need to load the vegclust package, which also
loads the required permute, and package vegan:

> library(vegclust)

> library(vegan)

1.2 Example vegetation data

In order to illustrate the functions in vegclust we will use a small wet-
land vegetation data set, consisting of 41 sites and 33 species and published
by Bowman and Wilson [1986]. The data is included with the vegclust

package:

> data(wetland)

> dim(wetland)

[1] 41 33

For a number of reasons that we will not detail here, the Euclidean distance is
not an appropriate index to measure the resemblance in species composition
between vegetation plot records. Therefore, we transform our community
data using the chord transformation [Legendre and Gallagher, 2001], which
divides each value by the norm of the row vector of the corresponding site:

> wetlandchord = decostand(wetland,"normalize")

2



Function decostand is provided within the vegan package. The Euclidean
distance on the transformed data is equal to the chord distance [Orlóci, 1967]
with respect to the raw community data:

> dchord = dist(wetlandchord)

In some of our examples we will use the R objects wetlandchord or dchord
indistinctively, because package vegclust allows vegetation to be classified
from either a site-by-species data table or from a site-by-site dissimilarity
matrix. In the next section we briefly explain the bases of the classification
methods that are provided in the vegclust package. We later show how to
run those methods using functions in the package.

2 Clustering methods in vegclust

2.1 Resemblance space

Generally speaking, the goal of clustering is to derive c ‘natural’ classes or
clusters from a set of n unlabelled objects. Those objects inside a ‘natural’
cluster show a certain degree of closeness or similarity and the cluster itself
shows a certain degree of isolation from other clusters. In classification of
vegetation the n ‘objects’ to be grouped are samples of plant communities
(i.e. plot records or relevés) and the goal is to define vegetation types.

When speaking of ‘proximity’ or ‘similarity’, we implicitly assume there
is a procedure to assess the degree of resemblance between the objects to
be grouped. This procedure usually involves describing our objects using
a set of p features (these are normally species in the case of vegetation)
and specifying a resemblance measure (e.g. distance or dissimilarity). Let
X = [xjs] be a site-by-species data table of dimensions n × p, where xjs is
the abundance of species s in site j, and let d be an appropriate dissimilarity
or distance measure.

Another way to formalize the resemblance between objects is to directly
provide the similarity or dissimilarity between pairs of objects in a symmetric
resemblance matrix. Let D = [dij ] be a symmetric dissimilarity matrix of
dimensions n× n, where dij = d(xi,xj) is the dissimilarity between objects
i and j. In classification of vegetation dij = d(xi,xj) may represent the
compositional dissimilarity between the two plant communities i and j, but
it could be based on other vegetation attributes such as physiognomy.

Regardless of whether we use X or D, we will speak here of resemblance
space and our objects (plant communities) will be formally represented as
points in this space. Although we do not cover this topic in detail here, the
reader should be aware that building an appropriate resemblance space is
critical to achieving a vegetation classification that fits a given purpose. The
results of the classification exercise may be completely different depending
on the way the resemblance space is defined.
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2.2 Prototype-based clustering

Prototype-based clustering methods assume that the properties of objects in
a cluster can be represented using a cluster prototype, which is formalized as
a point in the resemblance space. The problem is thus to find c prototypes
and assign the n objects according to their proximity to those prototypes,
such that the resulting clusters are compact and isolated one from another.

All the clustering methods discussed here follow an alternate optimiza-
tion scheme, meaning that one group of parameters (e.g. the membership
matrix) is optimized by holding the other group (e.g. the cluster proto-
types) fixed and vice versa. Assuming an initial cluster configuration, this
is achieved by iterating the following three steps:

(S.1) Determine the prototype of each cluster i.

(S.2) Calculate eij , the distance from each object j to the prototype of each
cluster i.

(S.3) Calculate uij , the (hard or fuzzy) membership of each object j to each
cluster i (i.e. re-assign all objects into clusters).

Each iteration of the alternate optimization algorithm improves the objec-
tive function of the clustering method. The alternate optimization algorithm
stops when there are no further changes in object memberships. More tech-
nically, it stops if the maximum difference in object membership values of
the last two iterations does not exceed a user-specified threshold. The start-
ing configuration of clusters is a critical issue in this kind of classification
methods, because the iterations can result in the alternate optimization al-
gorithm getting stuck in a suboptimal value of the objective function. For
this reason, several executions of the algorithm are usually tried, each one
using a different starting configuration.

2.3 Clustering models

There are several prototype-based clustering models in the vegclust pack-
age; all of which follow the iterative algorithm presented above. The dif-
ferences between clustering models arise due to differences in the specific
implementation of each step, resulting from different assumptions of how
clusters should be defined. The clustering models can be divided according
to their properties into:

a) Whether object memberships are fuzzy or hard (crisp).

b) Whether cluster prototypes are centroids or medoids.

c) How outlier objects are handled, which gives three kinds of models:
partitive, noise clustering or possibilistic clustering.
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In the following subsections we describe the implications of each of these
decisions.

2.3.1 Hard (crisp) or fuzzy memberships

With the kind of classification methods described here, it is costumary to
represent the classification of objects into groups using a c× n membership
matrix, U = [uij ], where uij is the degree of membership of object j in
cluster i. The classification is said to be hard when the uij values are either
0 (object j DOES NOT belong to cluster i) or 1 (object j DOES belong
to cluster i). In contrast, if the classification is fuzzy the membership of
its objects is expressed through a degree of membership bounded between
0 (i.e. the object does not belong to the set at all) and 1 (i.e. the object
belongs completely to the set).

The advantages of using fuzzy set theory in vegetation classification are
that it acknowledges the individualistic concept of species distribution across
gradients of vegetation composition [Moravec, 1989], and therefore avoids
assuming that vegetation observations (e.g. releves) must be unequivocal
representatives of a type without no admixture of any other types [Dale,
1995].

2.3.2 Centroids or medoids

The centroid of a cluster i that contains ni objects is a vector ci whose
coordinates are the average, in each dimension s, of the coordinates of the
ni objects belonging to the cluster. In vector notation:

ci =

∑ni
j=1 xj

ni
(1)

The centroid has the property that minimizes the sum of squared Euclidean
distances between itself and each point belonging to the cluster. Equation 1
can be generalized to the case of a fuzzy cluster by weighting the coordinates
each object by its degree of membership to the cluster, uij :

ci =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(2)

In equation 2, m > 0 is the fuzziness exponent, which is used to modulate
the influence of fuzzy memberships in the calculation of the centroids. If m
is very large only the objects whose membership is close to 1 will have an
influence on the centroid. On the contrary, if m is small (i.e. close to 0)
then all n objects will influence the centroid equally and it will approach
the overall data center.

A medoid of a cluster i that contains ni objects is defined as the object,
chosen among the ni objects, for which the sum of dissimilarities to all the
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ni objects is minimal i.e. it is a most centrally located point in the cluster.
Formally, the medoid is the object k for which:

ni∑
j=1

d(xk,xj) (3)

is minimal. When using fuzzy logic, the medoid of cluster i is defined as the
object k (among all n objects) that minimizes:

n∑
j=1

umijd(xk,xj) (4)

Note that, because the medoid is a point chosen among the n input objects,
we do not need to calculate its coordinates (although see explanation be-
low for centroids), moreover, the distance between a medoid and the other
objects (step S.2 in the alternate optimization algorithm) will be readily
available from the beginning, so it does not need to be computed. All this
makes dealing with medoids computationally much faster than dealing with
centroids.

2.3.3 Partitive clustering

A clustering method is called partitive if object memberships (crisp or fuzzy)
are constrained to sum to one for each object:

c∑
i=1

uij = 1 (5)

This constrain is usually referred to as the partition restriction. It ensures
that all objects will be classified as either belonging to a single cluster or
dividing their membership among different clusters. No objects will be left
unclassified.

K-means (KM, also known as hard c-means) [MacQueen, 1967] and Fuzzy
c-means (FCM) [Bezdek, 1981] are two, centroid-based, partitive clustering
algorithms widely used in many unsupervised pattern recognition applica-
tions. The main difference between the two methods is that in KM every
object belongs to a single cluster (i.e clusters are ‘hard’) whereas in FCM
the memberships are fuzzy and a given object may have some degree of
membership to more than one cluster.

Cluster memberships (step S.3) are determined in KM simply by assign-
ing each object to the cluster whose centroid is closest. In the case of FCM,
fuzzy memberships are calculated using the following formula:

uij =
1∑c

l=1 (eij/elj)2/(m−1)
(6)
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As said above, m > 1 is the fuzziness coefficient. The smaller the value of
m, the closer to a hard partition will be the result. If m is set too high and
the data is noisy the resulting partition may be completely fuzzy (i.e. where
uij = 1/c for all objects and clusters) and therefore uninformative.

As indicated above, KM and FCM are centroid-based, meaning they use
equations 1 and 2, respectively, for step S.1. The corresponding medoid-
based methods are Hard C-medoids and Fuzzy C-medoids, which instead
use equations 3 and 4, respectively [Krishnapuram et al., 1999].

2.3.4 Noise clustering

The noise clustering (NC) method [Dave, 1991] is an attempt to make the
FCM method more robust to the effect of outliers. The rationale underlying
NC is the following: if an object is an outlier, this means that it lies far
from all cluster prototypes and, therefore, it should have low membership
values to all clusters. In order to achieve these low memberships, the NC
considers an additional class, called Noise. This class is not represented by
a ‘prototype’, like the c ‘true’ clusters. The effect of including the Noise
class is that it ‘captures’ objects that are at a distances larger than δ from
all the c ‘true’ prototypes. The NC membership function (step S.3) for the
‘real’ clusters is:

uij =
1

(eij/δ)2/(m−1) +
∑c

l=1 (eij/elj)2/(m−1)
(7)

whereas the fuzzy membership to the Noise class, uNj , is one minus the sum
of memberships to the real clusters.

uNj = 1−
c∑

i=1

uij (8)

Outlier objects have small membership values to the c real clusters because
the first term in the denominator of equation 7 is large. The smaller the
δ, the higher the memberships to the Noise class will be. In contrast, large
values of δ make NC equivalent to FCM. In NC, the fuzziness exponent m
has the same interpretation as in FCM. Including the Noise class has the
effect of relaxing the partition restriction. In NC, the partition restriction
is fulfilled when all c real clusters and the Noise class are considered.

Note that, like FCM and KM, we can define a ‘hard’ counterpart of the
(fuzzy) noise clustering method. Indeed, the hard noise clustering (HNC)
method differs from the fuzzy one in that memberships are not fuzzy. Like
KM, its membership function can be described verbally. One assigns the
object to the noise class if the distances to all cluster centroids is larger than
δ. Otherwise, one assigns the object to the cluster whose centroid is closest,
as in KM.
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The noise clustering method was originally defined with centroids as
prototypes. However, either hard or fuzzy noise clustering can be applied
to medoids instead of centroids. Although we have found no references
exploring this approach, the corresponding algorithms could be named ‘hard
noise clustering with medoids’ (HNCdd) and ‘(fuzzy) noise clustering with
medoids’ (NCdd).

2.3.5 Possibilistic clustering

Possibilistic C-means [Krishnapuram and Keller, 1993, 1996] is another mod-
ification of FCM seeking increased cluster robustness. The partition restric-
tion is eliminated in PCM, which produces c independent fuzzy clusters,
each corresponding to a dense region of points. Whereas the FCM and NC
membership functions compare the distance from the object to the cluster
of interest, eij , with the distances to the remaining prototypes (and to the
noise class in the case of NC), in PCM the membership value for a given
object to a cluster does not depend on the distances to the remaining cluster
prototypes. Instead, the distance to the cluster of interest is compared to a
reference distance (ηi):

uij =
1

1 + (e2ij/ηi)
1/(m−1)

(9)

The reference distance is a parameter that must be provided for each cluster.
All objects whose distance to the cluster center is smaller than ηi will obtain
a membership value higher than 0.5.

The fact that the membership to a given cluster does not depend on the
distances to the remaining cluster prototypes entails that cluster repulsion is
eliminated in PCM, with the consequence that samples can have high mem-
bership to different clusters. Good estimation of ηi is crucial for the success
of the PCM method [De Cáceres et al., 2006]. Inadequate initialization of
ηi can lead to a loss of cluster structures, even with the correct partition
as initial starting configuration. A single PCM run can be regarded as c
independent runs of NC, each looking for a single cluster and where δ2i = ηi
[Dave and Krishnapuram, 1997]. In vegetation data plant communities with
intermediate characteristics are frequent. This fact makes the PCM method
impractical for classification of vegetation, because without cluster repulsion
PCM clusters are frequently highly mobile and converge to the same cluster,
leaving large parts of the data unassigned [De Cáceres et al., 2010].

2.4 Dissimilarity-based duals

All the clustering methods presented above can be executed on a resemblance
space described using either X or D. The latter case avoids explicitly dealing
with coordinates when creating groups.
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2.4.1 Medoid-based clustering and dissimilarity matrices

Because medoids are selected among the objects to be classified it is obvi-
ous that the distance to the cluster prototypes, eij , can be drawn from a
symmetric matrix of pairwise distances between objects calculated before
the alternate optimization algorithm is initiated. In other words, one can
conduct medoid-based clustering on a site-by-site distance matrix instead of
using a site-by-species rectangular matrix. Moreover, one can straightfor-
wardly skip the use of Euclidean distance and use a dissimilarity measure
more appropriate for ecological data.

2.4.2 Centroid-based clustering and dissimilarity matrices

When dealing with centroids, it may seem unavoidable to calculate centroid
coordinates (step S.1) before calculating the (squared) Euclidean distances
to cluster centers eij (step S.2):

e2ij = ‖ci − xj‖2 (10)

However, there is a mathematical trick that avoids the need to calculate the
coordinates ci explictly. Let D be the matrix of Euclidean distances between
pairs of objects. We can obtain e2ij as follows:

e2ij =
1

ni

ni∑
l=1

d2lj −
1

2n2i

ni∑
k=1

ni∑
l=1

d2lk (11)

The left part of this equation is a sum of squared distances from the target
object to all the other objects in the cluster. The right part of the equation is
an average of squared distances between objects in the cluster. Equation 11
can be generalized to the case of a fuzzy cluster:

e2ij =
1∑n

k=1 u
m
ik

ni∑
l=1

d2lj −
1

2
(∑n

k=1 u
m
ik

)2 n∑
k=1

n∑
l=1

umiku
m
il d

2
lk (12)

Equations 11 and 12 allow the Euclidean distance to a centroid to be deter-
mined without calculating its coordinates. Therefore, they allow steps S.1
and S.2 to be combined into a single step. In other words, distance-based du-
als exist for centroid-based clustering methods when the resemblance space
comprises Euclidean distances [Hathaway et al., 1989, 1996].

If we transform the original data in order to emulate a distance (like
the chord), then the duality holds, although centroids are defined in the
transformed space. What happens if the values in D were not calculated
using the Euclidean distance? Equations 11 and 12 are also valid for other
dissimilarity measures, although there are important details to be remem-
bered. These equations assume that the resemblance space is Euclidean (i.e.
does not produce negative eigenvalues in principal coordinates analysis) and
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that centroids are appropriate prototypes for clusters. If the dissimilarities
do not have the Euclidean property some oddities may arise [Hathaway and
Bezdek, 1994]. For example, it is possible to obtain negative e2ij values, spe-
cially for groups of small size. In practice, however, when these negative
distances occur they can be reset to zero [De Cáceres et al., 2006].

3 Managing vegetation classifications

3.1 Creating classifications: vegclust and vegclustdist

Functions vegclust and vegclustdist allow vegetation types to be defined
from a set of unlabelled vegetation observations (i.e. relevés or plot records)
using any of the clustering models explained in the previous section. veg-

clust requires a rectangular site-by-species matrix, whereas vegclustdist
requires a symmetric site-by-site dissimilarity matrix.

3.1.1 The K-means model

The following piece of code produces a classification of our example data set
into three groups using the K-means clustering model:

> wetland.km = vegclust(x = wetlandchord, mobileCenters=3,

+ method="KM", nstart=20)

The result is an object of class ‘vegclust’, in fact a list with several compo-
nents (method, parameters, prototypes, objective function, etc.):

> names(wetland.km)

[1] "mode" "method" "m"

[4] "dnoise" "eta" "memb"

[7] "mobileCenters" "fixedCenters" "dist2clusters"

[10] "withinss" "size" "functional"

[13] "iter"

One of the most important components is the membership matrix U, which
we show transposed here:

> t(wetland.km$memb)

5 8 13 4 17 3 9 21 16 14 2 15 1 7 10 40 23 25 22 20 6 18 12 39

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

19 11 30 34 28 31 26 29 33 24 36 37 41 27 32 35 38

M1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

M2 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0

M3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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Another important component is the matrix containing the coordinates of
cluster centroids (i.e. vectors ci for each cluster):

> round(wetland.km$mobileCenters, dig=3)

Abefic Merhed Alyvag Pancam Abemos Melcor Ludoct Eupvac Echpas

M1 0.000 0.000 0.047 0.076 0.016 0.153 0.000 0.050 0.066

M2 0.018 0.068 0.000 0.356 0.015 0.275 0.019 0.205 0.102

M3 0.000 0.000 0.000 0.027 0.000 0.062 0.000 0.039 0.048

Passcr Poa2 Carhal Dendio Casobt Aesind Cyprot Ipocop Cynarc

M1 0.000 0.01 0.069 0.000 0.000 0.075 0.081 0.013 0.013

M2 0.026 0.00 0.000 0.000 0.000 0.019 0.176 0.040 0.432

M3 0.000 0.00 0.037 0.016 0.016 0.000 0.000 0.000 0.000

Walind Sessp. Phynod Echell Helind Ipoaqu Orysp. Elesp. Psespi

M1 0.064 0.104 0.715 0.119 0.172 0.048 0.172 0.138 0.027

M2 0.078 0.157 0.064 0.112 0.019 0.037 0.040 0.000 0.000

M3 0.068 0.144 0.000 0.049 0.125 0.055 0.649 0.154 0.192

Ludads Polatt Poa1 Helcri Physp. Goopur

M1 0.000 0.000 0.013 0.013 0.000 0.000

M2 0.000 0.000 0.000 0.000 0.000 0.000

M3 0.204 0.097 0.000 0.000 0.012 0.012

The same classification exercise can be conducted from the matrix of chord
distances between objects if we use function vegclustdist instead of veg-
clust:

> wetland.kmdist = vegclustdist(x = dchord, mobileMemb=3,

+ method="KM", nstart = 20)

> names(wetland.kmdist)

[1] "mode" "method" "m"

[4] "dnoise" "eta" "memb"

[7] "mobileCenters" "fixedCenters" "dist2clusters"

[10] "withinss" "size" "functional"

Note the different way to specify the number of clusters. In the case of
vegclustdist we do not obtain cluster centroids, because they cannot be
calculated explicitly:

> wetland.kmdist$mobileCenters

NULL

But we do obtain cluster memberships:

> t(wetland.kmdist$memb)
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5 8 13 4 17 3 9 21 16 14 2 15 1 7 10 40 23 25 22 20 6 18 12 39

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

M2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

M3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 11 30 34 28 31 26 29 33 24 36 37 41 27 32 35 38

M1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

M3 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0

Because we used the same resemblance space (although in different form)
in our examples, both vegclust and vegclustdist should give the same
result provided the algorithm has not become stuck in a relative optimum
of the objective function. Although both R functions return objects of class
‘vegclust’, we can identify whether calculations were done from dissimilar-
ities or from rectangular matrices by inspecting the ‘mode’ element of the
list:

> wetland.km$mode

[1] "raw"

> wetland.kmdist$mode

[1] "dist"

In the following subsections we run vegclust using other clustering models,
but the same examples could be made using vegclustdist.

3.1.2 The Fuzzy C-means model

Let us inspect the distance of each object to each cluster centroid:

> round(t(wetland.km$dist2clusters), dig=2)

5 8 13 4 17 3 9 21 16 14 2 15

M1 1.05 1.10 1.09 1.14 1.11 1.22 1.23 1.09 1.09 1.10 1.12 1.19

M2 1.12 1.12 1.14 1.17 1.07 1.22 1.22 1.20 1.17 1.16 1.17 1.21

M3 0.54 0.68 0.44 0.45 0.64 0.76 0.95 0.50 0.64 0.46 0.38 0.57

1 7 10 40 23 25 22 20 6 18 12 39

M1 1.12 1.15 1.19 0.40 0.60 0.51 0.67 0.56 0.47 0.45 0.40 0.52

M2 1.21 1.18 1.23 1.09 1.07 1.12 1.03 1.15 1.06 1.12 1.12 1.06

M3 0.47 0.72 0.87 1.11 0.92 0.86 0.73 1.11 1.15 1.19 1.16 1.12

19 11 30 34 28 31 26 29 33 24 36 37

M1 0.44 0.64 1.16 1.20 1.15 1.19 0.81 0.78 0.49 1.04 0.90 1.15

M2 1.07 1.07 0.86 0.66 0.77 0.69 1.00 0.92 1.00 0.55 0.62 0.55

M3 0.97 1.13 1.20 1.22 1.19 1.20 1.22 1.17 1.22 1.20 1.18 1.17
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41 27 32 35 38

M1 1.14 1.19 1.13 1.03 1.10

M2 0.56 0.78 0.73 0.95 0.99

M3 0.99 1.22 1.17 0.80 0.68

For many objects the distance to the cluster where they have been assigned is
much smaller than the distance to other clusters. However, for some objects
(such as ‘22’, ‘29’ or ‘35’) the distance to the closest cluster center does
not differ much from the distance to second closest one. Are those latter
objects well assigned? Should these objects have intermediate degrees of
membership instead of picking one cluster arbitrarily? The Fuzzy C-means
cluster model allows fuzzy memberships to be obtained as an alternative to
crisp memberships:

> wetland.fcm = vegclust(x = wetlandchord, mobileCenters=3,

+ method="FCM", m=1.2, nstart=20)

> round(t(wetland.fcm$memb), dig=3)

5 8 13 4 17 3 9 21 16 14 2 15 1 7

M1 0.001 0.007 0 0 0.004 0.009 0.070 0 0.004 0 0 0.001 0 0.011

M2 0.998 0.985 1 1 0.990 0.981 0.844 1 0.993 1 1 0.999 1 0.981

M3 0.001 0.007 0 0 0.007 0.011 0.086 0 0.003 0 0 0.001 0 0.009

10 40 23 25 22 20 6 18 12 39 19 11 30

M1 0.044 1 0.980 0.992 0.582 0.998 1 1 1 0.999 1 0.992 0.040

M2 0.920 0 0.016 0.007 0.404 0.001 0 0 0 0.000 0 0.003 0.031

M3 0.036 0 0.004 0.001 0.014 0.001 0 0 0 0.001 0 0.005 0.928

34 28 31 26 29 33 24 36 37 41

M1 0.002 0.016 0.003 0.841 0.742 0.999 0.002 0.020 0.001 0.001

M2 0.002 0.013 0.003 0.017 0.017 0.000 0.000 0.001 0.001 0.004

M3 0.996 0.971 0.993 0.141 0.241 0.001 0.998 0.978 0.999 0.995

27 32 35 38

M1 0.015 0.011 0.057 0.006

M2 0.012 0.008 0.783 0.970

M3 0.973 0.980 0.160 0.024

A comparison of these memberships with the distance to the clusters shown
before will reveal that intermediate objects obtain fuzzier membership values
than other objects.

Although FCM is theoretically a better model than KM for vegetation
classification, vegetation scientists are normally interested in crisp assign-
ments. The function defuzzify allows fuzzy membership matrix to be con-
verted into a crisp one:

> groups = defuzzify(wetland.fcm)$cluster

> groups
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5 8 13 4 17 3 9 21 16 14 2 15 1

"M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2"

7 10 40 23 25 22 20 6 18 12 39 19 11

"M2" "M2" "M1" "M1" "M1" "M1" "M1" "M1" "M1" "M1" "M1" "M1" "M1"

30 34 28 31 26 29 33 24 36 37 41 27 32

"M3" "M3" "M3" "M3" "M1" "M1" "M1" "M3" "M3" "M3" "M3" "M3" "M3"

35 38

"M2" "M2"

> table(groups)

groups

M1 M2 M3

14 17 10

Another way of defuzzifying the membership matrix is by setting a threshold
of minimum fuzzy membership:

> groups = defuzzify(wetland.fcm, method = "cut", alpha = 0.8)$cluster

> groups

5 8 13 4 17 3 9 21 16 14 2 15 1

"M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2" "M2"

7 10 40 23 25 22 20 6 18 12 39 19 11

"M2" "M2" "M1" "M1" "M1" NA "M1" "M1" "M1" "M1" "M1" "M1" "M1"

30 34 28 31 26 29 33 24 36 37 41 27 32

"M3" "M3" "M3" "M3" "M1" NA "M1" "M3" "M3" "M3" "M3" "M3" "M3"

35 38

NA "M2"

> table(groups, useNA = "always")

groups

M1 M2 M3 <NA>

12 16 10 3

With this second defuzzification approach intermediate objects remain un-
classified (indicated as NA’s). It is important to recognise that FCM fuzzy
membership values depend on the fuzziness exponent m. In fact, if we run
FCM with a very large m value we will obtain uninformative results:

> wetland.fcm2 = vegclust(x = wetlandchord, mobileCenters=3,

+ method="FCM", m=10, nstart=20)

> round(t(wetland.fcm2$memb), dig=3)
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5 8 13 4 17 3 9 21 16 14

M1 0.334 0.334 0.334 0.334 0.334 0.334 0.333 0.334 0.334 0.334

M2 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

M3 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

2 15 1 7 10 40 23 25 22 20

M1 0.334 0.334 0.334 0.334 0.333 0.333 0.333 0.333 0.333 0.333

M2 0.333 0.333 0.333 0.333 0.333 0.334 0.334 0.334 0.333 0.334

M3 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

6 18 12 39 19 11 30 34 28 31

M1 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

M2 0.334 0.334 0.334 0.334 0.334 0.334 0.333 0.333 0.333 0.333

M3 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

26 29 33 24 36 37 41 27 32 35

M1 0.333 0.333 0.333 0.333 0.333 0.333 0.334 0.333 0.333 0.334

M2 0.334 0.334 0.334 0.333 0.334 0.333 0.333 0.333 0.333 0.333

M3 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

38

M1 0.334

M2 0.333

M3 0.333

These uninformative results become obvious after defuzzification of the mem-
bership matrix:

> groups2 = defuzzify(wetland.fcm2, method = "cut", alpha = 0.8)$cluster

> table(groups2, useNA = "always")

groups2

<NA>

41

3.1.3 The Noise clustering model

In the previous two models, all objects were assigned, either completely
to one cluster or with their membership divided among clusters (in other
words, we accepted the partition restriction). This may be appropriate in
many instances, but it may cause problems if some of the plant communities
sampled include rare species assemblages. These plant communities would
more appropriately be classified as ‘outliers’ and should not influence the
cluster prototypes. In the noise clustering (NC) model we allow outlier
objects to be excluded from the classification:

> wetland.nc = vegclust(x = wetlandchord, mobileCenters=3,

+ method="NC", m=1.2, dnoise=0.8, nstart=20)

> round(t(wetland.nc$memb), dig=2)
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5 8 13 4 17 3 9 21 16 14 2 15 1 7 10

M1 0.00 0.00 0 0 0.00 0.01 0.01 0 0.00 0.00 0 0.00 0 0.01 0.01

M2 0.99 0.85 1 1 0.93 0.41 0.08 1 0.86 0.99 1 0.93 1 0.49 0.12

M3 0.00 0.00 0 0 0.00 0.01 0.01 0 0.00 0.00 0 0.00 0 0.01 0.01

N 0.01 0.14 0 0 0.07 0.58 0.90 0 0.13 0.01 0 0.07 0 0.49 0.86

40 23 25 22 20 6 18 12 39 19 11 30 34 28 31

M1 0 0.00 0.00 0.00 0.00 0 0 0 0.00 0 0.00 0.07 0.98 0.08 0.98

M2 0 0.01 0.01 0.50 0.00 0 0 0 0.00 0 0.00 0.01 0.00 0.01 0.00

M3 1 0.93 0.98 0.39 0.98 1 1 1 0.99 1 0.93 0.01 0.00 0.02 0.00

N 0 0.06 0.01 0.11 0.02 0 0 0 0.01 0 0.06 0.90 0.02 0.89 0.02

26 29 33 24 36 37 41 27 32 35 38

M1 0.03 0.08 0.00 1 1 1 0.93 0.05 0.11 0.02 0.00

M2 0.01 0.01 0.00 0 0 0 0.01 0.01 0.01 0.48 0.90

M3 0.28 0.34 0.99 0 0 0 0.00 0.01 0.02 0.03 0.00

N 0.68 0.58 0.01 0 0 0 0.06 0.92 0.85 0.47 0.09

As with FCM, some objects have intermediate memberships. In addition,
there are some objects with high membership to the Noise class, which
indicates that they are distant from all ‘true’ cluster centers. These objects
can be considered ‘outliers’ and remain unclassified:

> groups = defuzzify(wetland.nc)$cluster

> groups

5 8 13 4 17 3 9 21 16 14 2 15 1

"M2" "M2" "M2" "M2" "M2" "N" "N" "M2" "M2" "M2" "M2" "M2" "M2"

7 10 40 23 25 22 20 6 18 12 39 19 11

"N" "N" "M3" "M3" "M3" "M2" "M3" "M3" "M3" "M3" "M3" "M3" "M3"

30 34 28 31 26 29 33 24 36 37 41 27 32

"N" "M1" "N" "M1" "N" "N" "M3" "M1" "M1" "M1" "M1" "N" "N"

35 38

"M2" "M2"

> table(groups)

groups

M1 M2 M3 N

6 14 11 10

Note that we can defuzzify the membership matrix using a threshold, as
before, and identify both intermediates (‘NA’) and outliers (members of the
noise class: ‘N’):

> groups = defuzzify(wetland.nc, method="cut", alpha=0.8)$cluster

> groups
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5 8 13 4 17 3 9 21 16 14 2 15 1

"M2" "M2" "M2" "M2" "M2" NA "N" "M2" "M2" "M2" "M2" "M2" "M2"

7 10 40 23 25 22 20 6 18 12 39 19 11

NA "N" "M3" "M3" "M3" NA "M3" "M3" "M3" "M3" "M3" "M3" "M3"

30 34 28 31 26 29 33 24 36 37 41 27 32

"N" "M1" "N" "M1" NA NA "M3" "M1" "M1" "M1" "M1" "N" "N"

35 38

NA "M2"

> table(groups, useNA = "always")

groups

M1 M2 M3 N <NA>

6 12 11 6 6

In vegetation classification, distinguishing between an intermediate or an
outlier will not always be clearcut. Nevertheless, the distinction may be
useful in practice because outlier objects may relate to vegetation patterns
that exist in the study area but happen to be underrepresented in the sample.
That is, outlier plant communities may be rare for the given vegetation data
set only, in the sense that if new data were added they would belong to a
vegetation type. Alternatively, they may represent rare species assemblages
for the study area. Distinguishing between one case or the other cannot be
done without collecting more data [Wiser and De Cáceres, 2012].

An advantage of the NC model over FCM or KM is that ‘outliers’ do not
influence the cluster centers. As a result, the cluster centers are more sepa-
rated from each other than in the previous models. Compare the following
distance matrices between cluster centroids:

> dist(wetland.km$mobileCenters)

M1 M2

M2 0.8997438

M3 0.9248370 0.9567205

> dist(wetland.fcm$mobileCenters)

M1 M2

M2 0.9280480

M3 0.8852132 0.9387502

> dist(wetland.nc$mobileCenters)

M1 M2

M2 1.0666570

M3 1.0102987 0.9735385

However, this particular advantage can also be obtained (in partitive meth-
ods) if medoids are used as prototypes instead of centroids (see below).
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3.1.4 Medoid-based clustering

All the examples that we have shown so far could be repeated using medoids
as cluster prototypes instead of centroids. For example, with the K-medoids
(the K-means analogue) would be:

> wetland.kmdd = vegclust(x = wetlandchord, mobileCenters=3,

+ method="KMdd", nstart=20)

> t(wetland.kmdd$memb)

5 8 13 4 17 3 9 21 16 14 2 15 1 7 10 40 23 25 22 20 6 18 12 39

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0

M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1

M3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 11 30 34 28 31 26 29 33 24 36 37 41 27 32 35 38

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

M2 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

M3 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0

When ran using a site-by-species matrix as input, vegclust returns the
coordinates of medoids as the cluster centers:

> round(wetland.kmdd$mobileCenters, dig=3)

Abefic Merhed Alyvag Pancam Abemos Melcor Ludoct Eupvac Echpas

M1 0 0 0 0.000 0 0.183 0 0.000 0

M2 0 0 0 0.000 0 0.177 0 0.000 0

M3 0 0 0 0.258 0 0.258 0 0.258 0

Passcr Poa2 Carhal Dendio Casobt Aesind Cyprot Ipocop Cynarc

M1 0.000 0 0.000 0 0 0 0 0 0.000

M2 0.000 0 0.177 0 0 0 0 0 0.000

M3 0.258 0 0.000 0 0 0 0 0 0.775

Walind Sessp. Phynod Echell Helind Ipoaqu Orysp. Elesp. Psespi

M1 0 0.000 0.000 0.000 0.000 0.000 0.913 0.183 0.183

M2 0 0.000 0.884 0.177 0.177 0.177 0.000 0.177 0.177

M3 0 0.258 0.258 0.000 0.000 0.000 0.000 0.000 0.000

Ludads Polatt Poa1 Helcri Physp. Goopur

M1 0.183 0.183 0 0 0 0

M2 0.000 0.000 0 0 0 0

M3 0.000 0.000 0 0 0 0

However, when using site-by-site dissimilarity matrices as input for veg-

clustdist, the indices of objects are returned instead:

> wetland.kmdd = vegclustdist(x = dchord, mobileMemb=3,

+ method="KMdd", nstart=20)

> wetland.kmdd$mobileCenters

[1] 11 34 23
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3.2 Supervised classification: as.vegclust and vegclass

Vegetation types are meant to be used. For example, a new area may be
surveyed and a map of vegetation types may be needed. Here we simulate the
process of assigning new observations to a vegetation classification created a
priori. In order to simulate this two-step process, we split our example data
set into two matrices, one with the 31 objects whose group classification will
be known a priori and the other with the 10 objects whose classification is
to be studied:

> wetland.31 = wetlandchord[1:31,]

> wetland.31 = wetland.31[,colSums(wetland.31)>0]

> dim(wetland.31)

[1] 31 27

> wetland.10 = wetlandchord[-(1:31),]

> wetland.10 = wetland.10[,colSums(wetland.10)>0]

> dim(wetland.10)

[1] 10 22

As initial classification, we simply take the two groups resulting from a K-
means analysis (using function kmeans from the stats package) on the first
data set:

> km = kmeans(wetland.31, 2)

> groups = km$cluster

> groups

5 8 13 4 17 3 9 21 16 14 2 15 1 7 10 40 23 25 22 20 6 18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

12 39 19 11 30 34 28 31 26

2 2 2 2 2 2 2 2 2

The idea is to know whether the ten objects of the second data set may be
assigned to the vegetation types defined using the first data set. Because our
initial classification was not obtained using vegclust, we need to transform
the input classification of 31 objects into an object of class ‘vegclust’. This
is done using function as.vegclust:

> wetland.31.km = as.vegclust(wetland.31, groups)

Note that we did not specify the clustering model for our ‘vegclust’ object.
By default, the clustering method is K-means (KM):

> wetland.31.km$method
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[1] "KM"

In this case, this matches the way we obtained our initial classification. In
general, however, we may have a classification obtained following an informal
(or unknown) procedure, and we will choose the clustering model according
to our preferences for assignments. Once we have our object ‘vegclust’ we
can use function vegclass to assign the second set of observations according
to the membership rule of the k-means cluster model:

> wetland.10.km = vegclass(wetland.31.km, wetland.10)

> defuzzify(wetland.10.km)$cluster

29 33 24 36 37 41 27 32 35 38

"2" "2" "2" "2" "2" "2" "2" "2" "1" "1"

The same procedure can be repeated using dissimilarity matrices. First, we
call as.vegclust to create a vegclust object:

> wetland.31.km.d = as.vegclust(dist(wetland.31), groups)

After that, we need a matrix of distances between the set of observations to
be assigned and the original set of 31 observations. This can be obtained
from the original distance matrix including all pairs of observations:

> wetland.d.10.31 = as.data.frame(as.matrix(dchord)[32:41,1:31])

Once we have these two objects we can use function vegclass to assign the
second set of observations according to the membership rule of the k-means
cluster model:

> wetland.d.11.km = vegclass(wetland.31.km.d,wetland.d.10.31)

> defuzzify(wetland.d.11.km)$cluster

29 33 24 36 37 41 27 32 35 38

"2" "2" "2" "2" "2" "2" "2" "2" "1" "1"

Note that in both cases all the objects of the second set were assigned
to the nearest cluster. What if we want to determine whether it is more
appropriate for any of the objects to define a new vegetation type? In that
is case, we may do better by using noise clustering. We can choose, for
example, the hard noise clustering (HNC) model:

> wetland.31.nc = as.vegclust(wetland.31, groups, method="HNC",

+ dnoise = 0.8)

> wetland.10.nc = vegclass(wetland.31.nc, wetland.10)

> defuzzify(wetland.10.nc)$cluster
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29 33 24 36 37 41 27 32 35 38

"2" "2" "N" "2" "N" "N" "N" "N" "N" "1"

An additional parameter is needed: the distance to the noise class ‘dnoise’, δ.
This can be set either conventionally (depending on the level of abstraction
of vegetation types) or by relying on the variance of the original clusters
[De Cáceres et al., 2006]. The results of the noise clustering model show
that several of the ten objects are assigned to the noise class (‘N’), which
indicates that some of them could be used to define a new cluster.

3.3 Extending vegetation classifications

Allowing vegetation classifications to be dynamic entities, in the sense that
they may be modified or extended as new surveys are conducted (or in gen-
eral, when new data becomes available) increases their usability [De Cáceres
et al., 2010, Wiser and De Cáceres, 2012]. The aim here is to preserve the
two prototypes of the initial classification and let vegclust to define a new
vegetation type.

3.3.1 Conforming vegetation data sets

When new vegetation data becomes available, the set of species in the new
data set will not normally be the same as the set of species used in the
original classification exercise. In this situation, the practitioner will needs
to bring the two sets of samples to the same resemblance space. In our
example we divided our initial data set into two subsets of 31 and 10 sites,
respectively (i.e. wetland.31 and wetland.10). Thus, our original data
set had a common set of species. However, we will now pretend that wet-

land.31 and wetland.10 were obtained independently. A useful function
to create a common space of species for two sets of vegetation observations
is conformveg:

> cf = conformveg(wetland.31, wetland.10)

> wetland.31.cf<- cf$x

> wetland.10.cf<- cf$y

> dim(wetland.31.cf)

[1] 31 33

> dim(wetland.10.cf)

[1] 10 33

The only difference between these new objects and the preceeding ones is
that they include extra columns with zeros, so that the set of columns (i.e.
species) match between the two data sets.
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3.3.2 Re-calculating the centroids of the initial classification

Another step we need to conduct before calling vegclust is to re-calculate
the centroids of the initial classification in the resemblance space of all
species. Thus, we need to call clustcentroid using the conformed data
set as input:

> fixed = clustcentroid(wetland.31.cf, groups)

Again, these centroids are exactly like the original ones except that they are
expressed in a matrix that includes extra zeros for the new species.

3.3.3 Calling vegclust with fixed prototypes

At this point we are ready to call vegclust with the new data set (again,
its conformed version):

> wetland.nc = vegclust(wetland.10.cf, mobileCenters=1,

+ fixedCenters = fixed,

+ method = wetland.31.nc$method,

+ dnoise=wetland.31.nc$dnoise, nstart=10)

> defuzzify(wetland.nc)$cluster

29 33 24 36 37 41 27 32 35 38

"F3" "F3" "M1" "M1" "M1" "M1" "N" "N" "N" "F2"

Here, the function vegclust has renamed the original clusters as ‘F2’ and
‘F3’ (indicating that they are now fixed), while the new cluster is named
‘M1’.

Instead of relying on the Noise clustering model, we could have chosen
to use the K-means model to extend the classification:

> wetland.km = vegclust(wetland.10.cf, mobileCenters=1,

+ fixedCenters = fixed,

+ method = "KM",

+ nstart=10)

> defuzzify(wetland.km)$cluster

29 33 24 36 37 41 27 32 35 38

"F3" "F3" "M1" "M1" "M1" "M1" "M1" "M1" "F2" "F2"

This avoids having objects in the Noise class. However, note that the noise
clustering model allows objects in the Noise to be classified later on when
new data becomes available, instead of forcing them to belong to one cluster
or the other (i.e. the partition restriction).
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3.3.4 Extending or refining classifications?

Instead of calling vegclust with the new data set only, we could have chosen
to use the set of all vegetation observations:

> wetland.nc = vegclust(rbind(wetland.31.cf,wetland.10.cf), mobileCenters=1,

+ fixedCenters = fixed,

+ method = wetland.31.nc$method,

+ dnoise=wetland.31.nc$dnoise, nstart=10)

> defuzzify(wetland.nc)$cluster

5 8 13 4 17 3 9 21 16 14 2 15 1

"F2" "F2" "F2" "F2" "F2" "F2" "N" "F2" "F2" "F2" "F2" "F2" "F2"

7 10 40 23 25 22 20 6 18 12 39 19 11

"F2" "N" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3"

30 34 28 31 26 29 33 24 36 37 41 27 32

"N" "M1" "N" "M1" "F3" "F3" "F3" "M1" "M1" "M1" "M1" "N" "N"

35 38

"N" "F2"

Note that some of the objects in the first data set may have been reassigned
(to a different cluster or to the Noise class). While the centroids of the
original classification are preserved, the membership of particular objects
may change because the classification now includes new prototypes to which
objects may be assigned. Using the complete data set instead of the new
data implies that the used is ready to accept these reassignments. If the
new memberships were strikingly different from the original ones, one might
decide to start the three group classification from scratch.

3.3.5 Using vegclustdist with fixed prototypes

Extending vegetation classifications can also be done in the distance-based
mode. In this case we do not have explicit coordinates for fixed prototypes,
but we may have the distances to these centers. To begin our example we use
the distances to the two clusters that we obtained at the stage of assigning
new observations:

> fixedDist = wetland.d.11.km$dist2clusters

With this information, we can now call vegclustdist to define a new cluster
while accounting for the previous ones:

> wetland.km.d = vegclustdist(dist(wetland.10), mobileMemb = 1,

+ fixedDistToCenters=fixedDist,

+ method = "KM",

+ nstart=10)

> defuzzify(wetland.km.d)$cluster
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29 33 24 36 37 41 27 32 35 38

"F3" "F3" "M1" "M1" "M1" "M1" "M1" "M1" "F2" "F2"

Analogously to vegclust, we could have chosen to use the set of all
vegetation observations. In this case, we need to pool the distances to the
centers:

> fixedDist = rbind(wetland.31.km.d$dist2clusters, wetland.d.11.km$dist2clusters)

And then we call vegclustdist using the full distance matrix:

> wetland.km.d = vegclustdist(dchord, mobileMemb = 1,

+ fixedDistToCenters=fixedDist,

+ method = "KM",

+ nstart=10)

> defuzzify(wetland.km.d)$cluster

5 8 13 4 17 3 9 21 16 14 2 15 1

"F2" "F2" "F2" "F2" "F2" "F2" "F2" "F2" "F2" "F2" "F2" "F2" "F2"

7 10 40 23 25 22 20 6 18 12 39 19 11

"F2" "F2" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3" "F3"

30 34 28 31 26 29 33 24 36 37 41 27 32

"M1" "M1" "M1" "M1" "F3" "F3" "F3" "M1" "M1" "M1" "M1" "M1" "M1"

35 38

"F2" "F2"

As before, some objects may be reclassified in different clusters when using
this option.

4 Cluster characterization

In this section we show how to useauxiliary functions that allow cluster
properties to be extracted from an input classification. In all examples we
will use this a priori classification of our data set:

> groups = c(rep(1, 17), rep(2, 14), rep(3,10))

4.1 Cluster prototypes: clustcentroid and clustmedoid

Functions clustcentroid and clustmedoid allow the cluster prototypes to
be calculated according to an input classification structure, which can be
specified using either a cluster vector or a membership matrix.

For example, with clustcentroid we can calculate the coordinates of
the centroids of the initial groups using eq. 1:

> centroids = clustcentroid(wetlandchord, groups)

> round(centroids, dig=3)
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Abefic Merhed Alyvag Pancam Abemos Melcor Ludoct Eupvac Echpas

1 0.000 0.000 0.009 0.009 0.000 0.054 0.000 0.020 0.031

2 0.013 0.015 0.036 0.088 0.000 0.178 0.000 0.090 0.116

3 0.000 0.047 0.000 0.371 0.036 0.253 0.019 0.182 0.061

Passcr Poa2 Carhal Dendio Casobt Aesind Cyprot Ipocop Cynarc

1 0.000 0.00 0.064 0.000 0.016 0.009 0.000 0.000 0.000

2 0.000 0.01 0.036 0.000 0.000 0.064 0.179 0.028 0.106

3 0.026 0.00 0.000 0.027 0.000 0.019 0.039 0.018 0.301

Walind Sessp. Phynod Echell Helind Ipoaqu Orysp. Elesp. Psespi

1 0.068 0.144 0.090 0.022 0.112 0.055 0.609 0.164 0.192

2 0.055 0.117 0.506 0.119 0.138 0.048 0.126 0.125 0.027

3 0.090 0.138 0.204 0.158 0.090 0.037 0.172 0.000 0.000

Ludads Polatt Poa1 Helcri Physp. Goopur

1 0.204 0.097 0.000 0.000 0.00 0.00

2 0.000 0.000 0.013 0.013 0.00 0.00

3 0.000 0.000 0.000 0.000 0.02 0.02

As medoids are prototypes that are chosen among the objects to be
classified, function clustmedoid does not return coordinates but the indices
of objects. The following code uses eq. 3 to determine the medoids of each
cluster:

> medoids = clustmedoid(wetlandchord, groups)

> medoids

2 12 41

11 23 37

The value returned by function medoid is a vector of indices with the cor-
responding object names (which are numbers in this particular case). If the
classification structure is a fuzzy membership matrix, the cluster centroids
or medoids are determined using eqs. 2 and 4, respectively.

4.2 Cluster internal variability: clustvar

Vegetation types may differ in their internal variability. The function clust-

var allows the amount of compositional variation (i.e. beta diversity) ob-
served among the sites of sites belonging to each cluster to be determined.
For clusters whose prototype is a centroid, this is calculated as the mean of
squared distances from each object of the group to the group centroid. For
example, the variability for a given group i would be:

V ar(i) =
nk∑
j=1

e2ij/ni (13)
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Note that division is by ni and not by (ni−1), which would give an unbiased
sample estimate. Thus, the variances calculated in clustvar are population
variances. For example, the variances of the three groups in our examples
are:

> clustvar(wetlandchord, groups)

1 2 3

0.4554668 0.5466579 0.5293836

The reason why population values are produced, instead of sample estimates,
is because it allows the variance to be calculated using fuzzy membership
values:

V ar(i) =

∑n
j=1 u

m
ij e

2
ij∑n

j=1 u
m
ij

(14)

Cluster variances can also be obtained using distance or dissimilarity
matrices. In this case, the variance for a given group is calculated as:

V ar(i) =
1

n2i

ni∑
k=1

ni∑
l=1

d2kl (15)

Again, division by ni(ni − 1) instead of n2i would give an unbiased variance
estimate. Because in our example the community data had been transformed
using the chord transformation, the same variance values can be obtained
using a distance matrix with chord distances:

> clustvar(dchord, groups)

1 2 3

0.4554668 0.5466579 0.5293836

Finally, if no classification structure is provided function clustvar will re-
turn the overall variance (beta diversity) of the data table:

> clustvar(wetlandchord)

[1] 0.6751038

4.3 Distance between clusters: interclustdist

Calculating distance between pairs of cluster prototypes is useful to deter-
mine which vegetation types are more similar and which are more distinct.
When prototypes of vegetation types are chosen to be cluster medoids, then
the resemblance between vegetation types can be defined as the resemblance
between the corresponding medoids:
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> as.dist(as.matrix(dchord)[medoids,medoids])

2 12

12 1.344006

41 1.093926 1.363297

In contrast, if prototypes of vegetation types are chosen to be cluster
centroids, the distance between two vegetation types should be defined as
the distance between the cluster centroids. Following our example, we can
simply use function dist on the matrix of centroid coordinates:

> dist(centroids)

1 2

2 0.7624211

3 0.8004329 0.5298008

Alternatively, the function interclustdist allows the distance between
pairs of centroids to be calculated without the coordinates of centroids be-
ing supplied. Instead, the matrix of distances between objects is used. For
example, if the distance between the centroids of groups i and j is desired,
we can calculate the squared distance by:

d2(i, j) =

∑n
k=1

∑n
l=1 u

m
iku

m
jldkl

2∑n
k=1 u

m
ik

∑n
l=1 u

m
jl

− V ar(i)− V ar(j) (16)

Using equation 16 in our example would be:

> interclustdist(dchord,groups)

1 2

2 0.7624211

3 0.8004329 0.5298008

which returns the same values as before.

4.4 Constancy classes: clustconst

One way of characterizing a vegetation type is to examine how frequently
each species occurs in vegetation observations belonging to the type. This
frequency is often called constancy and the table that contains the constancy
of all species in all vegetation types is called constancy table. The function
clustconst allows this table to be calculated:

> c = clustconst(wetlandchord, memb = as.memb(groups))
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The R object returned by clustconst can be examined in several ways.
First, it is useful to print the constancy table ordering species from high to
low constancy for each cluster:

> d=summary(c, mode="all")

------------ 3 -------------

3 2 1

Pancam 1.000 0.357 0.059

Melcor 1.000 0.786 0.294

Eupvac 0.800 0.357 0.118

Sessp. 0.600 0.500 0.412

Echell 0.600 0.357 0.118

------------ 2 -------------

3 2 1

Phynod 0.400 0.714 0.118

Helind 0.300 0.643 0.471

Elesp. 0.000 0.571 0.529

------------ 1 -------------

3 2 1

Orysp. 0.300 0.286 1.000

Ludads 0.000 0.000 0.824

Alternatively, we can examine the constancy vector of each vegetation
type:

> summary(c, mode="cluster", name=names(c)[1])

Orysp. 1.000

Ludads 0.824

Elesp. 0.529
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