Package 'vlad'

February 15, 2021

Type Package

Title Variable Life Adjusted Display and Other Risk-Adjusted Quality Control Charts

Version 0.2.2
Depends R (>=2.10)
Maintainer Philipp Wittenberg pwitten@hsu-hh.de
URL https://github.com/wittenberg/vlad
BugReports https://github.com/wittenberg/vlad/issues
Description Contains functions to set up risk-adjusted quality control charts in health care. For the variable life adjusted display (VLAD) proposed by Lovegrove et al. (1997) doi:10.1016/S0140-6736(97)06507-0 signaling rules derived in Wittenberg et al. (2018) doi:10.1002/sim.7647 are implemented. Additionally, for the riskadjusted cumulative sum chart based on log-likelihood ratio statistic intro-
duced by Steiner et al. (2000) doi:10.1093/biostatistics/1.4.441 average run length and control limits can be computed with fast and accurate Markov chain approximations developed in Knoth et al. (2019) doi:10.1002/sim.8104.
License GPL (>=2)
NeedsCompilation yes
SystemRequirements C++11
Encoding UTF-8
LazyData true
Imports Rcpp (>= 0.12.12), checkmate, magrittr, dplyr, tidyr
Suggests ggplot2, rmarkdown, spcadjust (>= 1.1), testhat, knitr
LinkingTo BH, Rcpp, RcppArmadillo
RoxygenNote 7.1.1
Author Philipp Wittenberg [aut, cre] (https://orcid.org/0000-0001-7151-8243), Sven Knoth [aut, ths] (https://orcid.org/0000-0002-9666-5554)
Repository CRAN
Date/Publication 2021-02-15 10:30:02 UTC

R topics documented:

vlad-package 2
bcusum_arl_sim 3
bcusum_crit_sim 3
compute_vmask 4
ell 5
eocusum_ad_sim 6
eocusum_arl_sim 8
eocusum_crit_sim 10
eocusum_scores 12
llr_score 14
optimal_k 16
QQ 17
racusum_ad_sim 18
racusum_arl 19
racusum_betabinomial_arl_sim 22
racusum_betabinomial_crit_sim 23
racusum_beta_arl 24
racusum_beta_crit 26
racusum_crit 28
racusum_discretebeta_arl_sim 30
racusum_discretebeta_crit_sim 31
racusum_scores 33
search_delta 34
surgery 36
trafo 36
VMASK3 37
Index 38
vlad-package

Variable Life Adjusted Display and Other Risk-Adjusted Quality Con
trol Charts

Description

Contains functions to set up risk-adjusted quality control charts in health care. For the variable life adjusted display (VLAD) proposed by Lovegrove et al. (1997) [doi:10.1016/S0140-6736(97)06507\(0](doi:10.1016/S0140-6736(97)06507%5C(0)\) signaling rules derived in Wittenberg et al. (2018) <doi:10.1002/sim. $7647>$ are implemented. Additionally, for the risk-adjusted cumulative sum chart based on log-likelihood ratio statistic introduced by Steiner et al. (2000) doi:10.1093/biostatistics/1.4.441 average run length and control limits can be computed with fast and accurate Markov chain approximations developed in Knoth et al. (2019) doi:10.1002/sim.8104.

bcusum_arl_sim	Compute ARLs of the Bernoulli CUSUM control charts using simula- tion

Description

Compute ARLs of the Bernoulli CUSUM control charts using simulation.

Usage

bcusum_arl_sim(r, h, df, R0 = 1, RA = 2)

Arguments

$r \quad$ Integer Vector. Number of runs.
h Double. Control Chart limit for detecting deterioration/improvement.
df Data Frame. First column are Parsonnet Score values within a range of 0 to 100 representing the preoperative patient risk. The second column are binary (0/1) outcome values of each operation.
R0 Double. Odds ratio of death under the null hypotheses.
RA Double. Odds ratio of death under the alternative hypotheses.

Value

Returns a single value which is the Run Length.

Author(s)

Philipp Wittenberg
bcusum_crit_sim Compute alarm threshold of Bernoulli CUSUM control charts using simulation

Description

Compute alarm threshold of Bernoulli cumulative sum control charts using simulation.

Usage

bcusum_crit_sim(L0, df, R0 = 1, RA = 2, m = 100, nc = 1, jmax = 4, verbose $=$ FALSE)

Arguments

L0 Double. Prespecified in-control Average Run Length.
df Data Frame. First column are Parsonnet Score values within a range of 0 to 100 representing the preoperative patient risk. The second column are binary (0/1) outcome values of each operation.

R0 Double. Odds ratio of death under the null hypotheses.
RA Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $R A=1 / 2$.

Integer. Number of simulation runs.
nc Integer. Number of cores.
jmax Integer. Number of digits for grid search.
verbose Logical. If TRUE verbose output is included, if FALSE a quiet calculation of h is done.

Details

The function bcusum_crit_sim determines the control limit for given in-control ARL (L0) by applying a multi-stage search procedure which includes secant rule and the parallel version of bcusum_arl_sim using mclapply.

Value

Returns a single value which is the control limit h for a given in-control ARL.

Author(s)

Philipp Wittenberg

```
compute_vmask Compute V-Masks arms, nose and alarm points
```


Description

Function for plotting truncated symeterical/asymetrical vmask

Usage

compute_vmask(z, d1, d2, theta1, theta2)

Arguments

Numeric Vector. ...
Double. For the XYZ CUSUM Distance d from vertex of V-Mask. $d=h / k$
Double. For the XYZ CUSUM Distance d from vertex of V-Mask. $\mathrm{d}=\mathrm{h} / \mathrm{k}$
Double. Angle ...
Double. Angle ...

Value

Author(s)

Philipp Wittenberg
ell Estimated log-likelihood.

Description

Estimated log-likelihood.

Usage

ell(s, y, delta)

Arguments

s	Integer vector. Parsonnet Score values within a range of 0 to 100 representing the preoperative patient risk.
y	Double. Binary $(0 / 1)$ outcome values of each operation.
delta	Double. Box-Cox transformation parameter.

Value

Returns a single value which is estimated log-likelihood.

Author(s)

Philipp Wittenberg

Examples

```
    ## Not run:
    ## load data
    data("cardiacsurgery", package = "spcadjust")
    ## preprocess data to 30 day mortality and subset data to
    ## phase I (In-control) and phase II (monitoring)
    SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
        mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II")))
    ## subset phase I (In-control)
    SI <- filter(SALL, phase == "I") %>% select(s, y)
    dML <- search_delta(SI$s, SI$y, type = "ML")
    ell(SI$s, SI$y, dML)
    ## End(Not run)
```

eocusum_ad_sim Compute steady-state ARLs of EO-CUSUM control charts using sim-
ulation

Description

Compute steady-state ARLs of EO-CUSUM control charts using simulation.

Usage

eocusum_ad_sim(r, pmix, k, h, RQ = 1, side = "low", type = "cond", m = 50)

Arguments

r
pmix Data Frame. A three column data frame. First column is the operation outcome. Second column are the predicted probabilities from the risk model. Third column can be either the predicted probabilities from the risk model or average outcome.
k
h Double. Decision interval (alarm limit, threshold) of the CUSUM control chart.
RQ Double. Defines the true performance of a surgeon with the odds ratio ratio of death $R Q$. Use $R Q=1$ to compute the in-control ARL and other values to compute the out-of-control ARL.
side Character. Default is "low" to calculate ARL for the upper arm of the V-mask. If side = "up", calculate the lower arm of the V-mask.
type Character. Default argument is "cond" for computation of conditional steadystate. Other option is the cyclical steady-state "cycl".
m Integer. Simulated in-control observations.

Value

Returns a single value which is the Run Length.

Author(s)

Philipp Wittenberg

References

Wittenberg P, Gan FF, Knoth S (2018). A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Statistics in Medicine, 37(16), pp 24552473.

Taylor HM (1968). The Economic Design of Cumulative Sum Control Charts. Technometrics, 10(3), pp. 479-488.

Crosier R (1986). A new two-sided cumulative quality control scheme. Technometrics, 28(3), pp. 187-194.

Examples

```
## Not run:
data("cardiacsurgery", package = "spcadjust")
library("dplyr")
## preprocess data to 30 day mortality and subset phase I/II
cardiacsurgery <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II")))
s5000 <- sample_n(cardiacsurgery, size = 5000, replace = TRUE)
df1 <- select(cardiacsurgery, s, y)
df2 <- select(s5000, s, y)
## estimate coefficients from logit model
coeff1 <- round(coef(glm(y ~ s, data = df1, family = "binomial")), 3)
coeff2 <- round(coef(glm(y ~ s, data = df2, family = "binomial")), 3)
## Number of simulation runs
m <- 10^3
## Number of cores
nc <- parallel::detectCores()
# steady state
RNGkind("L'Ecuyer-CMRG")
m <- 10^3
tau <- 50
kopt <- optimal_k(QA = 2, df = S2I, coeff = coeff1, yemp = FALSE)
# eocusum_arloc_h_sim(L0 = 370, df = df1, k = kopt, m = m, side = "low", coeff = coeff1,
```

```
    coeff2 = coeff2, nc = nc)
res <- sapply(0:(tau-1), function(i){
    RLS <- do.call(c, parallel::mclapply( 1:m, eocusum_ad_sim, k = kopt, QS = 2, h = 2.637854,
        df = df1, m = i, coeff = coeff1, coeff2 = coeff2, side = "low", mc.cores = nc))
        list(data.frame(cbind(ARL = mean(RLS), ARLSE = sd(RLS)/sqrt(m))))
} )
RES <- data.frame(cbind(M = 0:(tau-1), do.call(rbind, res)))
ggplot2::qplot(x = M, y = ARL, data = RES, geom = c("line", "point")) +
ggplot2::theme_classic()
## End(Not run)
```

```
eocusum_arl_sim Compute ARLs of EO-CUSUM control charts using simulation
```


Description

Compute ARLs of EO-CUSUM control charts using simulation.

Usage

eocusum_arl_sim(r, pmix, k, h, RQ = 1, yemp = FALSE, side = "low")

Arguments

$r \quad$ Integer. Number of of simulation runs.
pmix Data Frame. A three column data frame. First column is the operation outcome. Second column are the predicted probabilities from the risk model. Third column can be either the predicted probabilities from the risk model or average outcome.
k Double. Reference value of the CUSUM control chart. Either 0 or a positive value. Can be determined with function optimal_k.
h Double. Decision interval (alarm limit, threshold) of the CUSUM control chart.
RQ Double. Defines the true performance of a surgeon with the odds ratio ratio of death $R Q$. Use $R Q=1$ to compute the in-control ARL and other values to compute the out-of-control ARL.
yemp Logical. If TRUE use observed outcome value, if FALSE use estimated binary logistc regression model.
side Character. Default is "low" to calculate ARL for the upper arm of the V-mask. If side = "up", calculate the lower arm of the V-mask.

Value

Returns a single value which is the Run Length.

Author(s)

Philipp Wittenberg

References

Wittenberg P, Gan FF, Knoth S (2018). A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Statistics in Medicine, 37(16), pp 24552473.

Examples

```
## Not run:
library("dplyr")
library("tidyr")
library(ggplot2)
## Datasets
data("cardiacsurgery", package = "spcadjust")
cardiacsurgery <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0))
s5000 <- sample_n(cardiacsurgery, size = 5000, replace = TRUE)
df1 <- select(cardiacsurgery, s, y)
df2 <- select(s5000, s, y)
## estimate coefficients from logit model
coeff1 <- round(coef(glm(y ~ s, data = df1, family = "binomial")), 3)
coeff2 <- round(coef(glm(y ~ s, data = df2, family = "binomial")), 3)
## set up
RNGkind("L'Ecuyer-CMRG")
m <- 10^3
kopt <- optimal_k(QA = 2, df = S2I, coeff = coeff1, yemp = FALSE)
h <- eocusum_arloc_h_sim(L0 = 370, df = df1, k = kopt, m = m, side = "low", coeff = coeff1,
                                    coeff2 = coeff2, nc = 4)
## Serial simulation
RLS <- do.call(c, lapply(1:m, eocusum_arloc_sim, h = h, k = kopt, df = df1, side = "low",
                    coeff = coeff1, coeff2 = coeff2))
data.frame(cbind(ARL = mean(RLS), ARLSE = sd(RLS)/sqrt(m)))
## Parallel simulation (FORK)
RLS <- simplify2array(parallel::mclapply(1:m, eocusum_arloc_sim, h = h, k = kopt, df = df1,
                                    side = "low", coeff = coeff1, coeff2 = coeff2,
                                    mc.cores = parallel::detectCores()))
data.frame(cbind(ARL = mean(RLS), ARLSE = sd(RLS)/sqrt(m)))
## Parallel simulation (PSOCK)
no_cores <- parallel::detectCores()
cl <- parallel::makeCluster(no_cores)
side <- "low"
h_vec <- h
QS_vec <- 1
```

```
k <- kopt
parallel::clusterExport(cl, c("h_vec", "eocusum_arloc_sim", "df1", "coeff1", "coeff2",
                            "QS_vec", "side", "k"))
time <- system.time( {
    RLS <- array(NA, dim = c( length(QS_vec), length(h_vec), m))
    for (h in h_vec) {
        for (QS in QS_vec) {
            cat(h, " ", QS, "\n")
        RLS[which(QS_vec==QS), which(h==h_vec), ] <- parallel::parSapply(cl, 1:m, eocusum_arloc_sim,
                        side = side, QS = QS, h = h,
                        k = k, df = df1,
                        coeff = coeff1,
                                    coeff2 = coeff2,
                                    USE.NAMES = FALSE)
        }
    }
} )
ARL <- apply(RLS, c(1, 2), mean)
ARLSE <- sqrt(apply(RLS, c(1, 2), var)/m)
print(list(ARL, ARLSE, time))
parallel::stopCluster(cl)
## End(Not run)
```

eocusum_crit_sim Compute alarm threshold of EO-CUSUM control charts using simula-
tion

Description

Compute alarm threshold of EO-CUSUM control charts using simulation.

Usage

eocusum_crit_sim(L0, pmix, k, RQ = 1, side = "low", yemp = FALSE, $m=10000, \mathrm{nc}=1$, $\mathrm{hmax}=30, j \max =4$, verbose $=$ FALSE)

Arguments

L0 Double. Prespecified in-control Average Run Length.
pmix Data Frame. A three column data frame. First column is the operation outcome. Second column are the predicted probabilities from the risk model. Third column can be either the predicted probabilities from the risk model or average outcome.
k
Double. Reference value of the CUSUM control chart. Either 0 or a positive value. Can be determined with function optimal_k.
RQ
Double. Defines the true performance of a surgeon with the odds ratio ratio of death $R Q$. Use $R Q=1$ to compute the in-control ARL and other values to compute the out-of-control ARL.

side	Character. Default is "low" to calculate ARL for the upper arm of the V-mask. If side = "up", calculate the lower arm of the V-mask.
yemp	Logical. If TRUE use observed outcome value, if FALSE use estimated binary logistc regression model.
m	Integer. Number of simulation runs. nc
Integer. Number of cores used for parallel processing. Value is passed to parSapply.	
hmax	Integer. Maximum value of h for the grid search.
verbose	Integer. Number of digits for grid search. Logical. If TRUE verbose output is included, if FALSE a quiet calculation of h is done.

Details

Determines the control limit ("h") for given in-control ARL ("L0") applying a grid search using eocusum_arl_sim and parSapply.

Value

Returns a single value which is the control limit h for a given in-control ARL.

Author(s)

Philipp Wittenberg

References

Barnard GA (1959). Control charts and stochastic processes. J R Stat Soc Series B Stat Methodol, 21(2), pp. 239-271.
Kemp KW (1961). The Average Run Length of the Cumulative Sum Chart when a V-mask is used. J R Stat Soc Series B Stat Methodol, 23(1),pp. 149-153.
Wittenberg P, Gan FF, Knoth S (2018). A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Statistics in Medicine, 37(16), pp 24552473.

Examples

```
## Not run:
library(vlad)
library(dplyr)
data("cardiacsurgery", package = "spcadjust")
## preprocess data to 30 day mortality
SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
        phase = factor(ifelse(date < 2*365, "I", "II")))
SI <- subset(SALL, phase == "I")
y <- subset(SALL, select = y)
```

```
GLM <- glm(y ~ s, data = SI, family = "binomial")
pi1 <- predict(GLM, type = "response", newdata = data.frame(s = SALL$s))
pmix <- data.frame(y, pi1, pi1)
## (Deterioration)
kopt <- optimal_k(pmix = pmix, RA = 2)
h <- eocusum_crit_sim(L0=370, pmix=pmix, k=kopt, side = "low", verbose=TRUE, nc=4)
## parameters to set up a tabular CUSUM or V-Mask (upper arm)
d <- h/kopt
theta <- atan(kopt)*180/pi
cbind(kopt, h, theta, d)
## (Improvement)
kopt <- optimal_k(pmix = pmix, RA = 1/2)
h <- eocusum_crit_sim(L0=370, pmix=pmix, k=kopt, side = "up", verbose=TRUE, nc=4)
## parameters to set up a tabular CUSUM or V-Mask (lower arm)
d <- h/kopt
theta <- atan(kopt)*180/pi
cbind(kopt, h, theta, d)
## End(Not run)
```


Description

Compute CUSUM scores based on E-O.

Usage

eocusum_scores(z, k1, k2, reset $=$ FALSE, h1 = NULL, h2 = NULL)

Arguments

z	NumericVector. E-0 values.
k1	Double. Reference value k for detecting improvement can be determined from function optimal_k.
k2	Double. Reference value k for detecting deteroration can be determined from function optimal_k.
reset	Logical. If FALSE CUSUM statistic is not reset. If TRUE CUSUM statistic is reset to 0 after a signal is issued.
h1	Double. Upper control limit of the CUSUM chart.
h2	Double. Lower control limit of the CUSUM chart.

Value

Returns a list with two components for the CUSUM scores.

Author(s)

Philipp Wittenberg

References

Wittenberg P, Gan FF, Knoth S (2018). A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Statistics in Medicine, 37(16), pp 24552473.

Examples

```
## Not run:
library("dplyr")
library("tidyr")
library(ggplot2)
data("cardiacsurgery", package = "spcadjust")
## preprocess data to 30 day mortality and subset phase I (In-control) of surgeons 2
SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II")))
## subset phase I (In-control)
SI <- subset(SALL, phase == "I")
## estimate coefficients from logit model
GLM <- glm(y ~ s, data = SI, family = "binomial")
## set up patient mix
pi1 <- predict(GLM, type = "response", newdata = data.frame(s = SI$s))
pmix <- data.frame(SI$y, pi1, pi1)
## determine k for detecting improvement
k1opt <- optimal_k(pmix=pmix, RA = 1/2)
## determine k for detecting deterioration
k2opt <- optimal_k(pmix=pmix, RA = 2)
## subset phase II of surgeons 2
S2II <- filter(SALL, phase == "II", surgeon == 2) %>% select(s, y)
n <- nrow(S2II)
z <- predict(GLM, type = "response", newdata = data.frame(s = S2II$s))-S2II$y
## CUSUM statistic without reset
cv <- eocusum_scores(z = z, k1 = k1opt, k2 = k2opt)
s1 <- cv$s1; s1l <- cv$s1l
dm1 <- data.frame(cbind("n" = 1:length(s1), "Cup" = s1, "Clow" = s1l, "h1" = 2, "h2" = -2))
```

```
## CUSUM statistic reset after signal
cv <- eocusum_scores(z = z, k1 = k1opt, k2 = k2opt, reset = TRUE, h1 = 2, h2 = 2)
s1 <- cv$s1; s1l <- cv$s1l
dm2 <- data.frame(cbind("n" = 1:length(s1), "Cup" = s1, "Clow" = s1l, "h1" = 2, "h2" = -2))
dm3 <- bind_rows(dm1, dm2, .id = "type")
dm3$type <- recode_factor(dm3$type, `1`="No resetting", `2`="Resetting")
dm3 %>%
    gather("CUSUM", value, c(-n, - type)) %>%
    ggplot(aes(x = n, y = value, colour = CUSUM, group = CUSUM)) +
    geom_hline(yintercept = 0, colour = "darkgreen", linetype = "dashed") +
    geom_line(size = 0.5) +
    facet_wrap( ~ type, ncol = 1, scales = "free") +
    labs(x = "Patient number n", y = "CUSUM values") + theme_classic() +
    scale_y_continuous(sec.axis = dup_axis(name = NULL, labels = NULL)) +
    scale_x_continuous(sec.axis = dup_axis(name = NULL, labels = NULL)) +
    guides(colour = "none") +
    scale_color_manual(values = c("blue", "orange", "red", "red"))
## End(Not run)
```

llr_score Compute the log-likelihood ratio score

Description

Compute the log-likelihood ratio score.

Usage

llr_score(df, coeff, R0 $=1, R A=2$, yemp $=$ TRUE)

Arguments

df
Data Frame. First column are Parsonnet Score values within a range of 0 to 100 representing the preoperative patient risk. The second column are binary (0/1) outcome values of each operation.
coeff \quad Numeric Vector. Estimated coefficients α and β from the binary logistic regression model.

R0 Double. Odds ratio of death under the null hypotheses.
RA Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $\mathrm{RA}=1 / 2$.
yemp Logical. If TRUE use observed outcome value, if FALSE use estimated binary logistc regression model.

Value

Returns a single value which is the log-likelihood ratio score.

Author(s)

Philipp Wittenberg

References

Steiner SH, Cook RJ, Farewell VT and Treasure T (2000). Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics, 1(4), pp. 441-452.
Steiner S (2014). Risk-Adjusted Monitoring of Outcomes in Health Care. In Lawless JF (ed.), Statistics in Action, pp. 225-242. Informa UK Limited.
Rigdon SE and Fricker RD (2015). Health Surveillance. In Chen DG and Wilson J (eds) Innovative Statistical Methods for Public Health Data, pp. 203-249. Springer, Cham.

Examples

```
## Not run:
library(vlad)
## see Steiner et al. (2000) p. }446\mathrm{ or Steiner (2014) p. 234
coeff <- c("(Intercept)" = -3.68, "Parsonnet" = 0.077)
## Log-likelihood ratio scores for detecting an increase in the failure rate:
## low risk patients with a Parsonnet score of zero
llr_score(df = data.frame(as.integer(0), 0), coeff = coeff, RA = 2)
llr_score(df = data.frame(as.integer(0), 1), coeff = coeff, RA = 2)
## higher risk patients with a Parsonnet score of 50
llr_score(df = data.frame(as.integer(50), 0), coeff = coeff, RA = 2)
llr_score(df = data.frame(as.integer(50), 1), coeff = coeff, RA = 2)
## see Steiner (2014) p. 234
## Log-likelihood ratio scores for detecting an decrease in the failure rate:
## low risk patients with a Parsonnet score of zero
llr_score(df = data.frame(as.integer(0), 0), coeff = coeff, RA = 1/2)
llr_score(df = data.frame(as.integer(0), 1), coeff = coeff, RA = 1/2)
## higher risk patients with a Parsonnet score of 50
llr_score(df = data.frame(as.integer(50), 0), coeff = coeff, RA = 1/2)
llr_score(df = data.frame(as.integer(50), 1), coeff = coeff, RA = 1/2)
## see Rigdon and Fricker p. 225 and 226
## detecting an increase in the failure rate:
coeff <- c("(Intercept)" = -3.67, "Parsonnet" = 0.077)
df <- data.frame(Parsonnet = c(19L, 19L, 0L, 0L), status = c(0, 1, 0, 1))
lapply(seq_along(df$Parsonnet), function(i) round(llr_score(df = df[i, ], coeff = coeff,
    RA = 2), 4))
## detecting an decrease in the failure rate:
round(llr_score(df = data.frame(19L, 0), coeff = coeff, RA = 1/2), 5)
```

```
    ## End(Not run)
```

optimal_k

Compute approximate optimal k

Description

Compute approximate optimal k.

Usage

optimal_k(pmix, RA, yemp = FALSE)

Arguments

pmix Data Frame. A three column data frame. First column is the operation outcome. Second column are the predicted probabilities from the risk model. Third column can be either the predicted probabilities from the risk model or average outcome.
RA Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $\mathrm{RA}=1 / 2$. Odds ratio of death under the null hypotheses is 1 .
yemp Logical. If TRUE, use emirical outcome values, else use model.

Details

Formula deterioration:

$$
k d e t=\frac{R A-1-\log (R A)}{\log (R A)} \bar{p}, R A>1
$$

Formula improvement:

$$
k i m p=\frac{1-R A+\log (R A)}{\log (R A)} \bar{p}, R A<1
$$

Value

Returns a single value which is the approximate optimal k .

Author(s)

Philipp Wittenberg

References

Wittenberg P, Gan FF, Knoth S (2018). A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Statistics in Medicine, 37(16), pp 24552473.

Examples

```
## Not run:
library(vlad)
library(dplyr)
data("cardiacsurgery", package = "spcadjust")
## preprocess data to 30 day mortality
SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II")))
SI <- subset(SALL, phase == "I")
GLM <- glm(y ~ s, data = SI, family = "binomial")
pi1 <- predict(GLM, type = "response", newdata = data.frame(s = SI$s))
pmix <- data.frame(SI$y, pi1, pi1)
## (Deterioration)
optimal_k(pmix = pmix, RA = 2)
## manually find optimal k for detecting deterioration
RA <- 2
pbar <- mean(pmix$pi1)
kopt <- pbar * ( RA - 1 - log(RA) ) / log(RA)
all.equal(kopt, optimal_k(pmix = pmix, RA = 2))
## (Improvement)
optimal_k(pmix = pmix, RA = 1/2)
## manually find optimal k for detecting improvement
RA <- 1/2
pbar <- mean(pmix$pi1)
kopt <- pbar * ( 1 - RA + log(RA) ) / log(RA)
all.equal(kopt, optimal_k(pmix = pmix, RA = 1/2))
## End(Not run)
```


Description

Pearson measure.

Usage

QQ(s, y, delta)

Arguments

s Integer vector. Parsonnet Score values within a range of 0 to 100 representing the preoperative patient risk.
$y \quad$ Numeric Vector. Binary (0/1) outcome values of each operation.
delta Double. Box-Cox transformation parameter.

Value

Returns a single value.

Author(s)

Philipp Wittenberg

Examples

```
## Not run:
## load data
data("cardiacsurgery", package = "spcadjust")
## preprocess data to 30 day mortality and subset data to
## phase I (In-control) and phase II (monitoring)
SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II")))
## subset phase I (In-control)
SI <- filter(SALL, phase == "I") %>% select(s, y)
dQQ <- search_delta(SI$s, SI$y, type = "Pearson")
QQ(SI$s, SI$y, dQQ)
## End(Not run)
```

 racusum_ad_sim
 Compute steady-state ARLs of RA-CUSUM control charts using simu- lation

Description

Compute steady-state ARLs of risk-adjusted cumulative sum control charts using simulation.

Usage

racusum_ad_sim(r, pmix, h, RA = 2, RQ = 1, m = 50, type = "cond")

Arguments

$r \quad$ Integer Vector. Number of runs.
pmix Data Frame. A three column data frame. First column is the operation outcome. Second column are the predicted probabilities from the risk model. Third column can be either the predicted probabilities from the risk model or average outcome.
h Double. Control Chart limit for detecting deterioration/improvement.
RA Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $\mathrm{RA}=1 / 2$. Odds ratio of death under the null hypotheses is 1 .

RQ Double. Defines the true performance of a surgeon with the odds ratio ratio of death $R Q$. Use $R Q=1$ to compute the in-control ARL and other values to compute the out-of-control ARL.
m
Integer. Simulated in-control observations.
type Character. Default argument is "cond" for computation of conditional steadystate. Other option is the cyclical steady-state "cycl".

Value

Returns a single value which is the Run Length.

Author(s)

Philipp Wittenberg
racusum_arl
ARL of RA-CUSUM charts

Description

Compute the ARL of risk-adjusted CUSUM charts.

Usage

racusum_arl_mc(h, pmix, RA, RQ, scaling = 600, rounding = "p", method = "Toep")
racusum_arl_sim(h, pmix, r, RA = 2, RQ = 1, yemp = FALSE)

Arguments

h	Double. h is the control limit (>0).
pmix	Data Frame. A three column data frame. First column is the operation outcome. Second column are the predicted probabilities from the risk model. Third column can be either the predicted probabilities from the risk model or average outcome.
RA	Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $R A=1 / 2$. Odds ratio of death under the null hypotheses is 1 . $R Q$. Use $R Q=1$ to compute the in-control ARL and other values to compute the out-of-control ARL.
RQ	Double. Defines the true performance of a surgeon with the odds ratio ratio of death $R Q$. Use $R Q=1$ to compute the in-control ARL and other values to compute the out-of-control ARL.
scaling	Double. The scaling parameter controls the quality of the approximation, larger values achieve higher accuracy but increase the computation burden (larger transition probability matrix).
rounding	Character. If rounding $=" \mathrm{p} "$ a paired rounding implementation of Knoth et al. (2019) is used, if rounding $=" \mathrm{~s} "$ a simple rounding method of Steiner et al. (2000) is used.
method	Character. If method = "Toep" a combination of Sequential Probability Ratio Test and Toeplitz matrix structure is used to calculate the ARL. "ToepInv" computes the inverted matrix using Toeplitz matrix structure. "BE" solves a linear equation system using the classical approach of Brook and Evans (1972) to calculate the ARL.
r	Integer. Number of runs.
yemp	Logical. If TRUE use observed outcome value, if FALSE use estimated binary logistc regression model.

Value

Returns a single value which is the Average Run Length for "racusum_arl_mc" and the Run Length for "racusum_arl_sim".

Author(s)

Philipp Wittenberg

References

Steiner SH, Cook RJ, Farewell VT and Treasure T (2000). Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics, 1(4), pp. 441-452.
Knoth S, Wittenberg P and Gan FF (2019). Risk-adjusted CUSUM charts under model error. Statistics in Medicine, 38(12), pp. 2206-2218.

Wittenberg P, Gan FF, Knoth S (2018). A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Statistics in Medicine, 37(16), pp 24552473.

Brook D and Evans DA (1972) An approach to the probability distribution of CUSUM run length. Biometrika, 59(3), pp. 539-549
Webster RA and Pettitt AN (2007) Stability of approximations of average run length of risk-adjusted CUSUM schemes using the Markov approach: comparing two methods of calculating transition probabilities. Communications in Statistics - Simulation and Computation 36(3), pp. 471-482

Examples

```
## Not run:
library(vlad)
library(dplyr)
data("cardiacsurgery", package = "spcadjust")
## Markov Chain
## preprocess data to 30 day mortality and subset phase I (In-control) of surgeons 2
SALLI <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II"))) %>%
    filter(phase == "I") %>% select(s, y)
## estimate risk model, get relative frequences and probabilities
mod1 <- glm(y ~ s, data = SALLI, family = "binomial")
fi <- as.numeric(table(SALLI$s) / length(SALLI$s))
usi <- sort(unique(SALLI$s))
pi1 <- predict(mod1, newdata = data.frame(s = usi), type = "response")
pi2 <- tapply(SALLI$y, SALLI$s, mean)
## set up patient mix (risk model)
pmix1 <- data.frame(fi, pi1, pi1)
## Average Run Length for detecting deterioration RA = 2:
racusum_arl_mc(pmix = pmix1, RA = 2, RQ = 1, h = 4.5)
## Average Run Length for detecting improvement RA = 1/2:
racusum_arl_mc(pmix = pmix1, RA = 1/2, RQ = 1, h = 4)
## set up patient mix (model free)
pmix2 <- data.frame(fi, pi1, pi2)
## Average Run Length for detecting deterioration RA = 2:
racusum_arl_mc(pmix = pmix2, RA = 2, RQ = 1, h = 4.5)
## Average Run Length for detecting improvement RA = 1/2:
racusum_arl_mc(pmix = pmix2, RA = 1/2, RQ = 1, h = 4)
## compare results with R-code function 'findarl()' from Steiner et al. (2000)
source("https://bit.ly/2KC0SYD")
all.equal(findarl(pmix = pmix1, R1 = 2, R = 1, CL = 4.5, scaling = 600),
    racusum_arl_mc(pmix = pmix1, RA = 2, RQ = 1, h = 4.5, scaling = 600, rounding = "s"))
```

```
## Monte Carlo simulation
set.seed(1234)
SALLI <- cardiacsurgery %>% mutate(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II"))) %>%
    filter(phase == "I") %>% select(s, y)
## estimate risk model, get relative frequences and probabilities
mod1 <- glm(y ~ s, data = SALLI, family = "binomial")
y <- SALLI$y
pi1 <- fitted.values(mod1)
## set up patient mix (risk model)
pmix <- data.frame(y, pi1, pi1)
h <- 2.75599
m <- 1e4
RLS <- sapply(1:m, racusum_arl_sim, h=h, pmix=pmix, RA=2)
data.frame(cbind(ARL=mean(RLS), ARLSE=sd(RLS)/sqrt(m), h, m))
## End(Not run)
```

racusum_betabinomial_arl_sim
Compute ARLs of RA-CUSUM control charts using simulation

Description

Compute ARLs of RA-CUSUM control charts using simulation.

Usage

racusum_betabinomial_arl_sim(r, shape1, shape2, coeff, h, RA = 2, rs = 71, $R Q=1$)

Arguments

r
Integer Vector. Number of runs.
shape1 Double. Shape parameter $\alpha>0$ of the beta-binomial distribution.
shape2 Double. Shape parameter $\beta>0$ of the beta-binomial distribution.
coeff Numeric Vector. Estimated intercept and slope coefficients from a binary logistic regression model.
h Double. Control Chart limit for detecting deterioration/improvement.
RA Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $R A=1 / 2$.
rs Integer. Maximum risk score.
RQ Double. Defines the performance of a surgeon with the odds ratio ratio of death Q.

Value

Returns a single value which is the Run Length.

Author(s)

Philipp Wittenberg

Examples

```
## Not run:
library(vlad)
m <- 1e3
RLS <- sapply(1:m, racusum_betabinomial_arl_sim, shape1=1, shape2=3, coeff=c(-3.6798, 0.0768),
h=4.5, RA=2, rs=71, RQ=1)
data.frame(cbind(ARL=mean(RLS), ARLSE=sd(RLS)/sqrt(m)))
## End(Not run)
```

```
racusum_betabinomial_crit_sim
Compute alarm threshold of RA-CUSUM control charts using simula-
    tion
```


Description

Compute alarm threshold of risk-adjusted cumulative sum control charts using simulation.

Usage

racusum_betabinomial_crit_sim(L0, shape1, shape2, coeff, RA = 2, rs = 71, RQ = 1, m = 10000, nc = 1, hmax = 30, jmax = 4, verbose = FALSE)

Arguments

L0
Double. Prespecified in-control Average Run Length.
shape $1 \quad$ Double. Shape parameter $\alpha>0$ of the beta-binomial distribution.
shape2 Double. Shape parameter $\beta>0$ of the beta-binomial distribution.
coeff Numeric Vector. Estimated intercept and slope coefficients from a binary logistic regression model.

RA	Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $R A=1 / 2$.
rs	Integer. Maximum risk score.
RQ	Double. Defines the performance of a surgeon with the odds ratio ratio of death Q.
m	Integer. Number of simulation runs.
nc	Integer. Number of cores used for parallel processing. Value is passed to parSapply.
hmax	Integer. Maximum value of h for the grid search.
jmax	Integer. Number of digits for grid search.
verbose	Logical. If TRUE verbose output is included, if FALSE a quiet calculation of h is done.

Details

Determines the control limit ("h") for given in-control ARL ("L0") applying a grid search using racusum_betabinomial_arl_sim and parSapply.

Value

Returns a single value which is the control limit h for a given in-control ARL.

Author(s)

Philipp Wittenberg

Examples

```
## Not run:
library(vlad)
racusum_betabinomial_crit_sim(L0=100, shape1=1, shape2=3, coeff=c(-3.6798, 0.0768), RA = 2,
rs = 71, RQ = 1, verbose=TRUE)
## End(Not run)
```

```
racusum_beta_arl ARL of Beta RA-CUSUM charts
```


Description

Compute the ARL of risk-adjusted CUSUM charts assuming a beta distributed patient mix.

Usage

```
racusum_beta_arl_mc(h, shape1, shape2, g0, g1, RA, RQ = 1, \(r=600\), method = 1)
racusum_beta_arl_int(h, shape1, shape2, g0, g1, RA, RQ, N, pw)
racusum_beta_arl_sim(h, shape1, shape2, g0, g1, r, RA = 2, RQ = 1, rs = 71)
```


Arguments

h
Double. h is the control limit (>0).
shape 1
Double. Shape parameter $\alpha>0$ of the beta distribution.
shape2 Double. Shape parameter $\beta>0$ of the beta distribution.
g0 Double. Estimated intercept coefficient from a binary logistic regression model.
g1 Double. Estimated slope coefficient from a binary logistic regression model.
RA Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $R A=1 / 2$. Odds ratio of death under the null hypotheses is 1 .

RQ Double. Defines the performance of a surgeon with the odds ratio ratio of death.
r Integer. Number of runs.
method Character. If method $=" 1 "$ a combination of Sequential Probability Ratio Test and Toeplitz matrix structure is used to calculate the ARL. "2" solves a linear equation system using the classical approach of Brook and Evans (1972) to calculate the ARL.
$\mathrm{N} \quad$ Integer. Number of quadrature nodes, dimension of the resulting linear equation system is equal to N .
pw Logical. If FALSE full collocation is applied. If TRUE a piece-wise collocation method is used.
rs
Integer. Maximum risk score.

Value

Returns a single value which is the Average Run Length for "racusum_beta_arl_mc" and "racusum_beta_arl_int", and the Run Length for "racusum_beta_arl_sim".

Author(s)

Philipp Wittenberg

References

Brook D and Evans DA (1972) An approach to the probability distribution of CUSUM run length.
Biometrika, 59(3), pp. 539-549

Examples

```
## Not run:
library(vlad)
## Markov Chain
racusum_beta_arl_mc(h=4.5, shape1=1, shape2=6, g0=-3.6798, g1=0.0768*71, RA=2, r=1e4)
## Full collocation
racusum_beta_arl_int(h=4.5, shape1=1, shape2=6, g0=-3.6798, g1=0.0768*71, RA=2, RQ=1, N=150,
    pw=FALSE)
## Piece-wise collocation
racusum_beta_arl_int(h=4.5, shape1=1, shape2=6, g0=-3.6798, g1=0.0768*71, RA=2, RQ=1, N=49,
    pw=TRUE)
## Monte Carlo simulation
m <- 1e3
RLS <- sapply(1:m, racusum_beta_arl_sim, h=4.5, shape1=1, shape2=6, g0=-3.6798,g1=0.0768,
RA = 2, RQ = 1, rs = 71)
data.frame(cbind(ARL=mean(RLS), ARLSE=sd(RLS)/sqrt(m)))
## End(Not run)
```


Description

Compute alarm threshold of risk-adjusted CUSUM charts assuming a beta distributed patient mix.

Usage

racusum_beta_crit_mc(L0, shape1, shape2, g0, g1, RA, RQ = 1, method = 1, $r=600$, jmax = 4, verbose $=$ TRUE)
racusum_beta_crit_sim(L0, shape1, shape2, g0, g1, RA = 2, RQ = 1, nc = 1, rs = 71, hmax $=30$, $\max =4, \mathrm{~m}=10000$, verbose $=$ FALSE)

Arguments

L0
Double. Prespecified Average Run Length.
shape1
Double. Shape parameter $\alpha>0$ of the beta distribution.
shape2 Double. Shape parameter $\beta>0$ of the beta distribution.
g0
Double. Estimated intercept coefficient from a binary logistic regression model.
g1
Double. Estimated slope coefficient from a binary logistic regression model.
RA
Double. Odds ratio of death under the alternative hypotheses. Detecting deteri- oration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $\mathrm{RA}=1 / 2$. Odds ratio of death under the null hypotheses is 1 .

RQ	Double. Defines the true performance of a surgeon with the odds ratio ratio of death $R Q$. Use $R Q=1$ to compute the in-control ARL and other values to compute the out-of-control ARL.
method	Character. If method $=" 1 "$ a combination of Sequential Probability Ratio Test and Toeplitz matrix structure is used to calculate the ARL. "2" solves a linear equation system using the classical approach of Brook and Evans (1972) to calculate the ARL.
r	Double. Matrix system dimension.
jmax	Integer. Number of digits for grid search.
verbose	Logical. If FALSE a quiet calculation of h is done. If TRUE verbose output of the search procedure (see details) is included.
nc	Integer. Number of cores used for parallel processing. Value is passed to parSapply.
rs	Integer. Maximum risk score.
hmax	Integer. Maximum value of h for the grid search.
m	Integer. Number of simulation runs.

Details

Determines the control limit ("h") for a given in-control ARL ("L0") using racusum_beta_arl_mc or racusum_beta_arl_sim and parSapply by applying a grid search.

Value

Returns a single value which is the control limit h for a given In-control ARL.

References

Brook D and Evans DA (1972) An approach to the probability distribution of CUSUM run length. Biometrika, 59(3), pp. 539-549

Examples

```
## Not run:
library(vlad)
## Markov Chain
racusum_beta_crit_mc(L0=7500, shape 1=.61, shape2=4.09,g0=-3.6798,g1=0.0768*71, RA=2, RQ=1,
    r=1e3)
## Monte Carlo simulation
racusum_beta_crit_sim(L0=7500, shape 1=.61, shape2=4.09,g0=-3.6798,g1=0.0768, RA = 2, RQ = 1,
rs = 71, verbose=TRUE, m=1e3)
## End(Not run)
```


Description

Compute alarm threshold of risk-adjusted CUSUM charts.

Usage

```
racusum_crit_mc(L0, pmix, RA, RQ, scaling = 600, rounding = "p",
    method = "Toep", jmax = 4, verbose = FALSE)
racusum_crit_sim(L0, pmix, \(R A=2, R Q=1\), yemp \(=\) FALSE, \(m=10000\),
    \(\mathrm{nc}=1\), hmax \(=30, j \max =4\), verbose \(=\) FALSE)
```


Arguments

L0	Double. Prespecified Average Run Length. Numeric Matrix. A three column matrix. First column is the risk score distribu- tion. Second column are the predicted probabilities from the risk model. Third column can be either the predicted probabilities from the risk model or average outcome per risk score, see examples. Double. Odds ratio of death under the alternative hypotheses. Detecting deteri- oration in performance with increased mortality risk by doubling the odds Ratio RA = 2. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death RA = 1/2. Odds ratio of death under the null hypotheses is 1. RQ. Use RQ = 1 to compute the in-control ARL and other values to compute the out-of-control ARL. Double. Defines the true performance of a surgeon with the odds ratio ratio of death RQ. Use RQ = 1 to compute the in-control ARL and other values to compute the out-of-control ARL.
RQ	Double. The scaling parameter controls the quality of the approximation, larger values achieve higher accuracy but increase the computation burden (larger transition probability matrix).
rounding	Character. If rounding = "p" a paired rounding implementation of Knoth et al. (2019) is used, if rounding = "s" a simple rounding method of Steiner et al. (2000) is used.
method	Character. If method = "Toep" a combination of Sequential Probability Ratio
Test and Toeplitz matrix structure is used to calculate the ARL. "ToepInv" com-	
putes the inverted matrix using Toeplitz matrix structure. "BE" solves a linear	
equation system using the classical approach of Brook and Evans (1972) to cal-	
culate the ARL.	

yemp	Logical. If TRUE, use emirical outcome values, else use model.
m	Integer. Number of simulation runs.
nc	Integer. Number of cores used for parallel processing. Value is passed to parSapply.
hmax	Integer. Maximum value of h for the grid search.

Details

Determines the control limit for given in-control ARL ("L0") using racusum_arl_mc by applying a grid search.
Determines the control limit ("h") for given in-control ARL ("L0") applying a grid search using racusum_arl_sim and parSapply.

Value

Returns a single value which is the control limit h for a given In-control ARL.

Author(s)

Philipp Wittenberg

References

Knoth S, Wittenberg P and Gan FF (2019). Risk-adjusted CUSUM charts under model error. Statistics in Medicine, 38(12), pp. 2206-2218.
Wittenberg P, Gan FF, Knoth S (2018). A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart. Statistics in Medicine, 37(16), pp 24552473.

Steiner SH, Cook RJ, Farewell VT and Treasure T (2000). Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics, 1(4), pp. 441-452.
Brook D and Evans DA (1972) An approach to the probability distribution of CUSUM run length. Biometrika, 59(3), pp. 539-549

Webster RA and Pettitt AN (2007) Stability of approximations of average run length of risk-adjusted CUSUM schemes using the Markov approach: comparing two methods of calculating transition probabilities. Communications in Statistics - Simulation and Computation 36(3), pp. 471-482

Examples

```
## Not run:
library(vlad)
library(dplyr)
data("cardiacsurgery", package = "spcadjust")
## Markov Chain
## preprocess data to 30 day mortality and subset phase I (In-control) of surgeons 2
S2I <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
            phase = factor(ifelse(date < 2*365, "I", "II"))) %>%
```

```
        filter(phase == "I", surgeon == 2) %>% select(s, y)
    ## estimate risk model, get relative frequences and probabilities
    mod1 <- glm(y ~ s, data = S2I, family = "binomial")
    fi <- as.numeric(table(S2I$s) / length(S2I$s))
    usi <- sort(unique(S2I$s))
pi1 <- predict(mod1, newdata = data.frame(s = usi), type = "response")
## set up patient mix
pmix <- data.frame(fi, pi1, pi1)
## control limit for detecting deterioration RA = 2:
racusum_crit_mc(pmix = pmix, L0 = 740, RA = 2, RQ = 1)
## control limit for detecting improvement RA = 1/2:
racusum_crit_mc(pmix = pmix, L0 = 740, RA = 0.5, RQ = 1)
## Monte Carlo simulation
SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
        phase = factor(ifelse(date < 2*365, "I", "II")))
SI <- subset(SALL, phase == "I")
y <- subset(SALL, select = y)
GLM <- glm(y ~ s, data = SI, family = "binomial")
pi1 <- predict(GLM, type = "response", newdata = data.frame(s = SALL$s))
pmix <- data.frame(y, pi1, pi1)
h <- racusum_crit_sim(pmix = pmix, L0 = 370, RA = 2, nc = 4, verbose = TRUE)
## End(Not run)
```

racusum_discretebeta_arl_sim
Compute ARLs of RA-CUSUM control charts using simulation

Description

Compute ARLs of RA-CUSUM control charts using simulation.

Usage

racusum_discretebeta_arl_sim(r, shape1, shape2, coeff, h, RA = 2, rs = 72, $R Q=1$)

Arguments

r
Integer Vector. Number of runs.
shape1 Double. Shape parameter $\alpha>0$ of the beta distribution.
shape2 Double. Shape parameter $\beta>0$ of the beta distribution.
coeff Numeric Vector. Estimated intercept and slope coefficients from a binary logistic regression model.
h Double. Control Chart limit for detecting deterioration/improvement.
RA Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $R A=1 / 2$.
rs Integer. Number of intervals between 0 and the maximum risk score.
RQ Double. Defines the performance of a surgeon with the odds ratio ratio of death. Q.

Value

Returns a single value which is the Run Length.

Author(s)

Philipp Wittenberg

Examples

```
## Not run:
library(vlad)
m <- 1e3
RLS <- sapply(1:m, racusum_discretebeta_arl_sim, shape1=1, shape2=3, coeff=c(-3.6798, 0.0768),
h=4.5, RA=2, rs=71+1, RQ=1)
data.frame(cbind(ARL=mean(RLS), ARLSE=sd(RLS)/sqrt(m)))
## End(Not run)
```

```
    racusum_discretebeta_crit_sim
```

 Compute alarm threshold of RA-CUSUM control charts using simula-
 tion

Description

Compute alarm threshold of risk-adjusted cumulative sum control charts using simulation.

Usage

racusum_discretebeta_crit_sim(L0, shape1, shape2, coeff, rs = 72, RA = 2, $R Q=1, \mathrm{nc}=1$, hmax $=30$, $j \max =4, \mathrm{~m}=10000$, verbose $=$ FALSE)

Arguments

L0	Double. Prespecified in-control Average Run Length.
shape 1	Double. Shape parameter $\alpha>0$ of the beta distribution.
shape2	Double. Shape parameter $\beta>0$ of the beta distribution.
coeff	Numeric Vector. Estimated intercept and slope coefficients from a binary logistic regression model.
rs	Integer. Number of intervals between 0 and the maximum risk score.
RA	Double. Odds ratio of death under the alternative hypotheses. Detecting deterioration in performance with increased mortality risk by doubling the odds Ratio $R A=2$. Detecting improvement in performance with decreased mortality risk by halving the odds ratio of death $R A=1 / 2$.
RQ	Double. Defines the performance of a surgeon with the odds ratio ratio of death. Q.
nc	Integer. Number of cores used for parallel processing. Value is passed to parSapply.
hmax	Integer. Maximum value of h for the grid search.
jmax	Integer. Number of digits for grid search.
m	Integer. Number of simulation runs.
verbose	Logical. If TRUE verbose output is included, if FALSE a quiet calculation of h is done.

Details

Determines the control limit ("h") for given in-control ARL ("L0") applying a grid search using racusum_discretebeta_arl_sim and parSapply.

Value

Returns a single value which is the control limit h for a given in-control ARL.

Author(s)

Philipp Wittenberg

Examples

```
## Not run:
library(vlad)
racusum_discretebeta_crit_sim(L0=7500, shape1=.61, shape2=4.09, rs=(71+1),
coeff=c(-3.6798, .0768), RA=2, RQ=1, nc=4, verbose=TRUE, m=1e3)
## End(Not run)
```


racusum_scores Compute CUSUM scores based on the log-likelihood ratio statistic

Description

Compute CUSUM scores based on the log-likelihood ratio statistic.

Usage

racusum_scores(wt1, wt2, reset $=$ FALSE, h1 = NULL, h2 = NULL)

Arguments

wt1 Double. Log-likelihood ratio scores from function llr_score for upper CUSUM.
wt2 Double. Log-likelihood ratio scores from function llr_score for lower CUSUM.
reset Logical. If FALSE CUSUM statistic is not reset. If TRUE CUSUM statistic is reset to 0 after a signal is issued.
h1 Double. Upper control limit of the CUSUM chart.
h2 Double. Lower control limit of the CUSUM chart.

Value

Returns a list with two components for the CUSUM scores.

Author(s)

Philipp Wittenberg

References

Steiner SH, Cook RJ, Farewell VT and Treasure T (2000). Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics, 1(4), pp. 441-452.
Parsonnet V, Dean D, Bernstein AD (1989). A method of uniform stratification of risk for evaluating the results of surgery in acquired adult heart disease. Circulation, 79(6):I3-12.
Rigdon SE and Fricker RD (2015). Health Surveillance. In Chen DG and Wilson J (eds) Innovative Statistical Methods for Public Health Data, pp. 203-249. Springer, Cham.

Examples

```
## Not run:
# library(vlad)
# patient Cusum values with different odds ratios, see Rigdon and Fricker p. 225, 226
coeff <- c("(Intercept)" = -3.67, "Parsonnet" = 0.077)
wt1 <- round(llr_score(df = data.frame(19L, 0), coeff = coeff, R0 = 1, RA = 2), 4)
wt2 <- round(llr_score(df = data.frame(19L, 0), coeff = coeff, R0 = 1, RA = 1/2), 5)
all.equal(racusum_scores(wt1 = wt1, wt2 = wt2), list(s1 = 0, s1l = 0.05083))
```

```
library("dplyr")
library("tidyr")
library(ggplot2)
data("cardiacsurgery", package = "spcadjust")
## preprocess data to 30 day mortality and subset phase I (In-control)
SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
        phase = factor(ifelse(date < 2*365, "I", "II")))
## subset phase I (In-control)
SI <- filter(SALL, phase == "I") %>% select(s, y)
## estimate coefficients from logit model
coeff1 <- round(coef(glm(y ~ s, data = SI, family = "binomial")), 3)
## subset phase II of surgeons 2
S2II <- filter(SALL, phase == "II", surgeon == 2) %>% select(s, y)
n <- nrow(S2II)
## CUSUM statistic without reset
wt1 <- sapply(1:n, function(i) llr_score(S2II[i, c("s", "y")], coeff = coeff, RA = 2))
wt2 <- sapply(1:n, function(i) llr_score(S2II[i, c("s", "y")], coeff = coeff, RA = 1/2))
cv <- racusum_scores(wt1 = wt1, wt2 = wt2)
s1 <- cv$s1; s1l <- cv$s1l
dm1 <- data.frame(cbind("n" = 1:length(s1), "Cup" = s1, "Clow" = -s1l, "h1" = 2, "h2" = -2))
## CUSUM statistic reset after signal
cv <- racusum_scores(wt1 = wt1, wt2 = wt2, reset = TRUE, h1 = 2, h2 = 2)
s1 <- cv$s1; s1l <- cv$s1l
dm2 <- data.frame(cbind("n" = 1:length(s1), "Cup" = s1, "Clow" = -s1l, "h1" = 2, "h2" = -2))
## plot
dm3 <- bind_rows(dm1, dm2, .id = "type")
dm3$type <- recode_factor(dm3$type, `1`="No resetting", `2`="Resetting")
dm3 %>%
    gather("CUSUM", value, c(-n, - type)) %>%
    ggplot(aes(x = n, y = value, colour = CUSUM, group = CUSUM)) +
    geom_hline(yintercept = 0, colour = "darkgreen", linetype = "dashed") +
    geom_line(size = 0.5) +
    facet_wrap( ~ type, ncol = 1, scales = "free") +
    labs(x = "Patient number n", y = "CUSUM values") + theme_classic() +
    scale_y_continuous(sec.axis = dup_axis(name = NULL, labels = NULL)) +
    scale_x_continuous(sec.axis = dup_axis(name = NULL, labels = NULL)) +
    guides(colour = "none") +
    scale_color_manual(values = c("blue", "orange", "red", "red"))
## End(Not run)
```


Description

Search Box-Cox transformation parameter.

Usage

search_delta(s, y, type $=$ "ML", dmin $=-2$, dmax = 2)

Arguments

S
Integer vector. Parsonnet Score values within a range of 0 to 100 representing the preoperative patient risk.
$y \quad$ Double. Binary (0/1) outcome values of each operation.
type Character. If type $=$ "ML" Maximum Likelihood used to search the Box-Cox transformation parameter, type = "Pearson" uses a Pearson measure.
dmin Double. Minimum value for the grid search.
dmax Double. Maximum value for the grid search.

Value

Returns a single value for the Box-Cox transformation parameter.

Author(s)

Philipp Wittenberg

References

Knoth S, Wittenberg P and Gan FF (2019). Risk-adjusted CUSUM charts under model error. Statistics in Medicine, 38(12), pp. 2206-2218..

Examples

```
## Not run:
## load data
data("cardiacsurgery", package = "spcadjust")
## preprocess data to 30 day mortality and subset data to
## phase I (In-control) and phase II (monitoring)
SALL <- cardiacsurgery %>% rename(s = Parsonnet) %>%
    mutate(y = ifelse(status == 1 & time <= 30, 1, 0),
        phase = factor(ifelse(date < 2*365, "I", "II")))
## subset phase I (In-control)
SI <- filter(SALL, phase == "I") %>% select(s, y)
## search delta
dML <- search_delta(SI$s, SI$y, type = "ML")
dQQ <- search_delta(SI$s, SI$y, type = "Pearson")
```

```
    ## show Log-likelihood (ell()) and Pearson measure (QQ()) for each delta
    delta <- c(-2, -1, 0, dML, dQQ, 0.5, 1, 2)
    r <- sapply(delta, function(i) rbind(i, ell(SI$s, SI$y, i), QQ(SI$s, SI$y, i)))
    rownames(r) <- c("d", "l", "S")
    t(r)
    data.frame(t(r)) %>% filter(l == max(l) | S == min(S))
    ## End(Not run)
```

 surgery Surgical outcome data.

Description

A data set with the risk scores and surgical outcomes of 2,500 patients.

Usage

surgery

Format

A data frame with 2500 rows and 2 variables:
s Risk scores
y Binary operation outcome ($0=$ survival, $1=$ death)

trafo

Box-Cox transformation of data.

Description

Box-Cox transformation of data.

Usage

trafo(delta, x)

Arguments

delta
x

Numeric. Box-Cox transformation parameter.
Numceric Vector. Parsonnet Score values within a range of 0 to 100 representing the preoperative patient risk.

Value

Returns a transformed Numeric vector.

Author(s)

Philipp Wittenberg
VMASK3 Vmask3

Description

Helper function to compute truncated symeterical/asymetrical vmask

Usage

VMASK3(A, B, d1, d2, theta1, theta2, Sn, seg)

Arguments

A
B
d1 Double. For the XYZ CUSUM Distance d from vertex of V-Mask. d=h/k
d2
theta1 Double. Angle ...
theta2 Double. Angle ...
Sn
seg Logical. ...

Value

Author(s)

Philipp Wittenberg

Index

```
* datasets
    surgery, 36
bcusum_arl_sim, 3, 4
bcusum_crit_sim, 3
compute_vmask,4
ell,5
eocusum_ad_sim,6
eocusum_arl_sim, 8,11
eocusum_crit_sim,10
eocusum_scores,12
llr_score, 14, 33
mclapply,4
optimal_k, 6, 8, 10, 12,16
parSapply, 11, 24, 27, 29, 32
QQ,17
racusum_ad_sim,18
racusum_arl,19
racusum_arl_mc,29
racusum_arl_mc (racusum_arl), 19
racusum_arl_sim, 29
racusum_arl_sim(racusum_arl),19
racusum_beta_arl, 24
racusum_beta_arl_int
    (racusum_beta_arl), 24
racusum_beta_arl_mc, 27
racusum_beta_arl_mc (racusum_beta_arl),
    24
racusum_beta_arl_sim,27
racusum_beta_arl_sim
    (racusum_beta_arl), 24
racusum_beta_crit,26
racusum_beta_crit_mc
    (racusum_beta_crit), 26
```

