Efficient algorithms for fitting linear / logistic regression model with Independently Interpretable Lasso. Takada, M., Suzuki, T., & Fujisawa, H. (2018). Independently Interpretable Lasso: A New Regularizer for Sparse Regression with Uncorrelated Variables. AISTATS. <http://proceedings.mlr.press/v84/takada18a/takada18a.pdf>.
| Version: | 0.0.2 | 
| Imports: | Rcpp, Matrix | 
| LinkingTo: | Rcpp, BH | 
| Suggests: | testthat, knitr, rmarkdown, MASS, parallel | 
| Published: | 2018-06-21 | 
| Author: | Masaaki Takada | 
| Maintainer: | Masaaki Takada <tkdmah at gmail.com> | 
| License: | MIT + file LICENSE | 
| URL: | http://proceedings.mlr.press/v84/takada18a/takada18a.pdf | 
| NeedsCompilation: | yes | 
| Materials: | README NEWS | 
| CRAN checks: | iilasso results | 
| Reference manual: | iilasso.pdf | 
| Vignettes: | 
Introduction to iilasso package | 
| Package source: | iilasso_0.0.2.tar.gz | 
| Windows binaries: | r-devel: iilasso_0.0.2.zip, r-release: iilasso_0.0.2.zip, r-oldrel: iilasso_0.0.2.zip | 
| macOS binaries: | r-release (arm64): iilasso_0.0.2.tgz, r-oldrel (arm64): iilasso_0.0.2.tgz, r-release (x86_64): iilasso_0.0.2.tgz, r-oldrel (x86_64): iilasso_0.0.2.tgz | 
| Old sources: | iilasso archive | 
Please use the canonical form https://CRAN.R-project.org/package=iilasso to link to this page.