Functions and tools for estimation of mixed-frequency Bayesian vector autoregressive (VAR) models. The package implements a state space-based VAR model that handles mixed frequencies of the data as proposed by Schorfheide and Song (2015) <doi:10.1080/07350015.2014.954707>, and extensions thereof developed by Ankargren, Unosson and Yang (2020) <doi:10.1515/jtse-2018-0034>, Ankargren and Joneus (2019) <arXiv:1912.02231>, and Ankargren and Joneus (2020) <doi:10.1016/j.ecosta.2020.05.007>. The models are estimated using Markov Chain Monte Carlo to numerically approximate the posterior distribution. Prior distributions that can be used include normal-inverse Wishart and normal-diffuse priors as well as steady-state priors. Stochastic volatility can be handled by common or factor stochastic volatility models.
| Version: | 
0.5.6 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
Rcpp (≥ 0.12.7), ggplot2 (≥ 3.3.0), methods, lubridate, GIGrvg, stochvol (≥ 2.0.3), RcppParallel, dplyr, magrittr, tibble, zoo | 
| LinkingTo: | 
Rcpp, RcppArmadillo, RcppProgress, stochvol (≥ 2.0.3), RcppParallel | 
| Suggests: | 
testthat, covr, knitr, ggridges, alfred, factorstochvol | 
| Published: | 
2021-02-10 | 
| Author: | 
Sebastian Ankargren
      [cre, aut],
  Yukai Yang   [aut],
  Gregor Kastner  
    [ctb] | 
| Maintainer: | 
Sebastian Ankargren  <sebastian.ankargren at statistics.uu.se> | 
| BugReports: | 
https://github.com/ankargren/mfbvar/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/ankargren/mfbvar | 
| NeedsCompilation: | 
yes | 
| SystemRequirements: | 
GNU make | 
| Citation: | 
mfbvar citation info  | 
| Materials: | 
README NEWS  | 
| In views: | 
TimeSeries | 
| CRAN checks: | 
mfbvar results |